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Abstract: Background/Objectives: Airstacking is a technique to improve lung compliance
and maximum insufflation capacity (MIC) in patients with neuromuscular disorders by
sequentially inflating the lungs using a manual resuscitation bag. Traditional methods lack
standardization and rely on subjective feedback. A pilot study established optimal pressure
ranges using a digital manometer, suggesting its potential to standardize airstacking. This
study evaluates the longitudinal effects of airstacking with and without digital pressure
feedback on pulmonary function. Methods: A stratified randomized controlled trial
was conducted with 40 patients allocated into three groups: those performing airstacking
appropriately (Group 1), those previously performing airstacking inappropriately but using
digital pressure feedback during the study (Group 2), and those previously performing
airstacking inappropriately without feedback (Group 3). Pulmonary function parameters,
including forced vital capacity expressed as a percentage of the predicted normal value
(FVC%), MIC, and assisted peak cough flow (aPCF), were measured at baseline, 3, 6, and
12 months. Caregiver outcomes, musculoskeletal pain, and satisfaction were assessed.
Results: Digital pressure feedback did not significantly alter pulmonary function. Changes
in FVC% (p = 0.164), MIC (p = 0.218) and aPCF (p = 0.787) were not statistically significant.
However, Group 2 caregivers showed significant reductions in musculoskeletal pain than
Group 3 (p = 0.036) and higher satisfaction (mean: 8.92/10). The proportion of caregivers
achieving optimal pressure increased by 25% in Group 2 compared to 16.67% in Group
3. Conclusions: While digital pressure feedback did not significantly alter pulmonary
function, it contributed to improved caregiver adherence and reduced musculoskeletal pain.
These findings suggest that integrating objective pressure feedback into airstacking training
may enhance technique standardization and caregiver experience, though its impact on
pulmonary function remains uncertain.

Keywords: airstacking; neuromuscular disorders; pulmonary rehabilitation; digital feed-
back; caregiver outcomes

1. Introduction
Patients with neuromuscular disorders experience the progressive weakening of

respiratory muscles. This leads not only to a reduction in forced vital capacity (FVC)
but also to a decrease in chest wall compliance, which subsequently reduces maximum
insufflation capacity (MIC) [1,2]. The decline in MIC ultimately diminishes cough flow [2]
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and predisposes patients to pulmonary complications such as atelectasis and pneumonia.
Maintaining MIC has been identified as a critical factor for preventing these complications
even when the decline in FVC is inevitable.

Airstacking has been widely adopted as an effective intervention to enhance lung
compliance and MIC in patients with neuromuscular disorders [3–7]. By using a manual
resuscitation bag, airstacking helps to improve lung and chest wall compliance, enabling
patients to achieve and maintain maximum insufflation capacity [8]. The exercise involves
sequentially inflating the lungs by stacking volumes of air through multiple breaths without
exhalation. This process is facilitated by using the manual resuscitation bag to deliver
additional air after the patient has inhaled fully. Careful coordination between the pa-
tient and caregiver ensures that the air is stacked effectively without causing discomfort.
Studies have demonstrated its potential to improve cough flow and maintain pulmonary
health [2,4,9]. However, the subjective nature of traditional methods, which rely on the
patient’s perception and the caregiver’s tactile feedback, limits their reproducibility and
effectiveness. Prior studies have primarily relied on subjective feedback without standard-
ized monitoring tools, limiting reproducibility. Although our pilot study [8] established
optimal pressure ranges, most prior research lacked such standardized evaluation methods,
making it difficult to assess airstacking outcomes consistently.

In our prior pilot study [8], we objectively identified the peak pressure during airstack-
ing performed by experts and established optimal pressure ranges. These findings sug-
gested that a digital manometer could significantly aid patients and caregivers in accurately
performing airstacking, offering a standardized approach to this critical therapy. How-
ever, the previous study was limited to cross-sectional analyses and did not explore the
longitudinal effects of standardized airstacking practices.

Building on these findings, this study aims to evaluate the effectiveness of a stan-
dardized airstacking technique with and without the use of digital pressure feedback
on pulmonary function in patients with neuromuscular disorders. By assessing key pul-
monary function parameters over time, we try to provide comprehensive evidence of
the clinical benefits of standardized airstacking techniques. The results will contribute to
improving pulmonary care protocols and optimizing long-term outcomes for patients with
neuromuscular disorders.

2. Materials and Methods
2.1. Participants

This study included individuals with neuromuscular disorders who visited the Pul-
monary Rehabilitation Center of a tertiary hospital in South Korea between 2022 and 2023.
Eligible participants were 13 years or older, had respiratory muscle weakness, and demon-
strated a vital capacity less than 50% of the predicted value. To minimize variability in
prior airstacking practice, only individuals who had been regularly performing airstacking
after receiving training at the center were included.

The exclusion criteria were patients with tracheostomy, a history of pneumotho-
rax or other conditions increasing the risk of airstacking, significant bulbar dysfunction
affecting airstacking performance, cognitive impairments preventing cooperation, or un-
willingness to participate in the study. Dropout was defined as participants who did not
complete the study, with reasons including the withdrawal of consent, violation of the
inclusion/exclusion criteria, serious adverse events or adverse events, inability to follow
up, or other factors deemed appropriate by the investigators.
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Sample Size Calculations

The target sample size was calculated using G*Power (version 3.1.9.7) to ensure
adequate statistical power for detecting within–between interaction effects in a repeated
measures ANOVA design. An effect size of 0.25 (moderate effect) was chosen based
on statistical and practical considerations rather than being directly derived from prior
studies. While previous research has examined airstacking and pulmonary rehabilitation
in neuromuscular patients, variability in study designs and outcome measures made it
difficult to determine a single definitive effect size applicable to our study. Our pilot
study [8] provided preliminary insights into the impact of pressure feedback, but the
sample size was insufficient for precise effect size estimation. Given the need to balance
statistical sensitivity with study feasibility, we selected an effect size of 0.25 as a reasonable
assumption for detecting clinically meaningful differences.

Using this effect size, 3 groups, 4 repeated measurements, a correlation among repeated
measures of 0.5, and a nonsphericity correction factor of 1.0, the required total sample size
was determined to be 33 participants. This calculation was based on an alpha level of 0.05
and a statistical power of 85% (actual power = 0.85). To account for a potential dropout
rate of 15%, the target sample size was adjusted to 39 participants. However, to ensure
robustness against unforeseen circumstances, a total of 40 participants were recruited,
ensuring sufficient data would be available to maintain statistical rigor despite anticipated
attrition.

2.2. Study Design

This study was designed as a single randomized controlled study to evaluate the
effects of airstacking on pulmonary function in individuals with neuromuscular disorders.
A stratified and partial randomization approach was employed to allocate the participants
into three groups. The participants were first stratified based on their appropriateness
for performing airstacking, which was determined by two experts based on the criteria
established in prior research [8]. Appropriateness was assessed using three key criteria:
(1) synchronization between caregiver-assisted bag compression and the participant’s
inhalation, (2) the participant’s perception of chest fullness, (3) the alignment of the partic-
ipant’s chest fullness sensation with the caregiver’s perception of resistance during bag
compression, and (4) peak inspiratory pressure exceeding 35 cmH2O. If all the criteria
were met, the participant was assigned to the appropriate force group (Group 1). If any
criterion was not met, the participant was considered inappropriate for airstacking and
was randomized into Group 2 (digital pressure feedback) or Group 3 (no feedback). Group
2 was provided with a digital manometer to maintain a target peak inspiratory pressure
over 35 cmH2O based on prior studies demonstrating optimal peak pressure of airstacking.
By using a digital manometer, the participants received real-time feedback to guide their
effort and adjust their technique accordingly. All the participants performed 15 maneuvers
of airstacking twice a day [7].

2.3. Intervention and Outcome Measures

Before the study began, the clinical and spirometric data of the participants were
collected, including age, sex, diagnosis, FVC, MIC, and assisted peak cough flow (aPCF).
Additionally, muscular–skeletal pain among the caregivers who performed the airstacking
was assessed. After the initial evaluation, a specialist in pulmonary rehabilitation for
patients with neuromuscular disorders with over 10 years of experience provided direct
training on how to perform airstacking. The participants randomized to Group 2 received
digital manometers and were trained in their use. The study employed a repeated measures
design, with the assessments conducted at baseline, 3 months, 6 months, and 12 months.
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FVC was measured using a portable spirometer (Micro Medical Ltd., Rochester, Kent,
UK) with the participants in a sitting position [10] and expressed as a percentage of the
predicted normal value (FVC%) [11]. MIC was attained by the participant taking a deep
breath and holding it; airstacking was then used to consecutively deliver volumes of air
via an oral–nasal interface. aPCF was measured by applying an abdominal thrust during
MIC to record the maximum flow [10]. Musculoskeletal pain among the caregivers who
performed the airstacking e was assessed using a visual analog scale (VAS) to quantify pain
levels around the wrist and hand. Additionally, satisfaction with the digital manometer
was assessed in Group 2 using a 0 to 10 score.

2.4. Blinding of Outcome Assessors

Outcome assessors were blinded to group allocation to ensure unbiased data collection
and analysis, thereby enhancing the reliability of measured outcomes

2.5. Statistical Analysis

All the statistical analyses were performed using R version 3.6.1. Descriptive statis-
tics were used to summarize the demographic and baseline clinical characteristics of the
participants. Continuous variables were expressed as mean ± standard deviation (SD).

For the primary outcomes (FVC, MIC, and aPCF), a repeated measures ANOVA
was conducted to assess within-group changes and between-group differences over time
(baseline, 3, 6, and 12 months). Post hoc comparisons were performed using Tukey’s test to
identify specific group differences. Statistical significance was set at p < 0.05.

3. Results
3.1. Basic Characteristics of Patients

A total of 40 patients were initially recruited for the study with a mean age of
26.6 ± 6.8 years. Among them, 33 had Duchenne muscular dystrophy, 5 had spinal mus-
cular atrophy, 1 had myotonic muscular dystrophy, and 1 had hereditary myopathy. The
cohort included 37 male and 3 female participants.

The patients were stratified into three groups: 14 in Group 1, 13 in Group 2, and 13
in Group 3. Among them, 11 patients in Group 1 and 12 patients in each of Groups 2
and 3 completed the study, resulting in a final cohort of 35 participants. The reasons for
dropout included the following: in Group 1, three participants were excluded—one due to
trigeminal neuralgia preventing airstacking, one due to undergoing tracheostomy, and the
other due to follow-up loss. In Group 2, one participant dropped out due to a tracheostomy.
In Group 3, one participant was excluded due to passing away from a condition not related
to the study (Figure 1).

Group 1 has a mean age of 27.8 ± 7.0 years, Group 2 having 25.3 ± 6.8 years, and
Group 3 having 25.0 ± 6.9 years. A one-way ANOVA revealed no statistically significant
difference in age between the three groups (p = 0.573), indicating comparability in age
distribution.

The distribution of diagnoses across the three groups was also analyzed. Group 1
included nine patients with Duchenne muscular dystrophy and two with spinal muscular
atrophy. Group 2 included 10 patients with Duchenne muscular dystrophy, 1 with spinal
muscular atrophy, and 1 with congenital myopathy. Group 3 included nine patients with
Duchenne muscular dystrophy, two with spinal muscular atrophy, and one with myotonic
muscular dystrophy. A chi-square test revealed no statistically significant differences in
diagnosis distribution among the groups (χ2 = 4.35, p = 0.629).
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3.2. Analysis of Forced Vital Capacity Changes

Baseline FVC values were comparable among the groups. The mean ± SD FVC (mL) at
baseline was 564.55 ± 362.91 for Group 1, 935.00 ± 521.88 for Group 2, and 920.00 ± 532.05
for Group 3. For analysis, FVC% was used as described in the methods section.

The mean FVC% values and standard deviations for each group at baseline (Visit 1)
and at 12 months (Visit 4) are summarized as follows: Group 1 showed a decrease from
12.69 ± 7.94% at baseline to 10.77 ± 7.93% at 12 months. In contrast, Group 2 remained
relatively stable, with values of 21.95 ± 12.81% and 22.37 ± 11.64% at baseline and
12 months, respectively. Similarly, Group 3 showed minimal change, decreasing slightly
from 21.95 ± 11.50% to 20.69 ± 10.64% (Figure 2 and Table 1).
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Table 1. Changes in forced vital capacity (FVC%) across visits in each group.

Group Visit 1 Visit 2 Visit 3 Visit 4 p-Value

1 12.69 ± 7.94 14.1 ± 10.66 11.91 ± 7.78 10.77 ± 7.93

0.1642 21.95 ± 12.81 22.29 ± 12.05 21.4 ± 11.5 22.37 ± 11.64

3 21.95 ± 11.5 20.56 ± 11.13 19.02 ± 10.26 20.69 ± 10.64
Forced vital capacity expressed as a percentage of the predicted normal value (FVC%). All the values are presented
as mean ± standard deviation and expressed in percentage (%).

The repeated measures ANOVA revealed no significant interaction effects between the
group and time (p = 0.164), indicating that FVC% changes were not statistically significant
over the 12-month period, nor did they differ among the groups.

These findings suggest that over the course of the 1-year study period, the rate of
change in FVC% was similar across all the groups, and the observed differences in FVC%
between the groups did not reach statistical significance.

3.3. Changes in MIC and aPCF

We assessed the changes in MIC and aPCF across three groups over a 12-month period
using repeated measures ANOVA. The MIC measurements were taken at four distinct time
points: Visit 1 (baseline), Visit 2, Visit 3, and Visit 4.

For MIC, Group 1 showed a decrease in MIC from 1461.82 ± 399.55 mL at baseline
to 1451.82 ± 393.26 mL at Visit 4. Group 2, on the other hand, remained relatively sta-
ble, with MIC values of 1790.00 ± 333.52 mL at baseline and 1840.83 ± 375.99 mL at
12 months. Group 3 showed minimal change, decreasing slightly from 1679.17 ± 640.99
mL to 1487.50 ± 587.17 mL (Figure 3 and Table 2).
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Table 2. Changes in maximum insufflation capacity across visits in each group.

Group Visit 1 Visit 2 Visit 3 Visit 4 p-Value

1 1461.82 ± 399.55 1360.91 ± 469.24 1384.55 ± 418.22 1451.82 ± 393.26

0.2182 1790.00 ± 333.52 1818.33 ± 356.11 1768.33 ± 340.80 1840.83 ± 375.99

3 1679.17 ± 640.99 1647.50 ± 630.77 1556.67 ± 704.03 1487.50 ± 587.17

All the values are presented as mean ± standard deviation, expressed in milliliters (mL).

For aPCF, Group 1 showed a decrease in aPCF from 1461.82 ± 399.55 mL/min
at baseline to 1451.82 ± 393.26 mL/min at Visit 4. Group 2, on the other hand, re-
mained relatively stable, with aPCF values of 1790.00 ± 333.52 mL/min at baseline and
1840.83 ± 375.99 mL/min at 12 months. Group 3 showed minimal change, decreasing
slightly from 1679.17 ± 640.9 mL/min 9 at baseline to 1487.50 ± 587.17 mL/min at Visit 4
(Figure 4 and Table 3).
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Table 3. Changes in assisted peak cough flow across visits in each group.

Group Visit 1 Visit 2 Visit 3 Visit 4 p-Value

1 163.64 ± 60.05 181.82 ± 57.93 155.00 ± 41.89 161.36 ± 57.80

0.7872 220.83 ± 45.62 232.50 ± 61.81 218.33 ± 50.42 228.75 ± 66.06

3 208.33 ± 78.61 215.83 ± 67.35 211.25 ± 59.93 220.83 ± 69.86

All the values are presented as mean ± standard deviation, expressed in milliliters per minute (mL/min).

Although the mean MIC and aPCF values decreased in Group 1 and Group 3 and
increased in Group 2, the repeated measures ANOVA analysis revealed no significant
interaction effects between group and time (p = 0.164 for MIC and p = 0.787 for aPCF),
suggesting that the MIC and aPCF changes were not statistically significant over the 12-
month period. These findings suggest that the rate of change in MIC and aPCF was similar
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across all the groups, and the observed differences did not reach statistical significance over
the 12-month period.

3.4. Caregiver Outcomes: Efficacy, Pain, and Satisfaction with Digital Manometry

The proportion of caregivers achieving a peak pressure ≥35 increased from Visit 1
to Visit 4 across all the groups. In Group 1, the proportion remained stable, with 9 out
of 11 caregivers meeting the threshold at both visits (81.82%). Group 2 demonstrated a
notable improvement, increasing from 7 out of 12 caregivers (58.33%) at Visit 1 to 10 out
of 12 caregivers (83.33%) at Visit 4, representing a 25.00% improvement. Similarly, Group
3 increased from 6 out of 12 caregivers (50.00%) to 8 out of 12 caregivers (66.67%), with a
16.67% improvement.

The changes in musculoskeletal pain were evaluated using a VAS at baseline (Visit
1) and the follow-up (Visit 4). Group 1 showed no significant change in pain levels,
maintaining a mean score of 3.73 ± 2.94 across both time points, and Group 3 showed a
slight increase in pain levels from 2.25 ± 3.08 at Visit 1 to 3.17 ± 2.66 at Visit 4. In contrast,
Group 2 exhibited a reduction in pain levels, with the scores decreasing from 3.92 ± 3.15
at Visit 1 to 2.67 ± 2.67. The repeated measures ANOVA revealed a significant interaction
effect between group and time (p = 0.045), indicating that the trajectory of pain levels
differed among the groups. Post hoc analyses confirmed that the pain reduction observed
in Group 2 was significantly greater than in Group 3 (p = 0.036), while no significant
difference was observed between Groups 1 and 2 or Groups 1 and 3 (p > 0.05) (Figure 5).
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In addition to pain reduction, caregivers in Group 2 reported high satisfaction with
the use of the digital manometer. The average satisfaction score at Visit 4 was 8.92 per
10, suggesting that the device was well received and contributed to a more efficient and
comfortable airstacking experience. These findings highlight the potential utility of digital
pressure feedback devices in improving not only the physical burden of caregiving but also
the overall satisfaction associated with the intervention.

4. Discussion
Airstacking is a vital pulmonary rehabilitation technique for patients with neuromus-

cular disorders [12], designed to maintain lung and chest wall compliance while enhancing
MIC. The progressive weakening of respiratory muscles in these patients inevitably in-
creases the risk of pulmonary complications, such as atelectasis and pneumonia, which
significantly affect both the quality of life and survival. Thus, airstacking serves as an
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essential intervention to prevent these complications by supporting MIC maintenance and
improving effective coughing [13,14] and ventilation [15,16].

Traditionally, airstacking has relied heavily on the subjective experience of patients
and caregivers. However, by providing a more reliable method to achieve optimal insuffla-
tion, this approach holds significant potential for improving the pulmonary rehabilitation
protocols for patients with neuromuscular disorders [17]. In our prior pilot study, we
identified and proposed optimal pressure ranges to quantify airstacking, addressing the
need for standardization [8]. Building on this foundation, the present study aimed to
evaluate the effectiveness of digital pressure feedback with a cheap and small manometer
in enhancing airstacking practices and its impact on pulmonary function in this patient
population.

Over the 1-year study period, no statistically significant differences were observed
in the changes in FVC, MIC, or aPCF among the three groups. This indicates that the
use of a digital manometer did not provide additional benefits in improving pulmonary
function compared to the conventional airstacking methods. Specifically, our study did not
observe significant changes in MIC over time, whereas previous studies [2,5] have reported
a gradual increase in MIC with continued airstacking practice. We believe the primary
reason for this discrepancy is that all the participants had prior experience with airstacking
before the study. Only patients from our outpatient clinic who were already familiar with
airstacking were included, and those new to the technique were excluded. Furthermore,
all the participants received standardized training at the beginning of the study, which
likely optimized their baseline performance, leaving little room for further measurable
improvement. While digital feedback provided a more intuitive understanding of the
process, the participants without the feedback device still benefited from the standardized
training, potentially diminishing the observable impact of digital feedback on pulmonary
function outcomes.

A notable observation in this study is the trend toward a reduced proportion of care-
givers performing airstacking at suboptimal pressure levels, which is often a challenge
in effectively implementing this technique. Group 2, which utilized digital pressure feed-
back, showed an improvement in achieving appropriate pressure levels during airstacking.
Specifically, the proportion of caregivers reaching the target peak pressure (≥35 cmH2O)
increased from 58.33% at Visit 1 to 83.33% at Visit 4, representing a 25.00% improvement.
In comparison, Group 3, which did not use digital feedback, demonstrated a 16.67% im-
provement, increasing from 50.00% to 66.67%. These findings suggest that digital feedback
devices may help address the challenge of insufficient pressure application during airstack-
ing, which can limit its effectiveness. The use of manometers provided real-time feedback,
potentially enabling caregivers to apply adequate pressure more consistently compared to
those relying on manual estimation. This suggests that incorporating objective tools such
as manometers into airstacking protocols could be beneficial, particularly for caregivers
with varying levels of experience or confidence in their technique.

Also, an interesting result of this study relates to the musculoskeletal pain experienced
by caregivers [18,19]. The caregivers in Group 2 reported a clear reduction in pain compared
to the other groups. In our prior pilot study, nearly 70% of the caregivers reported chronic
wrist and hand pain associated with performing airstacking regularly. Digital feedback
devices likely reduced the need for excessive force during airstacking, offering caregivers
an opportunity to alleviate chronic pain. This highlights an important secondary benefit of
digital feedback devices not only for patients but also for the well-being of their caregivers.

In line with a previous study [8], airstacking can be challenging for caregivers without
clear guidance on how to determine the endpoint of each maneuver. This often leads to
either insufficient or excessive air delivery. Caregivers may feel pressured to apply excessive
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force or perform the technique for longer durations, believing that stronger efforts are more
effective, or they may deliver too little air due to concerns about patient safety. The use of a
digital manometer provided real-time feedback, allowing the caregivers to maintain air
delivery within the optimal range. This improved force control and precision, reducing
uncertainty and physical strain while preventing both under- and over-delivery of air.

These results may partly explain the high level of satisfaction reported by the care-
givers regarding the use of the digital manometer. The caregivers who used the digital
manometer rated their experience with the device at an average of 8.92 out of 10, reflecting
a high level of satisfaction. This suggests that the device not only enhanced their confidence
in applying the correct pressure during airstacking but also made the process more manage-
able and less physically demanding. Positive feedback further supports the practicality of
integrating digital feedback into routine airstacking protocols, especially in settings where
caregiver fatigue and burden are significant concerns.

Furthermore, the high satisfaction score indicates a strong willingness among the
caregivers to continue using the device in the long term. This is particularly relevant
for patients requiring lifelong respiratory support, as the sustained use of such devices
could contribute to better adherence to airstacking protocols and potentially improve
long-term outcomes for patients. By simplifying the process and reducing physical strain,
digital feedback devices appear to provide an important solution to the challenges faced by
caregivers, thereby ensuring more consistent and effective care for patients.

We utilized an inexpensive, small, and lightweight portable digital manometer to
ensure accessibility for patients and caregivers. This approach aimed to lower the barriers
to adopting digital feedback technology in routine airstacking practices. Recently, advanced
techniques have been developed to visualize chest wall movements and assess lung gas
distribution, offering deeper insights into respiratory mechanics [9,20,21]. Combining
these novel imaging methods with portable digital manometers could provide a more
comprehensive and precise approach to optimizing airstacking.

Overall, this study demonstrates the potential benefits of integrating digital pressure
feedback into airstacking practices, not only for enhancing caregiver performance but also
for improving their physical well-being and satisfaction. These findings highlight the
importance of objective tools in standardizing pulmonary rehabilitation techniques for
patients with neuromuscular disorders.

Several limitations should be considered when interpreting these results. First, the
inclusion of patients already familiar with airstacking may have minimized the observable
impact of digital feedback on pulmonary function outcomes. Additionally, while all the
caregivers received standardized training before the study, individual variations in adher-
ence to airstacking protocols throughout the study period were not monitored, which may
have influenced outcomes. Second, the 1-year study period may not have been sufficient
to detect long-term changes in pulmonary function, particularly for the patients already
performing airstacking. Third, while outcome assessors were blinded to group allocation,
participant blinding was not feasible due to the nature of the intervention. Since the partici-
pants and caregivers were aware of whether they received digital pressure feedback, this
may have influenced subjective outcome measures such as caregiver satisfaction and pain
perception. Lastly, the relatively small sample size may have limited the statistical power
to detect subtle differences between groups.

Future studies should include patients new to airstacking to better evaluate the full
impact of digital feedback during initial training and long-term usage. Additionally,
extending the study duration and increasing the sample size could provide more robust
evidence of the clinical benefits of digital feedback devices. Stratifying patients by the
underlying disease may help identify disease-specific responses to airstacking and digital
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feedback. Exploring other caregiver outcomes, such as psychological stress or quality of
life, could also yield valuable insights into optimizing caregiver-patient dynamics.

5. Conclusions
In conclusion, while digital pressure feedback may not have significantly impacted

respiratory outcomes over the study period, its clear benefits for caregivers, including
reduced musculoskeletal pain and high satisfaction, underscore its value as a practical and
supportive tool.
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