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Association between exposure to
particulate matter and heart rate
variability in vulnerable and susceptible
individuals
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Particulate matter (PM) exposure can reduce heart rate variability (HRV), a cardiovascular health
marker. This study examines PM1.0 (aerodynamic diameters <1 μm), PM2.5 (≥1 μm and <2.5 μm), and
PM10 (≥2.5 μmand<10 μm) effects onHRV in patientswith environmental diseases as chronic disease
groups and vulnerable populations as control groups. PM levelsweremeasured indoors and outdoors
for five days in 97 participants, with 24-h HRV monitoring via wearable devices. PM exposure was
assessed by categorizing daily cumulative PM concentrations into higher and lower exposure days,
while daily average PM concentrations were used for analysis. Results showed significant negative
associations between exposure to single and mixtures of different PM metrics and HRV across all
groups, particularly in chronic airway disease and higher air pollution exposed groups. These findings
highlight that even lower PM levels may reduce HRV, suggesting a need for stricter standards to
protect sensitive individuals.

Environmental pollutants are known to have adverse effects on health, and
air pollution, such as particulatematter (PM), is a serious global issue due to
its negative impact on human health. Numerous studies have emphasized
the effects of PM on mortality and morbidity related to cardiovascular
diseases (CVD)1–4. Short- and long-term exposure to PM can have various
effects on cardiovascular health, with greater risks observed in vulnerable
and susceptible populations, such as patientswithCVD, chronic obstructive
pulmonary disease (COPD), and older people1,3,5.

The proposed mechanisms to explain the association between PM
inhalation and CVD include oxidative stress, systemic inflammation6,7,
insulin resistance8, epigenetic modifications9, and alterations in cardiac
autonomic function and the autonomic nervous system1,8. Notably, the
impacton the autonomic nervous system forms thebasis of the link between
PM and CVD, with heart rate variability (HRV) serving as a useful non-
invasive measure for assessing the autonomic regulation of heart rhythm.
HRV can be recorded over short (typically 5–15min) or long-term (24-h)
periods10. Reduced HRV is a significant prognostic tool for various CVD,
and long-termHRVassessments aremore accurate indicators for evaluating
cardiovascular conditions than short-term HRV10–13. Epidemiological

evidence suggests that short-term PM exposure is associated with a
reduction in most long-term HRV indices, particularly in sensitive groups
such as older people14,15, patientswithCVD16,17, COPDpatients18, thosewith
occupational exposure19,20, or individuals with hypertension or diabetes5,15.

There is consistent evidence that the association between the reduction
in HRV and exposure to PM depends on the particle size and subject
population. In the general healthy population, occupational exposure, and
cardiovascular patients, exposure to PM1.0 has been linked to a reduction in
HRV21,22. In cardiovascular patients, patients with COPD, and older people,
exposure to PM2.5, has been associated with HRV reduction14,16,23, while
PM10 exposure has been linked to decreasedHRV in patients with COPD18.
The type of particles and the magnitude of their association with HRV
reduction may vary depending on the subject population and specific pol-
lutants involved.

Most previous studies have evaluated exposure using environmental
pollution monitoring devices located in various districts. There is a lack of
research exploring the relationship between environmental pollutant
exposure in personal living spaces andHRVusing both indoor and outdoor
measurementdevices.Unlikeoutdoorair, indoor airquality canbe altered at
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an individual level24; therefore, both indoor and outdoor air should be
considered when assessing PM exposure25. Additionally, because indivi-
duals arenot exposed toenvironmental pollutants in isolationbut rather to a
mixture of various substances, an analysis of complex exposure is also
necessary. Some complex exposure analyses have utilized combinations of
PM components26,27; however, the measurements did not fully reflect the
overall personal living environment and were not evaluated according to
particle size.

Our study addresses these gaps by employing a comprehensive
approach that simultaneously examines indoor and outdoor air quality,
while also considering the mixed exposure to different PM sizes (PM1.0,
PM2.5, and PM10) in real time. Furthermore, the application of a Bayesian
kernel machine regression model (BKMR)28 allows us to more accurately
model the nonlinear and potentially synergistic effects of mixed-substance
exposures on HRV, particularly in vulnerable populations. This novel
approach not only fills a critical void in existing research but also provides a
more nuanced understanding of the health risks posed by PM in diverse
living environments. Therefore, this study specifically aimed to investigate
the relationship between short-term exposure to PM (PM1.0, PM2.5, and
PM10) and 24-h real-time HRV measurements in patients with environ-
mental diseases (patients with arrhythmia, chronic airway disease, and
stroke) and vulnerable populations (residents of an industrial complex area,
older people), using equipment capable of measuring both indoor and
outdoor environments. The studywill take into account individual sensitive
characteristics (medical history, age, gender, disease) and personal living
spaces and will examine both single-substance and mixture-substance
exposures.

Results
Description of living lab participants
Table 1 presents the basic descriptive statistics for each of the labs. The total
number of study participantswas 97, including 19patientswith arrhythmia,
20 with chronic airway disease, 19 with stroke in the chronic disease group,
19 residents in higher air pollution exposed persons, and 19 older people
individuals. There were more males than females, and the average age was
65.52 (12.04) years, with the older people group having the highest average
age of 71.42 years. The average concentrations of PM1.0, PM2.5, and PM10

were 9.89 (9.78), 10.46 (10.36), and 10.53 (10.44) μg/m3, respectively, with
higher air pollution exposed persons having the highest average con-
centrations of PM1.0, PM2.5, and PM10. The standard deviation of normal-
to-normal intervals (SDNN) was 138.96 (63.06), the standard deviation of
the average NN intervals for each 5-min segment of a 24-h HRV recording
(SDANN) was 98.25 (39.26), the mean of the standard deviations of all NN
intervals for each 5-min segment of a 24-h HRV recording (SDNNI) was
68.01 (41.11), and the rootmean square of successiveRR interval differences
(RMSSD) was 77.37 (66.07). Among these, 24-h SDNN, SDANN, and
SDNNI were the lowest in patients with arrhythmia, whereas RMSSD was
the lowest in patients with chronic airway diseases.

The concentrations of environmental pollutants and 24-h HRV were
compared based on the days with the higher and lower cumulative PM
concentrations (Table 2). The daily average concentrations of PM1.0, PM2.5,
and PM10 were significantly higher on days with high cumulative con-
centrations.Although therewas no statistically significant difference in 24-h
HRV between the days with higher and lower cumulative concentrations,
the values were lower on the days with higher cumulative concentrations;
SDNN was 137.60 (57.98), SDANN was 97.34 (37.31), SDNNI was 66.67
(39.14), and RMSSD was 76.85 (63.52), compared to the days with lower
cumulative concentrations.

Association between exposure to single and mixtures of PM
metrics and HRV
Figure 1 shows the results of the regression analysis stratified by days with
higher and lower cumulative concentrations of each environmental pollu-
tant using age, sex, BMI, respiration rate, smoking, alcohol consumption,
METs, hypertension, diabetes mellitus, TVOC, humidity, and temperature

as adjustment variables.Onboth thehigh and lowcumulative concentration
days, each daily average PM substance showed a negative trend with 24-h
HRV. Notably, on the days with higher cumulative concentrations, PM1.0

(β=−1.34, 95% CI =−2.45, −0.23), PM2.5 (β=−1.28, 95% CI =−2.33,
−0.23), PM10 (β=−1.28, 95% CI =−2.32, −0.24) exhibited a significant
negative correlation with SDNN.

The overall effects exerted by the three daily average PMs (PM1.0,
PM2.5, and PM10) were estimated using the BKMRmethod and stratified by
days with higher and lower PM cumulative concentrations (Fig. 2). This
regression model was adjusted for covariates including age, sex, BMI,
respiration rate, smoking, alcohol consumption, METs, hypertension, dia-
betes mellitus, TVOC, humidity, and temperature on both the higher
cumulative concentration day (Fig. 2a) and the lower cumulative con-
centration day (Fig. 2b). HRV (SDNN, SDANN, SDNNI, RMSSD) showed
a negative trend as the degree of complex exposure increased. On days with
higher cumulative concentrations, SDNN and the three daily average PMs
showed a significantly negative association from the 70th to the 90th per-
centile compared with the 50th percentile of exposure levels. Significance
was observed at the 90th percentile when the dependent variables were
SDANN and SDNNI. Furthermore, when examining the exposure-
response relationship on days with higher and lower cumulative con-
centrations, it was confirmed that an increase in the exposure levels of the
three PMs was associated with a decrease in SDNN, SDANN, SDNNI, and
RMSSD, demonstrating a negative trend (Supplementary Fig. 1).

Table 3 presents the results of the subgroup analysis based on the
chronic disease group (arrhythmia, chronic airway disease, stroke) and
control group (higher air pollution exposed persons and older people). On
days with higher cumulative concentrations, regression analysis was per-
formed on the HRV for each environmental pollutant within each living
labs, using age, sex, BMI, respiration rate, smoking, alcohol consumption,
METs, hypertension, diabetes mellitus, TVOC, humidity, and temperature
as adjustment variables. In both the chronic disease and control groups, each
substance generally showed a negative correlationwithHRV. In the chronic
disease group, chronic airway disease showed a negative correlation with all
HRV indices for daily average PM1.0, PM2.5, andPM10. In the control group,
a negative associationwas observedbetweendaily averagePM1.0, PM2.5, and
PM10 when the outcome was SDNN; higher air pollution exposed persons
showed a significant negative correlation when SDNN was the outcome
variable. On days with lower cumulative concentrations, exposure to PM
substances generally demonstrated a negative trend with 24-h HRV, this
was not statistically significant (Supplementary Table 3).

Subgroup and sensitivity analysis of the association between
exposure to PM and HRV
Asubgroupanalysiswas conductedon the complex exposure assessment for
each living lab (Fig. 3). On days with higher cumulative concentrations, the
three daily average PMs and SDNN showed a negative correlation at the
90th percentile of exposure comparedwith when all exposures were fixed at
the 50th percentile in both the chronic disease and control groups. Addi-
tionally, in the chronic disease group, particularly among patients with
chronic airway disease, SDNN significantly decreased when exposed to
3PMsat the70th, 80th, and90thpercentiles compared towhenall exposures
were fixed at the 50th percentile. Similarly, in the control group, particularly
among higher air pollution exposed persons, SDNN significantly decreased
when exposed to 3PMs at the 70th, 80th, and 90th percentiles. On days with
lower cumulative concentrations, complex exposure generally showed a
negative trend with 24-h HRV; this was not statistically significant (Sup-
plementary Fig. 2). The results of the sensitivity analysis demonstrate the
robustness of the findings from the primary analysis. The LMM analysis
evaluated the data without stratification and accounted for repeated mea-
sures, confirming that there was no temporal variability among participants
or within the living lab groups (Supplementary Tables 4 and 5). The results
from the regression (Supplementary Fig. 3, Supplementary Tables 6 and 7)
and BKMR analyses (Supplementary Figs. 4, 5, and 6), which excluded
potential confounders such as age, sex, BMI, smoking status, alcohol
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consumption, hypertension, and diabetes mellitus, were consistent with the
trends observed in the main analysis.

Discussion
Vulnerable and susceptible individuals were recruited to evaluate the
association between PM exposure and HRV. During the five-day

measurement period, we differentiated between days with higher and lower
cumulative concentrations to compare the associations between single-
substance and complex-substance exposures. On days with lower cumula-
tive concentrations of PM, we observed a negative trend without statistical
significance; however,weobserved a significant negative associationondays
with higher cumulative concentrations. In the overall study population,

Table 1 | Baseline characteristics of study population

Chronic Disease Groups Control Groups

Total Arrhythmia Chronic Airway Disease Stroke Higher Air Pollution Exposed Older People

(N = 97) (N = 19) (N = 20) (N = 20) (N = 19) (N = 19)

Sex (male) 59 (60.82) 13 (68.42) 17 (85.00) 13 (65.00) 7 (36.84) 9 (47.97)

Age (year) 65.52 (12.04) 65.42 (9.72) 59.55 (16.38) 62.15 (12.40) 69.53 (10.47) 71.42 (4.25)

BMI (kg/m2) 24.50 (3.67) 25.65 (2.61) 23.78 (2.56) 24.58 (2.72) 25.63 (3.31) 22.91 (5.76)

Smoking (yes) 11 (11.34) 2 (10.53) 2 (10.00) 1 (5.00) 4 (21.05) 2 (10.53)

Alcohol consumption (yes) 46 (47.42) 8 (42.11) 11 (55.00) 7 (35.00) 11 (57.89) 9 (47.37)

METs 160.81 (100.18) 208.03 (135.87) 162.47 (106.51) 122.55 (101.45) 155.34 (66.57) 157.59 (61.37)

Hypertension (yes) 52 (53.61) 12 (63.16) 9 (45.00) 16 (80.00) 9 (47.37) 6 (31.58)

Diabetes mellitus (yes) 18 (18.56) 4 (21.05) 0 (0.00) 7 (35.00) 3 (15.79) 4 (21.05)

PM1.0 (μg=m3)

Mean (SD) 9.89 (9.78) 10.45 (11.46) 7.95 (4.55) 10.19 (13.11) 13.62 (11.49) 7.33 (2.73)

Median (q1, q3) 6.96 (4.68, 10.79) 7.37 (3.23, 12.30) 6.60 (4.67, 9.96) 6.73 (5.27, 9.74) 9.78 (6.13, 15.49) 6.72 (5.39, 8.68)

PM2.5 (μg=m3)

Mean (SD) 10.46 (10.36) 10.94 (12.11) 8.44 (4.80) 10.77 (13.79) 14.51 (12.28) 7.72 (2.84)

Median (q1, q3) 7.36 (4.98, 11.35) 7.50 (3.31, 13.00) 7.04 (4.92, 10.48) 7.07 (5.75, 10.25) 10.34 (6.44, 16.45) 7.21 (5.67, 8.86)

PM10 (μg=m3)

Mean (SD) 10.53 (10.44) 11.03 (12.11) 8.48 (4.83) 10.80 (13.86) 14.68 (12.51) 7.75 (2.86)

Median (q1, q3) 7.40 (5.00, 11.35) 7.64 (3.33, 13.03) 7.06 (4.94, 10.49) 7.07 (5.76, 10.27) 10.39 (6.45, 16.62) 7.27 (5.68, 8.92)

TVOC (μg=m3)

Mean (SD) 340.92 (340.40) 258.73 (168.78) 361.02 (281.28) 407.70 (467.68) 375.10 (429.19) 297.47 (249.85)

Median (q1, q3) 238.28 (130.10, 424.59) 230.09 (142.47, 311.09) 308.74 (149.74, 443.92) 222.38 (127.13, 512.48) 206.11 (112.55, 491.56) 233.86 (112.48, 381.27)

CO2 (ppm)

Mean (SD) 650.19 (272.35) 554.08 (220.67) 671.55 (187.44) 595.58 (298.00) 837.49 (326.78) 592.95 (219.79)

Median (q1, q3) 615.94 (448.91, 777.40) 495.21 (407.30, 694.08) 624.54 (541.39, 764.96) 472.40 (390.76, 720.93) 758.29 (653.14, 850.40) 521.15 (409.82, 739.18)

Temperature (°C)

Mean (SD) 26.80 (3.47) 29.57 (3.84) 26.23 (2.00) 26.71 (2.76) 23.49 (3.18) 28.05 (2.15)

Median (q1, q3) 26.99 (24.67, 29.08) 29.71 (27.99, 30.99) 26.34 (24.60, 28.02) 26.59 (24.49, 28.68) 24.28 (20.80, 25.51) 28.31 (26.73, 29.86)

Humidity (g=m3)

Mean (SD) 40.83 (13.25) 50.23 (13.25) 38.14 (8.93) 43.32 (11.05) 26.60 (6.28) 45.86 (12.18)

Median (q1, q3) 38.89 (30.89, 49.94) 47.94 (45.07, 54.32) 35.60 (31.30) 43.38 (34.72, 51.14) 28.31 (21.45, 31.22) 45.75 (34.62, 53.35)

Respiration Rate 13.97 (3.01) 14.88 (3.62) 14.11 (1.31) 13.74 (0.92) 12.88 (1.11) 14.23 (5.29)

Heart rate 75.39 (9.94) 76.44 (12.96) 78.01 (8.48) 77.45 (8.95) 73.97 (9.88) 70.84 (7.29)

Heart rate variability

SDNN

Mean (SD) 138.96 (63.06) 118.16 (52.99) 122.78 (50.29) 146.49 (60.35) 144.57 (77.11) 163.24 (63.71)

Median (q1, q3) 129.80 (91.68, 171.69) 108.88 (80.13, 157.20) 111.62 (83.90, 154.50) 137.14 (107.87, 174.51) 139.00 (82.96, 192.99) 152.66 (122.06, 200.06)

SDANN

Mean (SD) 98.25 (39.36) 85.98 (38.82) 89.66 (32.33) 95.84 (33.70) 108.63 (54.19) 111.72 (28.29)

Median (q1, q3) 94.17 (72.32, 119.61) 85.37 (59.34, 103.34) 90.74 (67.95, 113.94) 94.97 (68.88, 120.50) 95.38 (75.11, 134.31) 108.31 (89.21, 132.54)

SDNNI

Mean (SD) 68.01 (41.11) 59.96 (45.23) 61.79 (38.07) 77.92 (54.42) 72.23 (31.47) 67.94 (29.93)

Median (q1, q3) 57.16 (38.43, 84.91) 38.70 (29.36, 83.79) 46.98 (37.19, 76.93) 59.73 (42.92, 99.65) 63.89 (53.89, 83.56) 61.18 (44.40, 93.84)

RMSSD

Mean (SD) 77.37 (66.07) 73.14 (66.05) 63.33 (61.03) 87.62 (82.46) 78.62 (59.55) 84.33 (58.08)

Median (q1, q3) 48.63 (26.16, 118.20) 41.93 (21.58, 113.91) 34.66 (21.12, 91.94) 42.14 (26.31, 151.10) 62.27 (28.82, 103.34) 77.29 (29.28, 122.35)

Data are presented by n (%) or means (sd).
SBP systolic blood pressure, DBP diastolic blood pressure,METsmetabolic equivalent of task, TVOC total volatile organic compounds, PM particulate matter, SDNN standard deviation of NN intervals,
SDANN standard deviation of the averageNN intervals for each 5min segment of a 24 hHRV recording,SDNNImean of the standard deviations of all the NN intervals for each 5min segment of a 24 hHRV
recording,NN normal-to-normal,RMSSD rootmean square of successiveRR interval differences,RRThe timebetween successiveRwaves in an electrocardiogram (ECG), representing one cardiac cycle.
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both single- and complex-substance exposure to daily average PM1.0, PM2.5,
and PM10 presented a negative association with SDNN, consistent with

previous studies that found that increased exposure to PM was associated
with decreased HRV18,19. In the subgroup analysis by living labs, different
associations were observed depending on the group. In the chronic disease
group, PM exposure was associated with a decrease in SDNN among
patients with chronic airway disease18, whereas in the control group, higher
air pollution exposed persons showed an association between increased PM
exposure and decreased SDNN19,20. However, unlike previous studies, we
did not find an association between reduced HRV and PM exposure in
patients with arrhythmia, stroke, or older people14–17. This discrepancymay
be due to differences in population characteristics, study design, or envir-
onmental conditions. Additionally, the limited sample size and inherent
variabilitywithin the small samplemayhave reduced the statistical power to
detect a significant association, potentially contributing to the observed lack
of association.

In this study, we highlight the importance of PM exposure in suscep-
tible and vulnerable populations by building on previously explored aspects.
First, most previous studies evaluated exposure using equipment located in
urban areas, which cannot accurately reflect individual-specific information.
We used equipment capable of measuring environmental pollutants, both
indoors and outdoors, to assess personalized exposure levels in sensitive and
vulnerable populations. At the same time, ECG signals were measured in
real-time using devices that could monitor participants during the same
period when environmental pollutants were being measured. This allowed
for an accurate assessment of exposure levels based on the participants’
residential areas, indoor and outdoor environments, and lifestyle habits24.
Beyond PM measurement, our equipment also recorded TVOC, tempera-
ture, and humidity, while the ECG monitoring devices provided data on
respiration rate andmetabolic equivalents (METs).This comprehensivedata
collection enabled us to control for individual characteristics as adjustment
variables, thereby enhancing the precision and relevance of our findings29,30.

Second, after categorizing the exposure levels to environmental pol-
lutants based on daily cumulative concentrations, we analyzed the data by
comparing days with higher and lower cumulative concentrations. Inter-
estingly, we found that the exposure levels on both higher and lower con-
centration days were still within the ‘good’ or ‘moderate’ categories as
defined by the WHO31, the U.S. AQI32, and the Korean Ministry of
Environment33 for daily average PMexposure (see Supplementary Table 2).

Table 2 |Daily cumulative totals andmeansPM1.0, PM2.5, PM10,
and Heart Rate Variability

Higher cumulative
concentration day

Lower cumulative
concentration day

P-value

PM1.0

daily cumulative 15,879.10 (16,277.67) 9509.20 (9457.47) 0.001

daily average 11.33 (11.25) 8.45 (7.86) 0.040

PM2.5

daily cumulative 16,820.90 (17,249.52) 10,024.00 (9990.31) 0.001

daily average 12.00 (11.92) 8.91 (8.29) 0.037

PM10

daily cumulative 16,944.00 (17,386.07) 10,089.60 (10,107.86) 0.001

daily average 12.09 (12.01) 8.96 (8.36) 0.037

TVOC 351.88 (315.41) 329.96 (364.99) 0.655

CO2 659.78 (282.25) 640.60 (263.19) 0.625

Temperature 26.89 (3.59) 26.71 (3.36) 0.717

Humidity 41.09 (13.01) 40.57 (13.54) 0.786

HRV

SDNN 137.60 (57.98) 140.30 (68.05) 0.773

SDANN 97.34 (37.31) 99.16 (41.48) 0.748

SDNNI 66.67 (39.14) 69.34 (43.14) 0.653

RMSSD 76.85 (63.52) 77.88 (68.85) 0.913

Data are presented by mean (sd). P-value was calculated by Mann–Whitney U test or independent
t-test.
PM particulate matter, TVOC total volatile organic compounds, SDNN standard deviation of NN
intervals, SDANN standard deviation of the average NN intervals for each 5min segment of a 24 h
HRV recording, SDNNImean of the standard deviations of all the NN intervals for each 5min
segment of a 24 h HRV recording, NN normal-to-normal, RMSSD root mean square of successive
RR interval differences, RR The time between successive R waves in an electrocardiogram (ECG),
representing one cardiac cycle.

Fig. 1 | Linear regression forHRV according to exposure to PM. Linear regressions
were adjusted for age, sex, BMI, respiration rate, smoking, alcohol consumption,METs,
hypertension, diabetes mellitus, TVOC, humidity, and temperature. Boldface means
significant results. β, regression coefficient; CI, confidence interval; PM, particulate
matter; SDNN, standard deviation of NN intervals; SDNNI, mean of the standard

deviations of all the NN intervals for each 5min segment of a 24 h HRV recording;
SDANN, standard deviation of the average NN intervals for each 5min segment of a
24 h HRV recording; NN, normal-to-normal; RMSSD, root mean square of successive
RR interval differences; RR, the time between successive R waves in an electro-
cardiogram (ECG), representing one cardiac cycle.
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Nevertheless, our findings clearly demonstrate that even lower PM levels of
exposure significantly reduce HRV34 in higher-risk groups (chronic disease
patients and industrial complex residents). Furthermore, we observed a
stronger association with decreased HRV as the PM particle size
decreased18,35. These findings underscore the necessity for more stringent,
particle size-specific air quality standards for vulnerable individuals, com-
pared to those for the general population.

Third, we assessed the impact of exposure to complexmixtures of PM,
in addition to single substances, on HRV. This analysis revealed that the
combination of PM particles of varying sizes had a more pronounced
impact onHRV than single-substance exposures alone. In the overall study
population, only SDNN was associated with single substance exposure;
however, in the case of complex substance exposure, significant associations
were observed not only with SDNN but also with SDANN and SDNNI.
Notably, a negative associationwith SDNNwas observed in both the overall
chronic disease and control groups, with statistically significant associations
generally observed at the 90th percentile of exposure. Although the daily
average PM levels for both indoor and outdoor environments were within
the globally recommended ‘good’ and ‘moderate’ categories31–33, our results
suggest that individuals with sensitive characteristics may be more strongly
affected by decreased HRVwhen exposed to a complexmixture of particles
of varying sizes. These findings were made possible by the application of
BKMR, a sophisticated statistical approach that allows for the modeling of
high-dimensional and complex exposure-response relationships28. BKMR
enabled us to simultaneously assess the effects of multiple pollutants,

accounting for potential interactions between different PM sizes. This
approach provided amore nuanced understanding of how combinations of
pollutants, rather than individual substances alone, contribute to reductions
in HRV. By capturing the non-linear and potentially synergistic effects of
mixed-substance exposures, BKMR enhanced the accuracy and interpret-
ability of our results, particularly in identifying the heightened vulnerability
of certain populations to complex pollutant mixtures.

Fourth, we conducted analyses by separating the participants into
groups based on specific diseases and vulnerable group characteristics. This
approach demonstrated that the association between PM exposure and
HRVcan vary depending on factors such asmedical history, age, and region
of residence. Notably, patients with chronic airway disease and higher air
pollution exposed persons demonstrated a strong negative association with
SDNN in both single and mixed PM substance exposures. In particular,
patients with chronic airway disease showed prominent associations across
all HRV indices, indicating a heightened sensitivity to PM exposure in this
group. These two groups were measured during the COVID-19 pandemic,
when wearing masks was recommended outdoors, potentially resulting in
lower outdoor exposure levels, with most measurements being taken
indoors (Supplementary Table 2). These results may have influenced the
observed associations, as reduced outdoor exposure could have altered the
overall exposure, emphasizing the importance of indoor air quality. While
this study did not specifically explore the mechanisms underlying the
observeddecrease inHRVdue toPMexposure in these groups, it is plausible
that higher air pollution exposed persons experience accumulated exposure

Fig. 2 | The overall effects PM1.0, PM2.5, PM10, andHRVwere estimated using the
Bayesian kernelmachine regressionmethod.The overall effect of themixture (95%
CI) is defined as the difference in the response when all of the exposures are fixed at a
specific quantile (ranging from 0.10 to 0.90), as compared to when all of the expo-
sures are fixed at their median value. a The day with the higher cumulative con-
centration of particulate matter. b The day with the lower cumulative concentration
of particulate matter. Models were adjusted for age, sex, BMI, respiration rate,
smoking, alcohol consumption, METs, hypertension, diabetes mellitus, TVOC,

humidity, and temperature. CI, confidence interval; PM, particulate matter; SDNN,
standard deviation of NN intervals; SDNNI, mean of the standard deviations of all
theNN intervals for each 5 min segment of a 24 hHRV recording; SDANN, standard
deviation of the average NN intervals for each 5min segment of a 24 h HRV
recording; NN, normal-to-normal; RMSSD, root mean square of successive RR
interval differences; RR, the time between successive R waves in an electro-
cardiogram (ECG), representing one cardiac cycle.
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due to their living environment. Similarly, patients with chronic airway
disease who suffer from a progressive disease characterized by lung damage
and inflammation due to particle and gas exposure may experience
heightened inflammation during respiration, making PM exposure more
impactful18. These findings suggest that targeted interventions, especially
those aimed at reducing indoor PM exposure, may be necessary for indi-
viduals or groups with sensitive characteristics25,36.

Despite the advances reported in this study, several limitationsmust be
addressed. First, the participants evaluated the HRV and PM exposures
using electrocardiography (ECG) monitoring devices and a portable PM
measurement device. Issues suchas device compliance or discomfort during
use can lead to errors in data measurements37. Supplementary Table 1
presents the range of missing rates for PM substances and ECG signals for
study participants and excluded participants in each living lab. Over 90% of
themissingdatawasdue toparticipants’unfamiliaritywithusing thedevices
or discomfort during use, resulting in an inability to measure. The
remaining proportion was due to transmission errors when data from both
devices were simultaneously uploaded to the server. The highest missing
rates were observed in the higher air pollution exposed group and the older
people group, which had the highest average ages. For PM substances, the
environmental pollutantmissing rate formostparticipantswas less than1%,
but among the older people, the missing rate for environmental pollutants
was up to 4.65% on higher cumulative concentration days and 9.44% on
lower cumulative concentrationdays. Thehighmissing rates onbothhigher
and lower cumulative concentration days were from one participant, and
excluding this participant, themaximummissing rate for other participants
was below3%.Thesemissing valueswere replacedusing themoving average
method. For ECG signals, the missing rate for most participants was below
10%, although some participants in the higher air pollution exposed group
and the older people group had higher missing rates. Efforts were made to
correct these errors through interpolation and the removal of outliers. For
participants with a missing rate between 5% and 10%, missing values were
replaced using interpolation. For those with a slightly highermissing rate of
10% to 16.88%, data segments with severe missing rates were removed,
outliers were eliminated, and then HRV was calculated. HRV for three
participantswith amissing rate exceeding 20%was excluded from the study
because replacingmissing values using various methods could compromise
the reliability of the results. Despite preprocessing steps based on the degree

of missingness, HRV values may still be overestimated compared to known
HRV indices. Secondly, each living lab participantwas evaluated at different
time points. Specifically, higher air pollution exposed persons, arrhythmia
patients, and patients with chronic airway disease were assessed during the
COVID-19 pandemic. As mask-wearing was recommended both indoors
and outdoors during this period, the inhalation of environmental pollutants
may have been reduced38. As a result, unlike previous studies, we only
observed a trend of decreased HRV with PM exposure in patients with
arrhythmia, without statistically significant results16,17. Third, our evaluation
of 24-hHRVbased on daily exposure likely integrated various physiological
responses occurring under different conditions throughout the day.
Although this averaging approach stratified the data by days of higher and
lower cumulative exposure, the use of daily average values may have
obscured the precise effects of indoor and outdoor exposure from the
exposure variable perspective, as well as the differences in HRV between
resting and active periods from the outcome variable perspective. Fourth,
our study had limitations related to the small sample size and sample size
variability. Statistically, a limited sample size can decrease the power to
detect significant associations, increasing the likelihood of type II errors.
This means that even if a true association exists between PM exposure and
reduced HRV, the small sample may have rendered us less able to observe
this effect reliably. Moreover, the variability in exposure measurements and
individual physiological responses may have contributed to the absence of
statistically significantfindings amongpatientswith arrhythmia, stroke, and
older people. These variations could have masked potential associations
between PM exposure and HRV in these vulnerable subgroups. Our study
analyzed data continuously measured in a small group, stratified by higher
and lower cumulative concentrations. We recognize that presenting results
based on stratified analyses over five days could be seen as failing to account
for between-subject variability and temporal variability. To address, at least
in part, the challenges posed by the small sample size and its variability, we
additionally performed an LMM analysis (Supplementary Tables 4 and 5),
which presented no significant temporal variability, justifying our approach
of stratifying by cumulative exposure days without separate repeated-
measures adjustments. Importantly, this analysis confirmed that the sig-
nificant associations observed for PM exposure and HRV in our primary
regression and BKMR analyses were consistent even after accounting for
repeatedmeasures.However, the lack of significantfindings among patients

Fig. 3 | The overall effects PM1.0, PM2.5, PM10, and SDNN were estimated using
the Bayesian kernel machine regression method according to the living labs on
day with higher cumulative concentration. The overall effect of the mixture (95%
CI) is defined as the difference in the response when all of the exposures are fixed at a
specific quantile (ranging from 0.10 to 0.90), as compared to when all of the

exposures are fixed at their median value. Models were adjusted for age, sex, BMI,
respiration rate, smoking, alcohol consumption, METs, hypertension, diabetes
mellitus, TVOC, humidity, and temperature. CI, confidence interval; PM, particu-
late matter.
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with arrhythmia, stroke, andolder people remained unchanged in the LMM
analysis. Notably, for the older people, PM exposure showed associations
with SDNN that approached statistical significance, suggesting that the
impact of PM on HRV in this group may warrant further investigation.
Therefore, future studies with larger sample sizes or datasets designed to
better account for repeatedmeasures are necessary to confirm thesefindings
and explore the potential subtle effects of PM exposure in vulnerable
populations.

With these limitations in mind, future research should focus on dis-
entangling the variables influencingHRVby separately analyzing responses
to indoor andoutdoorPMexposuresandexaminingHRVvariationsduring
activity and rest. This would provide a clearer understanding of how
environmental contexts and daily routines impact HRV, enabling more
targeted interventions. Additionally, exploring the biological mechanisms
underlying the significant associations found in vulnerable groups is crucial
for understanding the long-term health implications of PM exposure.
Moreover, longitudinal studies incorporating repeated measurements over
extended periods are essential to move beyond mere associations and
toward causal inference. By capturing the chronic impacts of PM exposure
on HRV over time, such studies would enhance our understanding of the
enduring effects of air pollution on cardiovascular health, ultimately sup-
porting the development of more effective public health policies and
interventions.

Overall, we found that increased exposure to PM was associated with
decreased HRV, and this relationship varied depending on the sensitive
characteristics of the individuals. The data with the integration of indoor
and outdoor personalized exposure assessmentswith 24-hECGmonitoring
has enhanced our understanding of the complex interactions between PM
and health. Furthermore, by demonstrating that even lower levels of PM
exposure, as defined by global standards, can have detrimental effects on
HRV, our findings suggest that existing thresholds may not adequately
protect sensitive individuals. This underscores the need for more stringent,
particle size-specific standards tailored to these at-risk groups.

Methods
Study participants
This study established living labs to assess personalized exposure in patients
with environmental diseases and vulnerable populations. The living lab
participants were recruited from a pre-established cohort. The environ-
mental disease cohort includes cardiovascular, respiratory, and neurological
disease groups, while the vulnerable population cohort includes industrial
complex residents and older individuals. The cardiovascular disease cohort
contains patients who have visited hospitals as acute stroke patients since
2016 (N = 350), the respiratory cohort contains patientswhohave visited for
COPD, asthma, or bronchiectasis since2018 (N = 500), and theneurological
cohort includes patients with atrial fibrillation or implanted cardiac devices
since 2016 (N = 300). In the vulnerable population cohort, the industrial
complex resident cohort includes individuals who have lived in industrial
areas since 2014 (N = 150) and individuals who have lived near thermal
power plants since March 2021 (N = 500). The elderly cohort comprises
individuals aged 60 years or older without severe chronic diseases
(N = 1310). Living lab participants were recruited from five established
cohorts, with 20 individuals from each cohort who voluntarily consented to
participate in managing their health through exposure to environmental
pollutants and digital biomarker measurements.

In this study, patients with environmental diseases are designated as
the chronic disease group (arrhythmia, chronic airway disease, stroke), and
the vulnerable populations are referred to as the control group (higher air
pollution exposed persons, older people) in five living lab groups. The study
was conducted fromApril 2021 to July 2023. Participants for the living labs
were recruited from the start of the study, and measurements of environ-
mental pollutants and biosignals were taken for each living lab once
recruitment was complete. Therefore, the measurement periods varied
across the different living labs. The living labs for the higher air pollution
exposed persons were conducted from December 2021 to February 2022;

from June to August 2022 for the arrhythmia group; from October to
November 2022 for the chronic airway disease group; in June 2023 for the
older people group; and in July 2023 for stroke group.The arrhythmia group
consisted of patients aged 20 years or older who visited the cardiology
department at KyungHeeUniversity Hospital in Seoul and were diagnosed
with atrial fibrillation using International Classification of Diseases, 10th
Revision (ICD-10 codes) I48.0, I48.1, or I48.2. These patients had either
atrial fibrillation or those with implanted cardiac electrical devices (such as
permanent pacemakers or implantable defibrillators) (N = 20). The chronic
airway disease group included patients who visited the pulmonology
department at Severance Hospital in Seoul andWonju Severance Christian
Hospital in Wonju. Patients diagnosed with COPD, asthma, or bronch-
iectasis using ICD-10 codes J44 or J45 (N = 20). COPD patients were
clinically consistent with COPD and met diagnostic criteria based on pul-
monary function (FEV1/FVC < 0.7, FEV1 < 80% of predicted value).
Asthma patients were individuals clinically diagnosed with asthma who
were using inhaled medications, and bronchiectasis patients had one or
more lobes with bronchiectasis confirmed by chest CT. The stroke group
consisted of patients aged 20 years or older who visited the neurology at
Gachon University Medical Center in Incheon and were diagnosed with
ischemic stroke using ICD-10 code I63. These were acute stroke patients
who were admitted to the hospital within seven days of symptom onset
(N = 20). The old people group included individuals aged 60 years or older,
residing in Seoul or Incheon, without severe chronic diseases or cognitive
impairments (N = 20). The higher air pollution exposed persons groupwere
individuals without severe chronic diseases or neurological conditions such
as dementia or stroke, residing in industrial areas (N = 20). The higher air
pollution exposed person group lived within a 5–15 km radius of the
Namdong Industrial Complex in Incheon or thermal power plants in
Gyeongsangnam-do (Fig. 4). A total of 100 individuals were recruited from
sensitive andvulnerable living laboratories.Due todevice compliance issues,
three participants with high missing rates were excluded from the analysis,
resulting in the analysis of data from 97 participants (Supplementary Table
1). This study was approved by the Clinical Trial Review Committee of the
Yonsei University Wonju Severance Christian Hospital (approval number:
CR321068). To use the data from the recruited participants, approvals were
obtained from the Institutional Review Board of Severance Hospital (4-
2021-0550, 4-2021-0852), Kyung Hee University Hospital (KNUH 2021-
07-074-001), GachonUniversity GilMedical Center (GIRB-2021-351), and
Gyeongsang National University (GIRB-A21-Y-0053).

Data collection
Demographic and clinical data of the participants, including age, sex, body
mass index, smoking status, and medical history, were obtained at the time
of participant registration. Each participant visited their respective hospital
once a year over three years.The chronicdisease group (arrhythmia, chronic
airway disease, stroke) was monitored at the hospitals the participants vis-
ited, and the control group (higher air pollution-exposed individuals, older
people) was followed up by the departments of preventive medicine at
Gyeongsang National University and Yonsei University. During each visit,
the participants were assessed for personal health examination information,
hospital visit history, and other relevant data. A personalized exposure
assessment was conducted tomeasure the exposure levels of environmental
pollutants and digital biomarkers in various microenvironments where the
participants spent time tailored to their daily livingpatterns (Supplementary
Table 2). The total measurement period was five days. The research parti-
cipantsmet in personon thefirst day of themeasurement, and the necessary
measuring equipment was provided. Participants carried the equipment
during their daily activities. The research team visited the participants daily
to check the equipment status to ensure consistency in themeasurements. A
daily activity log was provided to the participants at the initial meeting to
record their daily living patterns, and they were instructed to fill it out each
day. The quality of the daily activity logswas reviewedduring the daily visits.
If the quality was found to be low, participants were interviewed about their
activities from the previous day to make necessary corrections. Because
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physical activity intensity can act as amoderating variable affecting the level
of PM exposure, an accelerometer was provided to measure the metabolic
equivalent of task (MET) with the participants’ consent, excluding periods
of showering and sleeping. Digital biomarkers were measured using ECG
monitoring during the same period as environmental pollutants were
measured, and the participants wore the device continuously unless a device
malfunction occurred. The researchers continuously monitored the envir-
onmental pollutant data and physiological signals, and they managed the
situation by contacting the participants by phone if data were not received.
Demographic and clinical data informationwasdefined as follows: Smoking
status was based on a lifetime history of smoking at least five packs (100
cigarettes) (yes/ex-smoker/no). Alcohol consumption was defined by fre-
quencyover thepast year (less thanonce amonth/once amonth/2–3 times a
month/once a week/2–3 times a week/4 times a week/never). Hypertension
and diabetes mellitus were based on past diagnoses (yes/no).

Assessment of exposures
Environmental pollutant data were measured using a lightweight portable
device, AIR HEART-P21 (manufactured by ZINIDE, South Korea), which
allows for real-time measurements every minute using a light scattering
method. The PM sensor has a measurement range of 5–200 μg/m³ (mini-
mum unit: 1 μg/m³), with repeatability over 80% in chamber tests, accuracy
above 80%, and precision above 80% in field tests. This device is certified as
the highest grade by the Korean Ministry of Environment. The device
measured PM1.0 (aerodynamic diameters <1 μm), PM2.5 (aerodynamic
diameter ≥1 μm and <2.5 μm), PM10 (aerodynamic diameter ≥2.5 μm and
<10 μm), TVOC (total volatile organic compounds), temperature, and
humidity. In cases where missing values occurred in the measured data, a
moving average was used to maintain the temporal continuity of the data
and reflect its variability patterns. The moving average method fills in
missing values using the average of surrounding data, which helpsmaintain
relatively smoothchanges evenwhenthedatahashighvariability39. Thedata
collected over five days, based on individual daily activity patterns, were
compared with 24-h HRV associated with short-term exposure. To com-
pare with 24-h HRV, PM concentrations measured per 1-min were con-
verted into 24-h values, and the concentrations of PMwere calculated as 24-
h cumulative values and24-h averages.While average concentrations can be
used to distinguish between the highest and lowest concentration days,
averaging daily concentrations may dilute the impact of short-term high
exposure levels, potentially leading to incorrect data classification.

Considering these points, we used the 24-h cumulative concentration to
identify the days with the higher and lower cumulative PM concentrations.
The start and end times of the measurements varied although data were
collected over five days for each individual. Consequently, the first and last
days, when the measurement durations were shorter, fell under the days
with the lowest PM concentrations. To address this, the values from the first
and last days were excluded and only data from the three middle days were
used to differentiate between days with higher and lower cumulative PM
concentrations. On the other hand, the 24-h average PM concentrations
were used for analysis.Using cumulative PMconcentrations for analysis can
complicate the interpretation of results and may be sensitive to outliers.
Therefore, for intuitive interpretation and statistical robustness, we used the
24-h average PM concentrations for data analysis.

ECGmonitoring
Physiological signals were measured using the HiCardi SmartPatch (SW
1.101), a two-electrodepatchmanufacturedbyMezooCo. Ltd (RM.808200,
Gieopdosi-ro, Jijeong-myeon, Wonju-si, Gangwon-do, Republic of
Korea)40. The HiCardi device records 15,000 data points per minute at a
frequency of 250Hz. This wearable device can monitor and record various
parameters related to cardiac signals, such as single-lead ECG, heart rate,
respiration, skin surface temperature, and activity. It is equipped with
specifications to provide accurate health monitoring data. This device is
certified by the Korea Food and Drug Safety Agency and captures ECG
signals at a sampling frequency of 250 Hz, with a resolution of 14 bits. The
heart rate (HR) range of the device is from 0 to 300 beats perminute (bpm),
with a precision of ±2 bpm or ±2%, whichever is greater. The temperature
monitoring range is from 32 °C to 43 °C, with an accuracy of ±0.3%. It also
provides respiration rate measurements ranging from 5 to 60 breaths per
minute or up to 120 breaths perminute,maintaining an accuracy of ±2 bpm
or ±2%.All collected datawere then forwarded to a cloud-basedmonitoring
server through the mobile gateway. After obtaining informed consent from
all participants, the wearable patchwas affixed to the left sternal border, and
continuous recording of ECG signals and other data ensued. However,
segments in which measurements were not possible due to poor contact or
out-of-range Bluetooth communication were excluded. Among the various
methods for defining HRV, we excluded frequency-domain segments that
could not be synchronized with the PM data. We evaluated HRV using the
standard deviation of normal-to-normal intervals (SDNN), standard
deviationof the averageNN intervals for each5-min segmentof a 24-hHRV

Fig. 4 | Study sites and descriptions of the five living labs. Details of recruitment
and measurement locations for living lab participants are displayed on a map of
South Korea, marked with red and blue points. Red points indicate living labs for the

chronic disease group, and blue points represent living labs for the control group.
The recruitment criteria for each living lab participant are described within the box
for each respective living lab.
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recording (SDANN),meanof the standard deviations of allNN intervals for
each 5-minute segment of a 24-h HRV recording (SDNNI), and root mean
square of successive RR interval differences (RMSSD)41. As the cumulative
concentrationofPMwas evaluateddaily,HRVwas calculatedover 24 h, and
three preprocessing steps were required to derive HRV from the ECG sig-
nals. First, outliers corresponding to extreme values due to device com-
pliance or measurement errors were removed. Second, noise in the signal,
which would obscure the identification of the R-peaks necessary for cal-
culating the HRV, was removed using a bandpass filter42. Third, missing
values are replaced using interpolation methods43.

Statistical analysis
Categorical variables are described as totals and percentages. Continuous
variables are summarized as means and standard deviations or medians
with minimum andmaximum values. The independent t-test orWilcoxon
rank-sum test was used to compare the baseline characteristics of PM based
on the cumulative concentration and HRV. We used two models to
investigate the association between PM exposure and HRV.Multiple linear
regression analysiswas performed to examine the effects of single-substance
exposure and PM particle size on HRV. Daily average PM1.0, PM2.5, and
PM10 were the primary exposure variables, and age, sex, BMI, daily average
respiration rate, smoking, alcohol consumption, METs, hypertension, dia-
betesmellitus, daily averageTVOC,humidity, and temperaturewereused as
adjustment variables.

Since individuals are exposed to a mixture of substances rather than a
single one, we used the BKMR model to assess the effects of mixed-
substance exposure. BKMR is a flexible statistical method that allows the
assessment of individual and joint effects of exposure mixtures. It also
accounts for the exposure-response relationships for each component of the
mixture, while identifying potential interactions using kernel functions28.
The BKMR was used to assess the combined effect of multiple PM pollu-
tants. Daily average PM1.0, PM2.5, and PM10 were included as nonlinear
termswithin the kernel functionh(Z) to examine their joint effects. Age, sex,
BMI, daily average respiration rate, smoking, alcohol consumption, METs,
hypertension, diabetes mellitus, daily average TVOC, humidity, and tem-
perature, having a confirmed linear relationship with HRV, were treated as
linear terms and included as adjustment variables in the model. All air
pollution variables were standardized to z-scores. All BKMR models were
run with the Markov Chain Monte-Carlo (MCMC) sampler for 10,000
iterations after a burn-in of 2000–5000. A sufficient number of iterations is
required to ensure that the MCMC samples adequately represent the
characteristics of the distribution. We used trace plots to check for con-
vergence and ensure the stability of the estimates. To investigate the overall
effect, BKMR compares the HRV from all PM mixtures set to a specific
percentile with the HRV when all PM exposures are fixed at their median
value. The individual effects of substances are visualized through the
exposure-response relationship, presenting the univariate relationship
between each PM exposure and the HRV, when all the other exposures are
fixed at their median values. We conducted three analyses using both sta-
tistical analysis methods. First, a stratified analysis was conducted across all
study participants based on days with higher and lower cumulative PM
concentrations. Second, a subgroup analysis was performed within the five
living labs, divided into the chronic disease group (arrhythmia, chronic
airway disease, stroke) and the control group (higher air pollution-exposed
persons, older people). Third, a sensitivity analysis was performed to ensure
the reliability of the results.

We conducted sensitivity analyses to evaluate the robustness of our
findings. First, we performed regression and BKMR analyses using data
collected continuously overfive days. Since the data for each participantwas
measured continuously over this period, repeated measures needed to be
accounted for. Nevertheless, because we stratified the data by day with
higher and lower cumulative concentrations, we needed to explain why
repeated measures were not considered in the main analyses. To address
this, we conducted a linear mixed effect model (LMM) analysis. The LMM
included each PM concentration and time stratified by high and low

cumulative PM days as fixed effects, with participants included as random
effects toaccount forwithin-subject correlation.Theanalysiswasperformed
separately for the total population, the chronic disease group, the control
group, and each living lab, similar to the other two analysis methods. Sec-
ond, we reperformed the regression and BKMR analyses by excluding
potential confounders, including age, sex, BMI, smoking status, alcohol
consumption, hypertension, and diabetes mellitus. The impact of these
exclusions on the results was assessed by comparing the direction and
significance of the associations betweenPMexposure andHRVmetrics.We
preprocessed ECG signals using the SciPy library with Python (version
3.8.13), conducted summary statistics, regression, and LMM analysis with
SAS (version 9.4; SAS, Cary, NC, USA), and used R (version 4.03; Institute
for Statistics and Mathematics, Vienna, Austria; http://cran.rproject.org)
with the bkmr package to implement the BKMR model.

Data Availability
All data generated or analyzed during this study are included in this pub-
lished article [and its supplementary information files].

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author.
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