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The purpose of this study was to evaluate whether the optimal operating points of adult-oriented 
artificial intelligence (AI) software differ for pediatric chest radiographs and to assess its diagnostic 
performance. Chest radiographs from patients under 19 years old, collected between March and 
November 2021, were divided into test and exploring sets. A commercial adult-oriented AI software 
was utilized to detect lung lesions, including pneumothorax, consolidation, nodule, and pleural 
effusion, using a standard operating point of 15%. A pediatric radiologist reviewed the radiographs 
to establish ground truth for lesion presence. To determine the optimal operating points, receiver 
operating characteristic (ROC) curve analysis was conducted, varying thresholds to balance sensitivity 
and specificity by lesion type, age group, and imaging method. The test set (4,727 chest radiographs, 
mean 7.2 ± 6.1 years) and exploring set (2,630 radiographs, mean 5.9 ± 6.0 years) yielded optimal 
operating points of 11% for pneumothorax, 14% for consolidation, 15% for nodules, and 6% for pleural 
effusion. Using a 3% operating point improved pneumothorax sensitivity for children under 2 years, 
portable radiographs, and anteroposterior projections. Therefore, optimizing operating points of AI 
based on lesion type, age, and imaging method could improve diagnostic performance for pediatric 
chest radiographs, building on adult-oriented AI as a foundation.
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Abbreviations
AI	� Artificial intelligence
ROC	� Receiver operating characteristics
AUC	� Area-under-the-curve
PA	� Posteroanterior
AP	� Anteroposterior

The American College of Radiology (ACR) Pediatric Artificial Intelligence (AI) Workgroup recently highlighted 
health equity issues, emphasizing the lack of pediatric-specific AI products, uneven development in AI research, 
and limited physician and industry engagement1,2. Several challenges contribute to this disparity, such as 
difficulties in collecting high quality datasets that reflect growth patterns, differences in pediatric and adult 
disease entities, limited access to diverse advanced imaging to establish gold standards, and regulatory hurdles 
unique to pediatric applications1,3,4. As a result, fewer dedicated research efforts, financial imbalances in industry 
involvement, and limited pediatric-specific software have hindered progress in pediatric AI, leading to skewed 
data and experiences in pediatric radiology applications1,2.
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However, AI has demonstrated significant benefits in radiology, and these advantages should extend beyond 
adult imaging to include pediatrics2,5–10. Several efforts have been made to implement AI in pediatric diseases, 
focusing on applications such as bone age assessment and pediatric emergency conditions, similar to those 
in adults, underscoring its importance11–13. Additionally, a few researchers have explored methods to enhance 
pediatric AI by leveraging foundations built in adult radiology3,14,15. This has fostered a growing consensus 
that adapting adult algorithms for pediatric populations, combined with careful validation, could offer a viable 
solution. However, such adaptations must address safety concerns, as these algorithms were not initially trained 
on pediatric images and require further enhancement16.

For chest radiographs, there have been several suggestions to adapt adult AI software for pediatric use. One 
approach involves specifying age groups, imaging methods, or disease entities that require tailored validation or 
training for children14,15. Specifically, concerns have been raised that the operating points of adult AI may not 
be suitable for children and need to be validated to determine whether effective operating points exist based on 
the patient characteristics and imaging techniques14,17. Operating points are thresholds used by AI algorithms to 
classify lesions as positive or negative based on abnormality scores, which indicate the likelihood of a lesion. If 
the abnormality score exceeds the present threshold, the image is classified as positive. This threshold influences 
the balance between sensitivity and specificity. Modifying operating points based on the specific characteristics 
of pediatric patients can enhance the performance of adult-oriented algorithms for children.

This study assumes that customizing AI operating points can improve diagnostic performance in pediatric 
populations, addressing concerns that thresholds optimized for adults may not suit younger patients. Therefore, 
the purpose of this study was to evaluate whether the optimal operating points of adult-oriented AI software 
differ for pediatric chest radiographs and to assess its diagnostic performance by lesion type, age, and imaging 
methods to assess its potential as a solution for pediatric application of AI.

Materials and methods
Patients
The Institutional Review Board (IRB) of Yongin Severance Hospital approved this retrospective study (IRB 
number 9-2023-0072, Yongin Severance Hospital, Yonsei University College of Medicine). Informed consent 
was waived due to the study’s retrospective nature. All methods were conducted in accordance with the 
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines and relevant 
regulations. We specifically adhered to the STROBE guidelines for cohort studies, as our research followed a 
retrospective observational study design. All methods were performed in accordance with relevant guidelines 
and regulations.

All consecutive chest radiographs of patients under 19 years old, performed at our hospital from March to 
November 2021, were included in this study. The images were obtained using Innovision-EXII (DK medical 
systems, Seoul, Korea), GXR-82SD (DRGEM, Seoul, Korea) or ELMO-MX8 (Shimadzu, Kyoto, Japan). This 
study was conducted at a new university hospital established in 2020. The hospital serves a diverse pediatric 
population, providing care for a wide range of conditions across multiple specialties. Although the hospital’s 
pediatric case volume is still growing, the disease spectrum includes a broad range of conditions, from mild 
illnesses to critically ill children and neonates requiring intensive care. The data gathered for this study represent 
a diverse sample of pediatric patients treated during this period. If patients had multiple repeated radiographs, 
each image was included in the analysis. Radiographs with artifacts caused by imaging errors, such as caregivers’ 
hands or unnecessary external objects like necklaces or hairpins overlapping the thoracic region, were excluded. 
However, images containing medical lines and tubes necessary for patient care were included. Patient age, 
whether the radiograph was portable, and whether it was in posteroanterior (PA) or anteroposterior (AP) 
projection view were reviewed.

AI analysis of chest radiographs
A commercial AI software (Lunit INSIGHT for Chest Radiography, version 3.1.2, Lunit Inc, Republic of Korea) 
developed and approved for adult chest radiographs was used to analyze the pediatric chest radiographs. The 
images were sent to the AI server within the hospital to extract results without being transmitted outside, as the 
software operates exclusively within the hospital’s system. This software detects lung lesions when the operating 
point is set above 15% and displays the lesion’s location with its corresponding abbreviation, regardless of the 
amount of the lesions (Fig. 1).

The operating point represents the probability that the AI determines a lesion is present, with values ranging 
from 0 to 100%. The 15% cutoff value, based on the vendor’s guidelines, has been validated in previous studies18–20. 
This threshold is used by the AI to classify whether a lesion is present. It is typically applied uniformly across 
different imaging conditions and lesion types in adults without adjustment.

We retrospectively evaluated the operating points for pneumothorax, consolidation, nodule, and pleural 
effusion in pediatric chest radiographs. These were all descriptive terms used for chest radiographs. For example, 
consolidation was used separately from atelectasis when the lung tissue was filled with fluid, pus, or other 
materials, causing it to appear opaque on imaging. This could result from various causes, including pneumonia, 
but was not limited to it. Since the AI detects lesion types based on descriptive rather than diagnostic terms (e.g., 
pneumonia), images were evaluated accordingly.

Setting ground truth and new optimal operating points
The ground truth for each radiograph was established by a board-certified pediatric radiologist (H.J.S.) with 
12 years of experience in pediatric radiology. All radiographs were retrospectively reviewed by the radiologist 
specifically for research purposes, focusing on determining the presence or absence of each lesion type to ensure 
consistency and accuracy in line with the study’s objectives. The radiologist classified all radiographs to establish 
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the ground truth, which was necessary for assessing diagnostic performance in both the test and exploration 
sets. The radiologist had access to relevant old and new images, medical history, and electronic medical records 
when assessing lesions.

Using this assessment as the ground truth for the four lesions, new operating points for each lesion and their 
diagnostic performance were evaluated using a test set of chest radiographs from March to August 2021. To 
determine the optimal operating point, Receiver Operating Characteristic (ROC) curves were generated for each 
lesion by plotting sensitivity against 1-specificity, and the Area Under the Curve (AUC) was calculated to assess 
the overall diagnostic performance. The optimal operating point was defined as the threshold that maximizes 
Youden’s Index (sensitivity + specificity − 1), providing the best balance between sensitivity and specificity. This 
process involved varying the thresholds of AI-generated probabilities and comparing them with the radiologist’s 
ground truth assessments to identify the threshold that maximizes diagnostic performance.

Testing of operating points
After assessing the operating points for all chest radiographs, subgroup analysis was performed based on 
age (≤ 2 years or > 2 years), projection view (PA or AP view), and whether the radiographs were portable, 
because actual diagnostic performance varied not only by lesion type but also by imaging method and patient 
age, as demonstrated in previous studies14,17. In a previous study, when adult AI was applied to pediatric chest 
radiographs across ages 0–18 years, the diagnostic performance significantly declined in children under 2 years 
of age14. Additionally, another study showed that AI performance differed between AP and PA views17. The 
findings emphasized the need for additional adjustments based on these specific conditions. Subgroup analysis 
also allowed fine-tune of the operating points by identifying variations in diagnostic performance across patient 
characteristics and imaging methods. When a radiograph belonged to multiple subgroups, it was included in 
each relevant subgroup analysis independently, and the results were aggregated to determine the most consistent 
and robust operating point across all subgroups.

After identifying the best operating points for each subgroup, these points were applied to an independent 
set of radiographs (exploring set) from September to November 2021 to validate diagnostic performance. This 
two-step approach, involving both the test and exploring sets, ensures that the modified operating points are 
applicable across clinical settings and suitable for external validation.

Statistical analysis
The R program (version 4.1.3; Foundation for Statistical Computing, Vienna, Austria) was used for statistical 
analysis. Demographic characteristics of the chest radiographs were compared between the test and exploring 
sets using two-sample t-tests and Chi-square tests. ROC curve analysis was performed to determine the optimal 
operating points for pneumothorax, consolidation, nodule, and pleural effusion in all chest radiographs and 
across subgroup analyses. Diagnostic performance, including sensitivity and specificity, was evaluated in the 

Fig. 1.  Actual example of AI results for pneumothorax and pleural effusion. (a) A 17-year-old boy presented 
with a right pneumothorax (arrow) and a small amount of bilateral pleural effusion (arrowheads). However, 
the AI software did not correctly detect these findings because the operating points for pneumothorax and 
pleural effusion were 11% and 6%, respectively. (b) However, AI accurately identified the right pneumothorax 
(abbreviated as Ptx) with an operating point of 97% on his initial radiograph.
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test set based on the new operating points. For comparison, diagnostic performance using the conventional 15% 
operating point, commonly applied in adults, was also assessed. Finally, in the time-independent exploring set, 
diagnostic performance was evaluated using both the new operating points and the conventional 15% threshold. 
A p-value less than 0.05 was considered statistically significant.

Results
Subjects
During the study period, a total of 7,361 consecutive chest radiographs were initially included. Four radiographs 
were excluded due to artifacts, leaving 7,357 radiographs for the final analysis. The test set comprised 4,727 chest 
radiographs (mean 7.2 ± 6.1 years old, M:F = 2602:2125), with varying number of false positives (FP) and false 
negatives (FN) relative to the 15% operating point based on the ground truth. In the test set, consolidation had 
88 FP and 5 FN, nodules had 133 FP, pleural effusion had 23 FP and 1 FN, and pneumothorax had 15 FP and 
2 FN. In the exploring set, a total of 2,630 chest radiographs (mean 5.9 ± 6.0 years old, M:F = 1396:1234) were 
included. For lesion types, consolidation had 35 FP and 1 FN, nodules had 74 FP, pleural effusion had 7 FP, and 
pneumothorax had 4 FP and 2 FN.

When divided by age, among the test set, 766 patients (16.2%) were neonates and infants (< 1 years old), 1093 
patients (23.1%) were toddlers (< 3 years old), 1634 patients (34.6%) were children (< 12 years old), and 1234 
patients (26.1%) were adolescents (< 18 years old). In the exploring set, 587 patients (22.3%) were neonates and 
infants, 764 patients (29%) were toddlers, 758 patients (28.8%) were children, and 521 patients (19.8%) were 
adolescents. Among the test set, 3060 patients (64.7%) were inpatients, while 1841 out of 2630 patients (70%) 
in the exploring set were inpatients. Demographic details of the included chest radiographs for each dataset are 
presented in Table 1, and a confusion matrix showing the FP and FN results is provided in Supplementary file 1.

Diagnostic performance of AI when applying adults’ operating point of 15% in the test set
When applying the conventional adult operating points of 15% in the test set, the overall AUC values were 0.996 
for pneumothorax, 0.973 for consolidation, 0.985 for nodules, and 0.996 for pleural effusion. However, in the 
subgroup analysis of pneumothorax, the sensitivity was 0.5 for children younger than 2 years old and 0.8 for 
portable radiographs and AP projection views, while other categories had sensitivities over 0.94.

For consolidation and pleural effusion, sensitivities were approximately 0.7–0.8 for nonportable radiographs 
or radiographs in PA projection views. Other results, including nodules, showed overall sensitivities of about 
0.9-1.0 using the 15% operating point. The detailed results are summarized in Table 2.

Identifying the best operating points in the test set
When evaluating new operating points with the best diagnostic performances in the test set, the optimal thresholds 
were determined as 11% for pneumothorax, 14% for consolidation, 15% for nodules, and 6% for pleural effusion. 
Despite variations in overall AUC values during subgroup analysis, sensitivities for pneumothorax reached 1.0 in 
children younger than 2 years old, portable radiographs, and AP projection views when using an operating point 
of 3%. For consolidation and pleural effusion, applying operating points of 2–3% led to sensitivities exceeding 
90% for nonportable radiographs or radiographs in PA projection views. The operating point for nodules 
remained consistent at about 15% across subgroup analyses. Detailed results are presented in Table 3.

Demonstrating diagnostic performance of new operating points in the exploring set
The diagnostic performances of conventional and new operating points in the exploring set are presented in 
Tables 4 and 5. Compared to the conventional operating points, the new thresholds demonstrated improved 
sensitivity for pneumothorax in younger children (Fig. 2), portable radiographs, and AP projection views. No 
significant differences were observed in the diagnostic performances for other results.

Discussion
In this study, we aimed to evaluate the diagnostic performance of adult AI software by applying conventional 
and new optimal operating points to pediatric chest radiographs. We also sought to determine whether the best 
operating points differed based on age, image acquisition methods, and lesion types, and to explore whether 
this approach could enhance the pediatric application of AI from developed adult software. Despite having a 
large cohort spanning nine months from a single hospital, diagnostic performance and operating points varied 
by lesion type, age, and image acquisition method. The overall best operating points were lower than those used 
for adults, particularly for pneumothorax in children younger than 2 years, portable radiographs, and in AP 
projection views. Although the AUC values were not strikingly different, sensitivities improved with the new 
operating points in both the test and exploring sets. However, the optimal operating points for nodules were not 
significantly different across our dataset.

There is a significant disparity in dedicated research efforts and software development for pediatric AI1,21. 
The ACR noted that only 3% of FDA-cleared AI algorithms are intended for pediatric use1,2. Many studies 
suggest that an effective approach to enhancing pediatric AI utilization is by leveraging adult AI technologies 
for pediatric applications1,2. Validating and retraining adult AI models could be one solution, emphasizing 
the identification and resolution of weaknesses when applied to pediatric images2. This is essential because AI 
developed and approved for adults requires adjustments to perform optimally with pediatric data1. Addressing 
these weaknesses could expedite the adoption of existing AI technologies into pediatric radiology.

In a previous study, the diagnostic performance of adult-oriented AI software on pediatric radiographs was 
demonstrated, and the authors mentioned that further research on the operating point may be necessary14. This 
is because, in most studies, the operating point was set at 15% for that software and applied uniformly regardless 
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of lesion type, age, or imaging methods9,22. It remains essential to determine whether this uniform application 
of the operating point is suitable for children, and even for adults. For example, adult AI has shown decreased 
accuracy when applied to images of children younger than 2 years14. Additionally, a recent study demonstrated 
that the positive predictive value of AI for detecting pneumothorax differed significantly between PA and AP 
views (88.2% vs. 20.1%, p < 0.001) in adults17. This highlights the importance of optimizing AI for practical use, 
considering variations in patients, imaging techniques, lesion types, and hospital settings17.

In the same context, understanding whether using the best operating points based on age or imaging methods 
can enhance pediatric AI usage is crucial. Currently, a consistent cutoff value is applied regardless of factors 
such as age, hospital characteristics, or imaging features. However, we demonstrated that AI performance varies 
depending on whether the image is AP or PA, and that the optimal cutoff changes based on factors such as age 
and lesion type. This underscores the need for future efforts to apply tailored algorithm settings for each specific 
situation to enhance AI accuracy. Based on these results, we suggest that a different operating point, lower than 
that used for adults, may be needed to optimize sensitivity for detecting pneumothorax in younger patients or 
when radiographs are portable or in AP projection views. However, for nodules, it appears that setting different 
operating points from those used for adults may not be necessary.

In this study, we prioritized optimizing sensitivity because the primary goal was to detect as many true 
positive cases as possible. Missing a positive case could have serious clinical consequences, especially in 
situations where detection is critical. In pediatric imaging, AI still requires further development and validation. 
We believe that efforts should first focus on increasing sensitivity and then work to reduce FP. Therefore, in this 
initial study, we chose sensitivity as our primary metric while assessing overall diagnostic performance through 
ROC curve analysis. Optimizing for positive predictive value (PPV) would be more appropriate if the focus were 
on reducing FP, which could lead to unnecessary follow-up tests or treatments. Ultimately, the choice of metric 
depends on the priorities of each study. In this study, we emphasized enhancing patient safety by minimizing 
missed diagnoses through the initial use of AI for pediatric chest radiographs. Thus, we chose to prioritize 
sensitivity over PPV. In addition, the actual incidence of diseases may vary between adults and children. For 
example, consolidation due to infection may be more prevalent in children, while nodules, such as those caused 
by cancer, are much less common in pediatric populations. These differences in disease characteristics could 
impact AI performance based on the training data. Therefore, further research is needed to reduce FP cases, 
exploring how disease incidence differs between pediatric and adult datasets, and evaluate its impact on AI 
diagnostic performance.

There are several limitations in this study. First, although we included all consecutive chest radiographs taken 
during the study period to avoid selection bias, the small number of certain lesions, such as nodules, may have 
impacted diagnostic accuracy. Additionally, differences in the basic characteristics between the two groups, as 
well as discrepancies in the number of cases between the test and exploring sets, were observed. These differences 
were likely due to the incidence of these lesions and the characteristics of the hospital population. While we could 
have included more diseased cases than normal images to balance the datasets, doing so might have influence 
the results. Therefore, we chose to include all images despite the discrepancy in diseased cases. The differences 
in the characteristics of the two groups were inevitable as this was a retrospective study, and our goal was to 
include all available data during the study period to minimize bias. Second, the determination of ground truth 
relied on a single pediatric radiologist who retrospectively reviewed all images, which could be a limitation. 
While a consensus interpretation involving multiple radiologists could have reduced bias and improved the 
reliability of the ground truth, this approach was not feasible due to the large number of radiographs included 
in the study and the limited number of pediatric radiologists specialized in this area. To minimize discrepancies 
and ensure consistency, we focused on achieving uniformity in the results. Additionally, we utilized all relevant 
medical images and records to establish the ground truth as comprehensively as possible. Future studies 
may benefit from incorporating consensus interpretation to achieve greater accuracy and consistency. Third, 
including repeated exams for the same patient could have influenced the results. However, we aimed to include 
as many cohort studies as possible within a specific time period, and due to the relatively low incidence and 
variability of lesions over long periods, it was necessary to include repeated exams. Fourth, the use of a single 
commercial software may limit the generalizability of our findings. Lastly, the variation in operating points, both 
increases and decreases, affected both sensitivity and the FP rate. Future studies should focus on optimizing both 
sensitivity and PPV to balance accurate detection with minimizing unnecessary follow-up procedures. Given the 

Lesions Pneumothorax Consolidation Nodule Pleural effusion

Diagnostic performance Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC

All 0.948 0.997 0.996 0.873 0.979 0.973 1 0.97 0.985 0.918 0.995 0.996

≤ 2 years old 0.5 0.998 0.978 0.858 0.96 0.942 1 0.922 0.963 0.947 0.987 0.994

> 2 years old 0.967 0.996 0.997 0.898 0.987 0.987 1 0.994 0.998 0.913 0.999 0.998

No portable 0.965 1 0.999 0.733 0.995 0.973 1 0.99 0.995 0.816 0.998 0.996

Portable 0.8 0.991 0.982 0.921 0.94 0.963 1 0.93 0.963 0.986 0.989 0.999

PA 0.965 1 0.999 0.76 0.999 0.983 1 0.998 0.999 0.826 0.998 0.997

AP 0.81 0.993 0.987 0.893 0.948 0.952 1 0.934 0.966 0.974 0.991 0.998

Table 2.  Diagnostic performance of AI using adults’ operating point of 15% in the test set. AUC area-under-
the-curve, PA posteroanterior, AP anteroposterior.
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promising results of this study, further research involving a larger number of hospitals, diverse disease severities, 
and multiple readers is needed to validate and generalize our findings.

In conclusion, the optimal operating points for pediatric chest radiographs using adult-oriented AI software 
vary based on lesion type, age, and image acquisition methods. Customizing these operating points is necessary 
to optimize AI performance and applicability in pediatric imaging. Starting with adult AI could serve as an 
initial approach to enhance its application in pediatric radiographs; however, further validation and retraining 
are essential to ensure optimal performance and reliability.

Lesions Pneumothorax Consolidation Nodule Pleural effusion

Diagnostic performance Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC

All 0.906 0.998 0.996 0.821 0.986 0.965 1 0.971 0.987 0.918 0.995 0.996

≤ 2 years old 0.4 0.997 0.959 0.888 0.967 0.967 1 0.934 0.971 0.875 0.995 0.962

> 2 years old 1 0.999 1 0.652 1 0.971 1 0.998 0.999 1 1 1

No portable 1 0.999 1 0.805 0.994 0.984 1 0.989 0.995 0.889 1 0.983

Portable 0.5 0.997 0.954 0.829 0.974 0.938 1 0.945 0.974 0.957 0.995 0.996

PA 1 1 1 0.936 1 0.999 1 1 1 0.875 1 0.989

AP 0.5 0.997 0.963 0.804 0.972 0.933 1 0.946 0.973 0.958 0.996 0.997

Table 4.  Diagnostic performance of AI using adults’ operating point of 15% in the exploring set. AUC area-
under-the-curve, PA posteroanterior, AP anteroposterior.
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Data availability
The part of the datasets generated and analyzed during the current study are available in the Supplementary file 
2.
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