
I. Introduction

Emergency departments (EDs) play a critical role in deliver-
ing timely and appropriate emergency medical services to 
patients with acute illnesses of varying severity, often under 
unpredictable conditions. However, ED overcrowding is an 
increasing global problem, resulting in extended waiting 
times, inefficient resource utilization, and compromised 
patient safety [1]. To tackle these issues, healthcare systems 
need effective resource allocation strategies and informatics-
driven solutions that facilitate prompt clinical decision-
making. Specifically, predictive models that utilize real-
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time data and advanced algorithms can greatly improve the 
operational efficiency of EDs by accurately determining 
which patients need hospital admission [2,3]. In the current 
system, the admission process starts only after a patient's ED 
visit is complete, causing prolonged waiting times and un-
necessary overcrowding as patients wait for administrative 
staff to process their admission and assign hospital beds. By 
implementing early prediction models at the time of patient 
arrival, the administrative process could be initiated simul-
taneously with the ED visit, thus reducing waiting times 
and preventing further ED crowding if the patient requires 
admission [4]. This approach would streamline patient flow 
and improve overall ED efficiency [2].
 Predictive models have been developed and implemented 
to address these challenges, with the goal of forecasting 
which ED patients will require hospital admission [5,6]. By 
accurately predicting the need for admission early in the 
triage process, these models can reduce boarding times, im-
prove resource allocation, and improve the overall efficiency 
of the ED [4].
 Triage information, which includes age, sex, vital signs, and 
mode of arrival, is collected during the initial patient assess-
ment in the ED. These data are crucial for quickly evaluating 
patient conditions and can be used to develop predictive 
models for hospital admission [7-9]. However, the system-
atic development of predictive models based solely on tri-
age data is limited. This limitation is due to the reliance on 
detailed clinical data, such as laboratory or imaging results, 
which are not available at triage. Additionally, variability 
in triage systems and practices across different institutions 
hinders the generalizability of these models [10-12]. Previ-
ous reviews have highlighted usability challenges in clinical 
implementation [10] and the potential of machine learning 
(ML) techniques to improve prediction accuracy [12], laying 
the groundwork for further research into models that lever-
age triage-only data. Models based on triage data are broadly 
applicable across EDs, aiding in the evaluation of patient 
conditions and informing admission decisions. Advances 
in artificial intelligence and ML techniques have further 
improved predictive accuracy, enabling the development of 
sophisticated triage-based models [13].
 This systematic review aims to identify and assess studies 
that have developed or validated hospital admission pre-
diction models for adult ED patients using triage data. It 
specifically targets adult patients, acknowledging the unique 
clinical characteristics and care pathways that differ from 
pediatric populations. By examining the features and limita-
tions of these models, this review intends to offer insights 

into enhancing ED resource management and the quality of 
patient care, as well as propose directions for future research.

II. Methods

1. Study Design
This study is a systematic review of studies on hospital ad-
mission prediction models using ED triage data and was 
conducted in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [14].

2. Eligibility Criteria
This study included all studies that developed or validated 
predictive models for the hospital admission of ED patients. 
It included data collected during the triage stage and utilized 
both retrospective and prospective study designs.
 Inclusion criteria:
  1)  Participants: Adult patients aged 16 years or older pre-

senting to the ED. Studies involving mixed-age popula-
tions were also included, provided their findings were 
stratified by age groups or were relevant to adults.

  2)  Intervention: Predictive models developed using data 
collected during the triage stage.

  3)  Outcomes: Hospital admission, defined as including 
both general ward and intensive care unit admission.

  4) Only peer-reviewed journal articles were included.
 Exclusion criteria:
  1)  Studies that focused exclusively on pediatric popula-

tions or specific diseases or symptoms.
  2)  Studies that were published in languages other than 

English or Korean.

3. Data Sources and Search Strategy
The literature search was conducted on October 20, 2023, 
utilizing five databases: PubMed, Embase, CINAHL, Web of 
Science, and the Cochrane Library, with no restrictions on 
publication dates. Additionally, manual checks of the refer-
ences from the retrieved studies were performed to identify 
additional studies that met the inclusion criteria.
 Search terms were constructed using MeSH terms, and 
queries were adapted to the specific features of each data-
base. The search terms were combined using the operators 
OR and AND. The primary MeSH terms employed were 
“emergencies,” “triage,” and “prognosis.” The final search 
strategy was formulated as follows: (emergency OR emer-
gencies OR emergence OR emergent OR emergencies[MeSH 
Terms]) AND (triage OR triages OR triaging OR triaged OR 
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triage[MeSH Terms]) AND (prognosis OR prediction OR 
predictive OR predicting OR predict OR prognosis[MeSH 
Terms]) AND (model OR modeling OR tool).

4. Study Selection
The references retrieved were organized using reference 
management software (EndNote 20.6; Clarivate, Philadel-
phia, PA, USA). After reviewing the titles, duplicates were 
removed. Titles and abstracts were further screened, and 
studies that were clearly irrelevant to the research question 
were excluded. The study selection process was conducted 
independently by two researchers based on the core research 
question, and inclusion and exclusion criteria. In cases of 
disagreement, a third researcher facilitated consensus to fi-
nalize the selection of studies.

5. Data Extraction
Data extraction from the selected studies was independently 
conducted by two researchers and subsequently verified. 
In cases of disagreement, a consensus was reached through 
discussion with a third researcher. The data extraction form 
was based on the Checklist for Critical Appraisal and Data 
Extraction for Systematic Reviews of Prediction Modelling 
Studies (CHARMS) [15]. The extracted data encompassed 
authors, publication year, country, setting, type of prediction 
modeling, data source, study design, study period, popula-
tion, sample size, outcome variable, candidate predictors, 
important variables, handling of missing data, algorithms 
used, validation methods, and the performance of the final 
model.

6. Risk of Bias and Applicability Assessment
The risk of bias and applicability of each study were inde-
pendently assessed by two researchers using the Prediction 
model Risk of Bias Assessment Tool (PROBAST) checklist 
[16]. Any disagreements were resolved through consultation 
with a third researcher. PROBAST systematically evaluates 
the risk of bias (ROB) by examining four critical domains—
participants, predictors, outcomes, and analysis—through 20 
targeted questions that identify methodological biases. Ap-
plicability is determined by evaluating how well the study's 
population, predictors, and outcomes align with the research 
question, thus assessing the relevance and generalizability of 
the study findings.

III. Results

1. Study Selection
A comprehensive search across five databases identified a to-
tal of 3,690 records. After removing duplicates, 2,219 unique 
records were left. These underwent a screening process 
based on their titles and abstracts, which led to the exclusion 
of 1,819 records that did not relate to the research question. 
The abstracts of the remaining 400 records were further re-
viewed, and 76 studies that met the inclusion criteria were 
selected. Two independent reviewers then conducted a full-
text assessment of these studies, resulting in the exclusion 
of 56 studies for various reasons, including the use of factor 
analysis instead of predictive modeling, a focus on non-adult 
populations, or the absence of relevant prediction outcomes. 
As a result, 20 studies were included in the final systematic 
review. The search process, based on the PRISMA 2020 flow 
diagram, is illustrated in Figure 1.

2. Risk of Bias and Applicability
Using the PROBAST tool, most studies were assessed as hav-
ing a low risk of bias in participant selection and outcome 
measurement. However, they encountered challenges with 
missing data and predictor selection. As shown in Table 1, 
although most studies conducted internal validation (e.g., 
cross-validation), only three studies utilized external valida-
tion methods [5,6,17], underscoring the need for enhanced 
generalizability of the models.

3. Study Characteristics
The characteristics of the studies included in this review are 
summarized in Table 2. This systematic review included 20 
studies [2-6,8-9,17-29], with research settings distributed 
across various countries and regions, including the USA, 
Australia, the UK, Spain, Singapore, Taiwan, and Austria. 
The methodologies predominantly involved retrospective 
analyses, although several studies also featured prospective 
validation [5,6,17]. While most studies focused exclusively 
on model development, a few integrated both development 
and validation processes [17,18]. The data sources were di-
verse, ranging from ED databases and hospital information 
systems to national health surveys, such as the National Hos-
pital Ambulatory Medical Care Survey. These studies were 
conducted in both single-center and multicenter environ-
ments, with some specifically employing electronic health 
intelligence systems (eHINTS) or extensive datasets like the 
Medical Information Mart for Intensive Care – Emergency 
Department (MIMIC-IV-ED) [8,19]. The duration of the 
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studies varied from 1 to 9 years, tailored to the particular 
design and scope of each study. The primary focus was on 
adult patients, though some studies included participants of 
all ages. Sample sizes varied widely, from 894 to over 3 mil-
lion patients or events, reflecting the diverse scopes and set-
tings of the studies.
 Table 3 summarizes the primary outcome assessed across 
the studies, which was hospital admission, encompassing 
both ward and intensive care unit (ICU) admissions. Other 
outcomes evaluated included mortality, critical outcomes, 
length of stay, and readmission [5,19-22]. Admission rates 
varied widely, ranging from 11.0% [2] to 47.3% [19], de-
pending on the definition of admission, study setting, and 
patient population.
 The studies reviewed incorporated a variety of candidate 
predictors, including patient demographics (such as age, sex/
gender, and ethnicity), triage details (such as triage category, 
vital signs, chief complaints, and mode of arrival), medical 
history (including previous admissions and comorbidities), 
and administrative information (such as date and time of 
attendance, shift time, and insurance status). Key predictive 
variables that were often identified included age, triage cat-
egory, mode of arrival (for example, ambulance), and vital 
signs like body temperature, heart rate, and respiratory rate.
 Regarding data handling, several studies addressed the is-
sue of missing data either by excluding incomplete cases or 
by employing imputation techniques. For instance, Xie et al. 
[19] utilized median imputation, whereas Cameron et al. [23] 

applied a combination of exclusion, removal, and imputation 
strategies. However, despite being retrospective in nature, 
four studies failed to provide details on how they managed 
missing data [9,18,24,25].
 Various ML algorithms were utilized in the studies re-
viewed, with logistic regression being the predominant 
method. More recent research has incorporated advanced 
algorithms, including gradient boosting machines (GBM), 
random forest, and neural networks, as well as more com-
plex models like long short-term memory [2,19,21,22,26].
 Validation methods varied across the studies. Many em-
ployed cross-validation techniques, such as bootstrap cross-
validation [3,20,23] and k-fold cross-validation [2,4,26]. 
Several studies also conducted external validation [5,6,17], 
which enhances the generalizability of their findings.

4. Model Performance of the Final Models
The study compared the performance of various predictive 
models designed to forecast hospital admissions using triage 
data from the ED, as detailed in Table 4. The evaluation con-
centrated on three key aspects: discrimination, calibration, 
and classification. Each aspect was crucial for assessing the 
primary outcome, which was hospital admission.
 Discrimination, primarily assessed through the area under 
the receiver operating characteristic curve (AUC), indicated 
how well each model could differentiate between patients 
who required hospital admission and those who did not. 
The GBM model developed by Cusido et al. [2] exhibited 

Figure 1.   Preferred Reporting Items 
for Systematic Reviews and 
Meta-Analyses flowchart of 
study selection process.
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the highest discrimination ability, achieving an AUC of 
0.891 (95% CI, 0.890–0.892). This was closely followed by 
the Glasgow Admission Prediction Score (GAPS) model by 
Cameron et al. [23], which recorded an AUC of 0.877. The 
Sydney Triage to Admission Risk Tool (START), introduced 
by Dinh et al. [3], demonstrated an AUC of 0.820. Although 
slightly lower than the previous models, it still showed ro-
bust discrimination performance.
 In terms of calibration, the Hosmer-Lemeshow goodness 
of fit test was commonly used to evaluate the alignment 
between predicted probabilities and actual outcomes. The 
GAPS model [23], with a p-value of 0.524, demonstrated 
strong calibration, indicating that its predictions closely 
matched observed admissions. In contrast, the START mod-
el [3] exhibited poor calibration (p<0.001), suggesting that 
despite reasonable discrimination, there was a significant 
mismatch between its predictions and the actual outcomes.
 When assessing classification performance, the accuracy 

metric exhibited significant variations across the models. 
Cusido et al. [2] achieved the highest accuracy (89.8%), 
while Cameron et al. [23] followed with 80.3%. The positive 
predictive value and negative predictive value were evaluated 
in seven studies [3,6,8,9,21,22,28], indicating the models' ef-
fectiveness in accurately predicting true positives and true 
negatives. Additional metrics, such as the F1-score [22] and 
net reclassification improvement [21,24], provided further 
insights into the classification capabilities and enhancements 
of these models.

IV. Discussion

This systematic review identified a total of 20 studies that 
focused on developing predictive models for hospital ad-
missions in ED settings. Of these, 16 models were newly 
developed, including START [3] and GAPS [23]. Addition-
ally, four studies were dedicated to expanding or externally 

Table 1. PROBAST results

Study, year

ROB Applicability Overall

Partici-

pants
Predictors Outcome Analysis

Partici-

pants
Predictors Outcome ROB

Applica-

bility

Cameron et al. [23], 2015 + + + – + – – – –
Cusido et al. [2], 2022 + + + – + – + – –
Dinh et al. [3], 2016 + + + + + + – + –
Ebker-White et al. [6], 2018 + + + + + + + + +
Ebker-White et al. [17], 2018 + + + + + + – + –
Graham et al. [27], 2018 + + + – – + + – –
Handly et al. [24], 2015 + + + – + + + – +
Jones et al. [5], 2019 + + + + + – + + –
Lee et al. [28], 2021 + + + – – + + – –
Levin et al. [20], 2018 + + + – – + – – –
Parker et al. [8], 2019 + + + – + + + – +
Peck et al. [25], 2012 ? + + – – + + – –
Peck et al. [18], 2013 ? – + – ? + + – ?
Raita et al. [21], 2019 + + + – + + – – –
Rendell et al. [26], 2019 + + + – + + + – +
Sun et al. [9], 2011 + + + – + + + – +
Tschoellitsch et al. [22], 2023 + + + – + + + – +
Xie et al. [19], 2022 + + + + + + + + +
Zhang et al. [4], 2017 + + + + + + – + –
Zlotnik et al. [29], 2016 + + + + + + + + +

PROBAST: Prediction model Risk of Bias Assessment Tool, ROB: risk of bias.
+ indicates low ROB/low concern regarding applicability; – indicates high ROB/high concern regarding applicability; and ? indi-
cates unclear ROB/unclear concern regarding applicability.
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Table 4. Model performances of the final model

Study, year Final model Discrimination (AUC scores) Calibration Classification

Cameron et al. [23], 2015 GAPS 0.877 (95% CI, 0.875- 0.879) HL GOF (p = 0.524) Accuracy: 80.3%
Cusido et al. [2], 2022 GBM model 0.891 (95% CI, 0.890-0.892) - Accuracy: 89.8%
Dinh et al. [3], 2016 START 0.820 (95% CI, 0.810-0.820)

Sensitivity: 88.0%
Specificity: 67.0%

HL GOF (p < 0.001) PPV: 86.8%,
NPV: 64.3%
High risk score ranges (>20)

Ebker-White et al. [6], 2018 START 0.800 (95% CI, 0.770–0.830)
Sensitivity: 78.5%
Specificity: 65.0%

HL GOF (p = 0.09) Accuracy: 70.2%
PPV: 56.5%
NPV: 84.2%

Ebker-White et al. [17], 2018 Extended START 0.840 (95% CI, 0.810-0.880) HL GOF (p = 0.09) -
Graham et al. [27], 2018 GBM model 0.859 - Accuracy: 80.3%
Handly et al. [24], 2015 Neural network-

based model 
with CCC data

0.860 (95% CI, 0.858–0.862)
IDI: 0.060 (95% CI, 0.058–

0.061)

- NRI: 0.156 (95% CI, 0.148–
0.163)

Jones et al. [5], 2019 GAPS
Lee et al. [28], 2021 NN & ML model 0.817 (95% CI 0.820–0.821)

Sensitivity: 67.2%
Specificity: 78.1%

Youden’s index: 
0.552

PPV: 36.6%
NPV: 92.7%

Levin et al. [20], 2018 E-triage 0.820–0.840 - -
Parker et al. [8], 2019 Novel prediction 

model
0.825 (95% CI, 0.824–0.827)
Sensitivity: 77.5%
Specificity: 74.8%

Calibration plot PPV: 83.0%
NPV: 67.7%

Peck et al. [25], 2012 Logit-linear 
regression

0.887
R²: 0.583

- -

Peck et al. [18], 2013 LR model 0.800–0.890 HL GOF (p > 0.01) -
Raita et al. [21], 2019 DNN model 0.820 (95% CI, 0.820–0.830)

Sensitivity: 79.0%
Specificity: 71.0%

- NRI: 0.68 (p < 0.001)
PPV: 35.0%
NPV: 95.0%

Rendell et al. [26], 2019 START 2 0.827 (95% CI, ±0.0006) - Accuracy: 75.2%
Sun et al. [9], 2011 LR model 0.849 (95% CI, 0.847–0.851)

Specificity: 96.8%
Sensitivity: 33.4%

HL GOF (p > 0.05) PPV: 81.6%
NPV: 71.8%

Tschoellitsch et al. [22], 
2023

NN model 0.842 - F1-score: 0.706
PPV: 64.7%
NPV: 84.9%

Xie et al. [19], 2022 GB model 0.819 (95% CI, 0.817–0.822) - -
Zhang et al. [4], 2017 LR model 3 0.846 (95% CI, 0.839–0.853) - -
Zlotnik et al. [29], 2016 ANN model 0.857 (95% CI, 0.854–0.861) HL GOF (χ²: 17.28)

Calibration plot
-

GAPS: Glasgow Admission Prediction Score, GBM: gradient boosting machine, HL GOF: Hosmer-Lemeshow goodness of fit, LR: 
logistic regression, PPV: positive predictive value, NPV: negative predictive value, START: Sydney Triage to Admission Risk Tool, 
IDI: integrated discrimination improvement, NRI: net reclassification improvement, NN: neural network, ML: machine learning, 
DNN: deep neural network, ANN: artificial neural network, AUC: area under the curve, CI: confidence interval.
All metrics have been standardized to 3 decimal places and presented as raw values for AUC and as percentages for sensitivity, spec-
ificity, PPV and NPV to ensure consistency.
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validating the START [5,6,17] and GAPS [26] models. These 
efforts enhanced the clinical applicability of both models. 
The majority of the studies employed logistic regression, val-
ued for its simplicity and interpretability, as the primary al-
gorithm. However, more recent studies have shifted towards 
ML and deep learning techniques to improve predictive 
accuracy. Despite the potential advantages of deep learning 
models, such as their ability to capture complex patterns in 
data, several studies noted that deep learning approaches 
often required substantial computing resources and time 
without offering significant improvements in model perfor-
mance over traditional ML methods [26]. This underscores 
an important consideration for practical implementation, 
where computational efficiency is often as crucial as predic-
tive accuracy, especially in time-sensitive environments like 
the ED.
 The operational definition of hospital admission, which is 
the primary outcome variable in this review, varied across 
the included studies. Some studies counted transfers to 
other hospitals as part of the admission outcome [3,4,21,26], 
while another study included patients who died in the ED 
[23]. Other studies categorized hospital stays into different 
durations based on clinical objectives [3,6,17,26]. For the 
purposes of this review, hospital admission is defined to in-
clude both general ward and intensive care unit admissions. 
This definition supports the review's objective of predicting 
admissions during triage, which helps reduce boarding times 
and optimize hospital capacity management, thereby ensur-
ing a comprehensive evaluation of admission outcomes.
 The predictors identified as important variables in predic-
tive models were largely consistent across studies, including 
age, sex, vital signs, and mode of arrival, which are among 
the most commonly used. These variables are routinely col-
lected in the ED. Triage-based models, which do not require 
additional or complex data collection, provide immediate 
predictions that significantly contribute to timely decision-
making in an emergency setting. In contrast, models that 
utilize laboratory or imaging data leverage detailed clinical 
information to achieve higher accuracy [4,21]. However, 
they depend on data that are not available during the triage 
stage. This distinction further underscores the practical val-
ue of triage-based models in real-world clinical applications.
 Despite the generally high performance of the models, as 
indicated by AUC values typically ranging from 0.80 to 0.89, 
several studies have noted challenges related to missing data 
and varying data quality across different hospital settings 
[30]. While some models excelled in discrimination, others 
showed stronger calibration or classification performance. 

The models by Cusido et al. [2] and Cameron et al. [23] were 
particularly notable as top performers, providing a balance 
of high discrimination and accurate classification, making 
them promising tools for predicting hospital admissions 
from ED triage data.
 Although internal validation was performed in most stud-
ies using methods like cross-validation or bootstrapping, ex-
ternal validation was conducted in only a few instances. This 
raises concerns about the generalizability of these models 
across various clinical contexts.
 Our findings are consistent with previous systematic re-
views, such as the one conducted by Brink et al. [10], which 
evaluated admission prediction models but noted their 
limited real-world application due to challenges in clini-
cal usability and validation. Brink's study was confined to 
European countries, which restricts its global applicability. 
In contrast, our review encompasses studies from a broader 
range of countries, enhancing its relevance to a wider variety 
of clinical settings. Sanchez-Salmeron et al. [12] proposed 
that ML-based models hold promise as effective tools for en-
hancing triage-based predictions. However, the deployment 
of these models in EDs faces significant hurdles, especially 
the substantial computational resources needed for real-time 
predictions.
 This study makes a significant contribution to the ongo-
ing efforts to refine hospital admission prediction models 
by specifically focusing on those that utilize critical triage 
information, which is readily available upon patient arrival. 
By systematically reviewing the performance and applicabil-
ity of these models, we offer a comprehensive evaluation of 
the current state of hospital admission prediction tools. This 
review highlights the strengths and weaknesses of various 
algorithms and methodologies.
 The review highlights the potential of models based on 
triage information to enhance ED operations, especially by 
facilitating earlier predictions of hospital admissions. This 
could lead to shorter boarding times and improved patient 
flow. Additionally, the inclusion of studies from various 
healthcare systems in the review broadens the applicability 
of its findings, providing insights relevant to diverse clinical 
settings.
 Despite its contributions, this review has several limita-
tions. First, the diversity in study designs, predictors, and 
outcome definitions complicates direct comparisons of 
model performance across studies. Additionally, although 
many studies addressed the issue of missing data, some did 
not disclose their data handling strategies, which could bias 
their results. Future research should enhance transparency 
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in data handling and consider incorporating unstructured 
data, such as nursing assessments, which have been shown 
to improve predictive power in certain studies. Furthermore, 
the absence of external validation in most studies raises con-
cerns about the generalizability of these models to different 
clinical settings. Future studies should focus on validating 
models across various EDs to confirm their wider applicabil-
ity.
 This review underscores the potential of predictive models 
for hospital admissions based on triage data in EDs. Models 
like START and GAPS, which have been subjected to both 
extension and external validation, are particularly promising 
for clinical implementation. Given the broad availability of 
the identified predictors in ED settings, these models show 
great promise in reducing boarding times and enhancing pa-
tient flow through earlier bed assignments.
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