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Inflammaging: Molecular Pathways and 
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Inflammaging is known to be an aging-associated chronic, low-grade inflammatory state that significantly influences the patho-
physiology of various age-related diseases, including those affecting oral health. This review explores the molecular and cellular 
mechanisms of inflammaging and its implications in oral pathology. We will review key factors contributing to inflammaging, 
including cellular senescence, and immune dysregulation, all of which induce pro-inflammatory cytokines and reactive oxygen 
species (ROS). These inflammatory mediators affect oral tissues, predisposing individuals to chronic conditions such as peri-
odontitis, and dental pulp inflammation. Additionally, we will briefly discuss how the oral microbiome is involved in the regu-
lation of inflammaging. Understanding the molecular pathways of inflammaging may provide valuable insights not only into 
oral health but also into potential health strategies for the aging population. [J Korean Dent Sci. 2024;17(4):174-86]
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Introduction

Aging is accompanied by a complex physiological 
changes that collectively contribute to increased 
vulnerability to age-related diseases. Among these 
changes, the concept of inflammaging has emerged as a 
prominent hallmark of the aging process, characterized 

by chronic low-grade inflammation that persists over 
time1,2. The term of inflammaging is referred to age 
associated low grade and chronic sterile inflammation 
with immune dysfunction. By the aging, divers cellular 
populations undergo senescence and accumulate in the 
organs. Cellular senescence is caused by inherent effect, 
such as telomere shortening, chromosomal instability, 
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metabolic stresses, etc., and exogenous effects, such 
as chemical exposure, radiation, and environmental 
stresses. Senescence cells increase their gene expression 
encoding secreted protein. These changing of cellular 
phenotype is called senescence associated secretory 
phenotype (SASP). This process is associated with 
various age-related diseases and conditions, including 
cardiovascular disease, neurodegenerative diseases, 
diabetes, and even oral diseases. Inflammaging is driv-
en by a complex interplay of cellular and molecular 
mechanisms. And the inflammaging contribute to oral 
disease progression. In this paper, we will briefly review 
the cellular and molecular mechanisms underlying the 
inflammaging and its implications on oral pathology. 
Moreover, we will briefly explore the relation between 
oral microbiome and the inflammaging.

Molecular and cellular mechanisms of 
inflammaging

Cellular mechanisms of inflammaging
At the cellular level, alterations in the immune sys-

tem play a central role in perpetuating inflammation 
throughout the aging process. It is called immuno-se-
nescence which has highly correlation with inflammag-
ing (Fig. 1A). The innate immune system is affected by 
aging through functional deficits. Innate immune cells 
such as dendritic cells (DCs) and macrophage have 
role in chemotaxis, phagocytosis, antigen presentation, 
and the killing the bacteria or dead cells. However, 
aged DCs and macrophages show less response to 
signal from surface immune receptors, such as Toll-
like receptors (TLR)3-5. Because skin and mucosal layer 
of aged tissue weak and venerable to outside intruders 
(ex-bacteria, and dead cell debris)6, the DCs and mac-
rophages are continuously exposed to pathogen with 
failing to clearance and remodeling the tissue, which 
eventually lead to chronic inflammation3,7. Moreover, 
aging promotes decline of adaptive immune system. 
This decline affects both arms of the adaptive immune 
system: T and B lymphocyte. Shrinkage of thymus, 

which is critical for T lymphocytes maturation, is 
characteristic of aging8-10. This reduces the output 
of naive T lymphocytes, leading to a smaller reper-
toire of T lymphocytes capable of recognizing new 
antigens11. Senescent T lymphocytes accumulate and 
exhibit impaired proliferation, cytokine production, 
and cytotoxic activity12. Especially, accumulation of 
senescent memory CD8+ T lymphocytes and impaired 
regulatory T lymphocytes makes the host susceptible 
to novel pathogen and chronic inflammation13,14. Sim-
ilarly, aged bone marrow cells show less stemness and 
differentiate into B lymphocyte. It makes reduction 
of naïve B lymphocytes and accumulates senescent B 
lymphocytes8. The senescent B lymphocytes produce 
less diverse repertoire of antibody with low affinity to 
antigen15,16. Many research paper explored auto-anti-
body produced from senescent B lymphocytes, which 
have auto-response to host antigen, which indicates 
possibility of autoimmune disease in aging17-19.

Dysregulation of immune responses from both 
immune and non-immune cells contributes to the 
sustained activation of immune cells, characterized by 
a shift towards a pro-inflammatory state and a decline 
in anti-inflammatory mechanisms. Senescent cells are 
key mediators of inflammaging, which accumulate 
with age and exhibit a pro-inflammatory phenotype 
known as SASP1,20,21 (Fig. 1B). The SASP is a unique 
secretory prof ile characterized by the secretion of 
a myriad of factors, including pro-inflammatory 
cytokines, chemokines, growth factors, proteases, 
and extracellular matrix remodeling enzymes20. The 
composition of the SASP can vary depending on the 
cell type, senescence-inducing stimulus, and micro-
environmental context. Common components of the 
SASP include interleukin-6 (IL-6), interleukin-8 (IL-
8), interleukin-1β (IL-1β), tumor necrosis factor alpha 
(TNF-α), matrix metalloproteinases (MMPs), and 
chemokines such as monocyte chemoattractant pro-
tein-1 (MCP-1). These secreted factors create a local 
microenvironment that promotes inflammation, tissue 
remodeling, and immune cell recruitment22. The SASP 
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can also have systemic effects, as senescent cells can 
disseminate pro-inflammatory signals to distant tissues 
via circulation. In healthy condition, the SASP can 
have beneficial effects by promoting immune surveil-
lance and tissue repair in response to stress or injury23. 
However, chronic exposure to SASP components can 
drive persistent inflammation, tissue dysfunction, and 

contribute to the pathogenesis of age-related diseases, 
including cancer, cardiovascular disease, neurodegen-
erative diseases, and metabolic disorders24.

Molecular pathways in inflammaging
In addition to immune dysregulation, alterations 

in signaling pathways contribute to the development 

Fig. 1. Cellular mechanisms and Molecular signaling pathways of inflammaging in senescence cells. Senescence immune 
cells have less ability of phagocytosis, immune receptor expressions, chemotaxis, and antigen presenting (A). Senescence 
cells show unique characteristics, called senescence-associated secretory phenotype (SASP). They continuously secrete 
low graded pro-inflammatory cytokines. The secreted cytokines can affect nearby cells to be exposed chronic inflammation 
(B). The DNA damages in senescence cells activate p53, p21, and p16INK4A, which inhibit the cyclin-dependent kinase (CDK). 
As a result, cell cycle in senescence cells is arrested in G1 phase (C). Consistent exposing to pro-inflammatory cytokines, 
oxidative stress, and DNA damages can activate NF-κB signaling pathway. NF-κB is key transcription factor for pro-inflam-
matory cytokines (D). As a result, complex connections between cellular mechanism and molecular signaling pathway in 
senescence cells can lead aged tissue fail to regeneration and maintain homeostasis. BCR: B-cell receptor; IL-1: Interleukin-1; 
IκB: NF-kappa B inhibitor; NF-κB: Nuclear factor-kappa B; MHC Ⅱ: Major histocompatibility complex class Ⅱ; MMP-9: Matrix 
metalloproteinase-9; p16INK4A: Cyclin-dependent kinase inhibitor 2A; p21: Cyclin-dependent kinase inhibitor 1; p53: Cellular 
tumor antigen p53; TCR: T-cell receptor; TLR: Toll-like receptor.
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and maintenance of inflammaging25. Because accumu-
lation of senescent cells accompanies inflammaging23, 
understanding the signaling pathway for cellular 
senescence is important. In aging, persistent activation 
of this pathway due to chronic DNA damage or oxi-
dative stress leads to a permanent cell cycle arrest and 
contributes to the accumulation of senescent cells. At 
that time, key signaling pathways involve in cellular 
senescence, such as the p53/p21, p16INK4a, and nuclear 
factor-kappa B (NF-κB) pathways and become dysreg-
ulated with age, leading to increased cellular senescence 
and SASP activation26,27. 

p53, tumor suppressor protein, becomes activated 
and transcriptionally upregulates the expression of 
various target genes involved in cell cycle arrest, DNA 
repair, apoptosis, and senescence in response to stress 
signals, such as DNA damage within the aging28. One 
of targets of p53 is p21 (also known as cyclin-depen-
dent kinase inhibitor 1A, CDKN1A), a potent inhibi-
tor of cyclin-dependent kinases (CDKs) that regulates 
cell cycle progression29,30. Activation of the p53/p21 
pathway results in the inhibition of CDK activity and 
subsequent arrest of the cell cycle at the G1 phase, pre-
venting damaged cells from proliferating and perpetu-
ating genomic instability31. This growth arrest allows 
cells to undergo DNA repair or undergo apoptosis if 
the damage is irreparable. The p16INK4a tumor sup-
pressor gene encodes for the p16 protein, a cyclin-de-
pendent kinase inhibitor that specifically inhibits the 
activity of cyclin-dependent kinase 4 (CDK4) and 
cyclin-dependent kinase 6 (CDK6). These kinases nor-
mally phosphorylate and inactivate the retinoblastoma 
protein (Rb), allowing progression through the G1 
phase of the cell cycle. By inhibiting CDK4/6 activity, 
p16INK4a prevents Rb phosphorylation and promotes 
cell cycle arrest at the G1 phase27,32. Activation of the 
p16INK4a pathway leads to cell cycle arrest and senes-
cence in response to various stress signals, including 
reactive oxygen species (ROS), oncogene activation 
and telomere dysfunction33-35. The accumulation of 
p16INK4a positive senescent cells has been implicated in 

aging and age-related diseases, as these cells contribute 
to tissue dysfunction and inflammation through the 
secretion of the SASP36 (Fig. 1C). 

In the context of cellular senescence, NF-κB sig-
naling is intricately linked to the establishment and 
maintenance of the senescent phenotype, as well as 
SASP. NF-κB signaling can be activated in response 
to various stress stimuli, including DNA damage, oxi-
dative stress, and pro-inflammatory cytokines27. Once 
activated, NF-κB translocate from the cytoplasm to 
the nucleus, where it binds to specific DNA sequences 
known as κB sites and regulates the expression of target 
genes involved in inflammation, immune responses, 
and senescence. NF-κB induces the expression of 
pro-inflammatory cytokines, chemokines, and adhe-
sion molecules, such as CCL2, IL-6, IL-8, MCP-1, and 
intercellular adhesion molecule-1 (ICAM-1), which 
constitute components of the SASP37,38. These signal-
ing pathways converge to promote a state of chronic 
inflammation in senescent cells that contributes to tis-
sue damage, functional decline, and the pathogenesis 
of age-related disease (Fig. 1D).

Inflammaging in the oral health

The oral cavity is essential for nutrition, communica-
tion, and social interaction, but it becomes increasingly 
vulnerable to inflammation with age. These conditions 
often bring pain, discomfort, and altered appearance, 
profoundly impacting quality of life. Inflammaging 
plays a key role in these conditions by weakening 
gums, reducing bone support, and impairing saliva’s 
protective functions, creating a favorable environment 
for infections. Similarly, aging-related changes in saliva, 
which is a natural defense mechanism, reduce its abil-
ity to wash away harmful bacteria, further tipping the 
scales in favor of disease21,39-41 (Fig. 2). In this part we 
will briefly review several oral diseases that are related 
to inflammaging.
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Periodontitis 
Periodontitis is a chronic inflammation in periodon-

tium which encompass with consistent damage to 
cementum, periodontal ligament, and alveolar bone42. 
While the exact mechanisms underlying this inflam-
mation remain unclear, bacterial infection, particularly 
from Porphyromonas gingivalis, is considered a prima-
ry etiological factor43. Emerging evidences suggest a 
strong correlation between periodontitis and inflam-
maging, as chronic inflammation in periodontitis has 
been shown to induce cellular senescence in periodon-
tal tissues. For example, a recent study using human 
gingival tissue showed that cellular senescence p16 
mRNA level in the tissue is increased in periodontitis 
compared to healthy group with recession of tissue. 
And the magnitude of incensement of p16 INK4A level 
was much higher in old group (>66.2 y) than young 
group (<41.67 y). Additionally, the pro-inflammatory 
cytokine IL-8 mRNA levels were higher in healthy gin-
gival tissue from older individuals compared to young-
er individuals, suggesting an age-dependent inflam-
matory baseline44. Further supporting these findings, 

repeated exposure to lipopolysaccharide (LPS) from 
Porphyromonas gingivalis in primary alveolar osteo-
cytes induced cellular senescence, marked by increased 
expression of p16INK4A, p21, and p53. And repeatedly 
LPS treated osteocyte robust expressed IL-1α, IL-6 and 
TNFα45. These indicate that chronic inflammation can 
induce senescence to periodontium cells with inflam-
maging. 

Conversely, inflammaging appears to exacerbate 
periodontal tissue dysfunction through SASP activity. 
With the aging, the gingival f ibroblast gradually un-
dergoes functional changes. The gingival f ibroblasts 
located in lamina propria produce collagen to maintain 
the tissue strength and elasticity. In the case of aging, 
senescence gingival f ibroblasts show upregulation of 
SASP. When human gingival fibroblasts (HGFs) were 
exposed to oxidative stress (e.g., hydrogen peroxide 
exposure), HGFs expressed aging related cell cycle pro-
tein such as p53, p16INK4A, and p21 accompanied with 
expressing SASP factors such as IL-6,8, 17, TNFα, and 
IL-1β46. Similarly, inflamed gingival tissues showed 
elevated levels of senescence markers, ROS, and cyto-

Fig. 2. The multiple relationships for oral health. Aging is one of the most important factors for maintaining oral health. By 
aging, accumulation of senescent cells can induce mild and chronic inflammation (inflammaging). And oral microbiome can 
be altered to harmful bacterial communities (dysbiosis). These changes can make oral conditions vulnerable to several oral 
diseases.
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kines such as IL-1β, IL-6, TGF-β, and IL-8. Notably, 
senescent HGFs promoted macrophage polarization to 
the pro-inflammatory M1 phenotype (CD86+) when 
cultured in vitro, demonstrating the potential of senes-
cent fibroblasts to perpetuate chronic inflammation47.

The pro-inflammatory cytokines produced during 
inflammaging recruit and activate immune cells, in-
cluding macrophages, neutrophils, and lymphocytes. 
While controlled immune responses are essential for 
host defense, chronic and dysregulated immune acti-
vation can result in damages to periodontal tissues48,49. 
The chronic immune response associated with peri-
odontitis also impacts alveolar bone, a defining feature 
of the disease. Pro-inflammatory cytokines, particular-
ly receptor activator of nuclear factor kappa-B ligand 

(RANKL), stimulate osteoclast activity, leading to 
increased bone resorption. Concurrently, the presence 
of senescent osteoblasts with diminished reparative 
capacity exacerbates the imbalance between bone 
formation and resorption50-52. As this cycle continues, 
alveolar bone loss progresses, ultimately resulting in 
tooth mobility and loss. Furthermore, SASP factors re-
leased by senescent periodontal cells, such as IL-8 and 
MMP-9, perpetuate connective tissue degradation, 
compounding the structural damage53,54.

Together, these findings highlight the complexity of 
periodontitis as a disease that is not merely driven by 
bacterial infection but also by the interplay of chronic 
inflammation, cellular senescence, and inflammaging 
(Fig. 3). This intricate network of processes creates a 
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Fig. 3. The impact of inflammaging on oral health. The inflammaging is one of the most important factors in balance be-
tween oral health and diseases, such as periodontitis and pulpitis. Oral diseases can induce cells in periodontium to cellular 
senescence with exhibiting SASP. These cells show cell cycle arrest with p53, p21, and p16INK4A activation and inflammation 
with NF-κB signaling pathway. Conversely, accumulation of senescence cells in periodontium make tissue venerable to oral 
disease. These events consequently make the oral tissue weak and easy to getting damage under oral microbacterial dysbi-
osis condition. CXCL8: Chemokine (C-X-C motif) ligand 8; IL-1α: Interleukin-1 alpha; IL-1β: Interleukin-1 beta; NF-κB: Nuclear 
factor-kappa B; p16INK4A: Cyclin-dependent kinase inhibitor 2A; p21: Cyclin-dependent kinase inhibitor 1; p53: Cellular tumor 
antigen p53; TNFα: Tumor necrosis factor alpha.
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self-perpetuating cycle of tissue damage and immune 
dysregulation. Addressing periodontitis effectively 
requires a approach that targets not only bacterial 
pathogens but also the inflammatory and senescence 
pathways that contribute to its progression.

Dental pulp inflammation
Dental pulp is the soft tissue located at the center of 

a tooth, surrounded by dentin and cementum. It con-
sists of the pulp chamber in the crown, root canals in 
the roots, and the apical foramen at the root tip, which 
allows blood vessels and nerves to enter. This structure 
supports tooth growth, sensation, and repair55,56. Den-
tal pulp inflammation, so called pulpitis, is the inflam-
mation of the dental pulp. It occurs when the pulp is 
irritated or damaged, often due to bacterial infection, 
trauma, or deep dental decay56-58.

Moreover, the relationship between pulpitis and 
inflammaging is a growing area of interest in dental 
and systemic health research. While direct studies spe-
cifically linking pulpitis to inflammaging are limited, 
emerging evidence suggests a possible correlation based 
on shared inflammatory mechanisms and molecular 
pathways. When the bacteria invade the dental pulp 
after dental decay, odontoblasts f irst encounter the 
invasion because they locate beneath dentin of crown 
part. They naturally express TLR and nucleotide bind-
ing and oligomerization domain like receptors59,60. Af-
ter the odontoblasts recognize the bacterial infection 
through the receptors, they secrete beta-defensin (BD) 
which is cationic host defense peptides61. BD is known 
to not only inhibit microorganisms’ viability, but also 
induce host cell’s immune response, such as pro-in-
flammatory cytokines and chemokines production62-64. 
At the same time, pulpal dendritic cells (pDCs) also 
recognize pathogens and accumulate in boundary 
between dentin and dental pulp during surveillance of 
the tissue65,66. They process bacterial peptides and pres-
ent them through major histocompatibility complex 
(MHC) to induce adaptive immune cell activation67. 
And then pulpal f ibroblasts recognize pathogen and 

also release pro-inflammatory cytokines and chemok-
ines68. As a result, innate immune cells (macrophage, 
pDC, etc.) and adaptive immune cells (B lymphocyte, 
and T lymphocyte) can be activated and accumulated 
in damaged areas. 

Numerous studies have identif ied the immune 
mechanisms of pulpitis. For example, when the odon-
toblast-like cells and pulpal f ibroblast were exposed 
to lipoteichoic acid (ligand for TLR 2), TNFα and 
CXCL8 gene expressions were dramatically increased 
within a few hours. Also, immature DCs highly secret-
ed TNFα, CXCL8, and IL-1β68. Using cDNA arrays, 
another study showed that not only proinflammatory 
cytokines (IL-1β, TNFα, and Lymphotoxin α) but also 
chemokines (CCR2, CCR4, CCR5, CCR9, CCL3, 
CCL12 and CCL23) genes were significantly increased 
in odontoblast layer and pulp layer from human 
carious teeth compared to healthy69. A recent study 
confirmed that numerous immune cells, such as naïve 
B cells, plasm cells, CD8+ T cells, M0 macrophages, 
M2 macrophages, dendritic cells and neutrophils, in-
filtrated into pulp tissue in pulpitis patients, based on 
gene expression omnibus dataset analysis. And their 
biological functions were up-regulated in immune cell 
chemotaxis, cytokine-mediated signaling pathway, and 
immune cell migration70. 

This inflammation related cellular mechanisms are 
shared in aged pulp tissue. Senescence dental pulp cells 
exhibit reduced regenerative capacity and an altered 
secretory prof ile into SASP that includes increased 
production of pro-inflammatory cytokines such as 
IL-6 and IL-8. The shift contributes to the sustained 
inflammatory state within the dental pulp, exacerbat-
ing tissue degradation and impairing repair processes. 
Because inflammatory cytokines can affect nearby 
cells making it hard to differentiate, and regeneration, 
which contributes to aggravation dental pulp71. More-
over, inflammaging influences dental pulp cells-medi-
ated immune responses by modulating signaling path-
ways, such as NF-κB and MAPK, which are critical 
in cytokine production. These alterations can lead to 
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a compromised ability to respond effectively to infec-
tions or injuries, contributing to a higher susceptibility 
to pulpitis and other age-related dental diseases53 (Fig. 
3). 

Inflammaging and oral microbiome

The oral microbiome plays a crucial role in human 
health, significantly impacting systemic immune re-
sponses and inflammatory processes. There is growing 
evidence linking inflammaging to the dysregulation of 
the oral microbiome. Healthy individuals typically ex-
hibit a balanced oral microbiota that maintains stable 
host-microbial interactions. This homeostasis regulates 
immune responses and prevents the over-activation 
of inflammation. Aging is a factor associated with, 
or even inducing, a reduction in microbial diversity 
within the oral environment, along with an increase in 
pathogenic microbiota, ultimately leading to immune 
dysregulation.

Elderly people often experience periodontitis, den-
tal caries, and oral candidiasis. These conditions can 
contribute to systemic inflammation, potentially exac-
erbating chronic diseases such as diabetes, rheumatoid 
arthritis, and cardiovascular disease. Periodontitis, in 
particular, has been linked to elevated levels of systemic 
inflammatory markers, which may increase the risk of 
cardiovascular events72. Therefore, maintaining oral 
microbiome homeostasis in elderly adults is crucial for 
reducing the risk of systemic inflammatory diseases.

Multi-geographical population studies have doc-
umented that aging involves several changes in the 
composition and function of the body’s microbiome 
homeostasis. Results suggest that aging is associated 
with a decrease in anti-inflammatory bacterial species, 
including Faecalibacterium and Roseburia73,74. In ad-
dition to the reduction in anti-inflammatory bacteria, 
aging impacts bacterial biodiversity and increases the 
proportion of potentially harmful bacterial families, 
such as Streptococcaceae and Staphylococcaceae73-75. The 
oral cavity microbiota is highly diverse, with more than 

700 species identified to date. Among these, Firmic-
utes, Actinobacteria, Bacteroidetes, Proteobacteria, Fu-
sobacteria, and Spirochaetes are reported as the domi-
nant phyla76-78. Limited information is available on the 
relationship between the oral microbiota and aging. A 
study analyzed the oral microbiome of elderly individ-
uals residing in nursing homes and compared it with 
the oral microbiome of those living independently79. 
They found that nursing home-residing group showed 
less diverse microbiome phyla compared with elderly 
individuals living independently79. Microbiome analy-
sis showed phyla such as Actinomyces, Streptococcus, Ba-
cilli, Selenomonas, Veillonella, and Haemophilus were 
abundant in nursing home-residing group. However, 
Prevotella, Leptotrichia, Campylobacter, and Fusobac-
terium were relatively lower in nursing home-residing 
group compared with elderly individuals living inde-
pendently80.

It is known that female hormones play important 
roles in maintaining microbiota homeostasis and influ-
ence oral health. In particular, Estrogen is involved in 
the regulation of the oral mucosa and salivary glands. 
Estrogen receptors have been identified in the oral cav-
ity and gingiva, suggesting their role in regulatory pro-
cesses81. Estrogen deficiency also impacts on salivary 
flow and postmenopausal women showed significant 
lower82. In addition to alterations in host environment 
during menopause, oral microbiome composition and 
functions are also affected significantly. Studies showed 
that the changes of hormone by aging in women may 
induce favor environment for the growth of periodon-
tal pathogens including Porphyromonas gingivalis and 
Tannerella forsythia83,84. Together with human data, 
in vivo animal study using an ovariectomized rodent 
(rat) also found that the estrogen shortage dysregulates 
oral microbiome homeostasis85, suggesting that the 
aging and hormonal changes by aging may impact sig-
nificantly on the oral microbiota.
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Conclusion

Aging is a complex process characterized by physio-
logical changes that profoundly affect both systemic 
and oral health. Inflammaging, a chronic, low-grade 
inflammatory state driven by immune dysregulation, 
cellular senescence, and alterations in signaling path-
ways, is a hallmark of aging. It is closely associated with 
age-related oral diseases and the decline of systemic 
body functions.

This manuscript explores the interplay between 
inflammaging, aging, and the oral microbiome, em-
phasizing the need for further research to elucidate the 
underlying mechanisms linking inflammaging to sys-
temic and age-related diseases. Developing strategies to 
mitigate inflammaging or create targeted interventions 
could play a crucial role in maintaining overall health 
and preventing age-associated conditions.
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