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PURPOSE. Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel
approach in corneal transplantation over the past two decades. This study aims to iden-
tify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop a
preoperative predictive model for post-DMEK OHT.

METHODS. Patients who underwent DMEK at Gangnam Severance Hospital between 2017
and 2024 were included in the study. Four machine learning models—XGBoost, random
forest, CatBoost, and logistic regression—were trained to assess feature importance and
develop a predictive classifier. An ensemble of these four models was used as the final
predictive model. The ensemble model identified clinically significant patients for predic-
tion or exclusion.

RESULTS. A total of 106 eyes from patients who underwent DMEK were analyzed, with 31
eyes (29.2%) experiencing post-DMEK OHT. The final ensemble model achieved clinically
significant classification for 61 eyes (57.5%) in the total patient population. Significant
risk factors identified in all four models included angle recess area (ARA), best-corrected
visual acuity, donor graft size, angle-to-angle distance, crystalline lens rise, and central
corneal thickness. The average accuracy, precision, recall, area under the receiver operat-
ing characteristic curve, and area under the precision-recall curve values of the ensemble
model obtained by a 5-fold cross-validation were 80.2%, 60.0%, 59.7%, 82.3%, and 68.0%,
respectively.

CONCLUSIONS. This study identified significant risk factors for post-DMEK OHT and high-
lighted the importance of ocular topographic measures in risk assessment. The devel-
opment of a final machine learning model to differentiate between clinically predictable
patient groups demonstrates the clinical utility of the proposed model for predicting
post-DMEK OHT.

Keywords: descemet membrane endothelial keratoplasty, ocular hypertension, glaucoma,
optical coherence tomography, machine learning

Corneal transplantation is one of the most frequently
performed transplantations worldwide, and its preva-

lence continues to rise.1 Conventionally, penetrating kerato-
plasty (PKP) has been the singular transplantation option
for severe corneal disorders. However, in the past two
decades, posterior lamellar keratoplasty, exemplified by
procedures such as Descemet membrane endothelial kerato-
plasty (DMEK) or Descemet stripping automated endothe-
lial keratoplasty, has emerged as a viable alternative to PKP
for treating corneal endothelial disorders due to its lower
complication rates.2,3

Glaucoma, along with graft rejection, constitutes a criti-
cal complication after corneal transplantation, as a common
cause for graft failure and the leading cause of vision
loss after keratoplasty.1,4 Although the management of graft
rejection dramatically advanced with the introduction of
posterior lamellar keratoplasty techniques, many limitations
still exist in the prediction and risk management of post-
keratoplasty glaucoma.5 Post-penetrating keratoplasty glau-
coma is recognized as the most common cause of post-

keratoplasty glaucoma, and several studies have scrutinized
its associated risk factors.6–8 In contrast, research on post-
DMEK glaucoma remains relatively sparse despite its signif-
icance as a serious complication after DMEK.9–11 More-
over, existing studies often focus on postoperative factors
in assessing the risk of post-penetrating keratoplasty glau-
coma, thereby hindering the development of preoperative
prediction models for post-keratoplasty glaucoma.7

Machine learning (ML) presents a promising approach for
addressing multivariate challenges across various fields. The
applicability of ML models to glaucoma prediction has also
been widely studied, given the complexity of the potential
associated risk factors.12,13 Although deep-learning-powered
artificial intelligence (AI) has shown impressive perfor-
mance, traditional ML models remain extensively studied for
clinical predictions, primarily because of their more inter-
pretable model structures.14

The risk factors previously considered important for post-
keratoplasty glaucoma include certain categorical conditions
such as history of glaucoma, graft failure, aphakic lens status,
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or history of vitrectomy.4,15 Meanwhile, biometric features
specific to each eye were overlooked despite their diagnostic
significance in glaucoma.16,17

This study aimed to elucidate the predisposing risk
factors for post-DMEK ocular hypertension (OHT) and
propose a preoperative predictive model incorporating ante-
rior segment ocular topographic measurements obtained
through anterior segment optical coherence tomography
(AS-OCT). We evaluated the significance of each risk factor
in post-DMEK OHT using various ML models for classifi-
cation and survival analysis. Based on these models, we
constructed a final preoperative ensemble model for predict-
ing post-DMEK OHT and verified its performance and poten-
tial significance for clinical use.

METHODS

Study Design

This retrospective institutional analytical study adhered
to the principles outlined in the Declaration of Helsinki
and was approved by the Institutional Review Board of
Severance Hospital, Yonsei University College of Medicine

(Approval number: 3-2024-0058). This study was granted a
waiver of informed consent.

We reviewed 124 eyes of 119 patients who underwent
DMEK at Gangnam Severance Hospital between December
2017 and January 2024. Eyes with a minimum follow-up
period of one month were included, whereas those under-
going PKP as a reoperation were excluded.

Data Collection

Comprehensive medical records were assessed, including
demographics, medical and surgical histories, lens status,
indication for DMEK, preoperative best-corrected visual
acuity (BCVA), history of glaucoma, donor graft size, number
of re-bubbling and reoperation procedures, and intraocular
pressure (IOP) (Fig. 1a). All features were measured preoper-
atively, with IOP continuously monitored post-DMEK during
the follow-up.

AS-OCT (CASIA; Tomey, Nagoya, Japan) was performed
on all eyes to obtain biometric measurements, includ-
ing central corneal thickness (CCT), crystalline lens rise
(CLR), angle-to-angle (ATA) distance, anterior chamber

FIGURE 1. Workflow diagram of the study. (a) Data collection and processing of preoperative biometric measurements, preoperative elec-
tronic medical records, and pre- and post-DMEK intraocular pressure. (b) Development of an ensemble predictive model with four selected
machine-learning models. (c) Application of the final model and estimation of the model performance. (d) Survival analysis of the cohort with
Kaplan–Meier curve, log-rank test, and Cox proportional hazard regression. AUC-PR, area under the precision-recall curve; op, operation.
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FIGURE 2. Estimation of AS-OCT-obtained topographic variables. (a) Schematic demonstration of AOD, ARA, TISA, and TIA measured at
500 μm and 750 μm from the sclera spur. (b) Visual explanation of measuring ITC and ARA500. ARA500 was measured in the nasal and
temporal parts of each eye. The coronal plane of the right eye is selected to explain the ITC index. As a representative measure of the
anterior chamber angle, ITC, nasal ARA500, and temporal ARA500 were integrated with the principal component analysis method to form
a novel variable, ARA-comb.

depth (ACD), anterior chamber width (ACW), axial length,
angle recess area (ARA), angle opening distance (AOD),
trabecular-iris space area (TISA), and trabecular-iris angle
(TIA) (Fig. 1a). ARA, AOD, TISA, and TIA were measured at
500 μm and 750μm from the scleral spur (Fig. 2a).

OHT after DMEK was defined by an IOP ≥ 22 mm Hg
or an increase in IOP of over 10 mm Hg from preoper-
ative values. To rule out IOP elevation caused by unde-
tached grafts, postoperative IOP elevations occurring at
least 30 days after the last surgery or re-bubbling were
considered.

Among ARA, AOD, TISA, and TIA, only ARA500 was
selected for analysis because they showed high correlations
with each other. ARA combined with iridotrabecular contact
(ARA-comb), an integrated variable of ARA500 and irido-
trabecular contact (ITC) with principal component analysis,
was subsequently derived as a representative measure of the
anterior chamber angle (Fig. 2b).

Surgical Technique

The donor cornea was cut from the endothelial side with
trephine. Standard preoperative preparation was performed
after topical anesthesia. All the procedures were conducted
by a single, experienced surgeon. After widening the eyelid
fissure with a speculum, a peripheral iridectomy was
performed inferotemporally. Centering was achieved with
calipers. Eight radial markings were drawn using radial

keratotomy. The Descemet membrane was scored periph-
erally using a reverse Terry-Sinskey hook and then peeled
from the overlying stroma. An incision was made using a
keratome at the 12 o’clock position, and the membrane was
removed using forceps. A preloaded Descemet membrane
was prepared from the donor cornea and applied to the
recipient bed with a DORC tube. The tube tip was inserted
into the corneal incision, and the donor tissue was injected
into the anterior chamber. The anterior surface of the cornea
was gently tapped and swiped until the graft was precisely
positioned and unscrolled. SF6 gas was injected into the
anterior chamber for 30 minutes to induce adhesion. At the
end of the procedure, ointments were applied, and the eyes
were firmly patched.

Statistical Analysis

Data were analyzed using SPSS Statistics version 26
(IBM, Armonk, NY, USA). Baseline characteristics were
compared between healthy individuals and patients with
OHT. Student’s t-test was used for continuous variables, and
the χ2 test or Fisher’s exact test was used for categorical
variables, whenever appropriate.

Model Development

The collected data were subsequently reformatted into a
set of predictors consisting of medical records and biomet-
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ric measures. Incidence and time to occurrence of post-
DMEK OHT were recorded as target values. Missing values
were imputed with the mean of each variable. Missing
values for each parameter did not exceed 10% of the total
dataset. To elucidate significant risk factors, ML models
were trained and underwent feature importance evaluation.
The entire dataset with data imbalance addressed using
the synthetic minority oversampling technique was used.
Four top-performing ML models—XGBoost, random forest,
CatBoost, and logistic regression— were selected for train-
ing. In logistic regression model, estimated P values were
used for feature importance assessment. Based on the eval-
uated feature importance, each model was subjected to
feature dropping to determine the optimal combination of
predictors that demonstrated the best model performance.
Model performance was evaluated by stratified 5-fold cross-
validation (Fig. 1b). Each patient was included in the test set
for one fold and in the training set for the remaining four
folds, maintaining an 80%/20% train-test split across folds.
To the training set of each fold, synthetic minority oversam-
pling technique was applied to handle imbalanced datasets.

Model Application and Analysis

All eyes in the cohort were predicted using the four trained
ML models. Based on this prediction, an ensemble of the
XGBoost, random forest, CatBoost, and logistic regression
models was used to select a reliable group with signifi-
cant predictability for post-DMEK OHT incidence, where
glaucoma predictions were consistently positive or nega-
tive across the four models (Fig. 1c). To prevent overfit-
ting, each dataset was predicted using ML models trained
on datasets that did not include themselves through strati-
fied 5-fold cross-validation. The performance of the ensem-
ble model was estimated for the selected prediction-reliable
group using the average of the results throughout the five
folds. Probability of the logistic regression model, which had
the highest area under the receiver operating characteristic
curve (AUC-ROC) as a single model, was used to calculate
the AUC-ROC and the area under the precision-recall curve
(AUC-PR) of the model for the selected group.

Survival Analysis

Time-wise incidence of post-DMEK OHT was obtained for
survival analysis. Postoperative days of post-DMEK OHT
after primary DMEK were measured, and censoring occurred
at the last visit. For a time-wise investigation of feature

importance, a multivariate Cox proportional hazards regres-
sion model was conducted to estimate variables signifi-
cantly associated with post-DMEK OHT in terms of survival
analysis.

For the ML-obtained significantly predictable group,
Kaplan–Meier curves and log-rank test were performed to
analyze the differences in survival rates between the posi-
tive and negative prediction groups (Fig. 1d). Because the
longest failure time was 778 days, all data were collectively
censored on day 800 for better visualization.

RESULTS

Dataset Characteristics

A total of 106 eyes of 101 patients were included in this
study, with 31 eyes (29.2%) showing elevated IOP after
DMEK. All eyes had a minimum follow-up of 1 month,
with a mean follow-up period of 42.1 ± 17.8 months. The
cohort had a mean age of 59.9 ± 14.1 years, with 52 eyes
(49.1%) belonging to female patients. The primary etiologies
for DMEK included Fuchs’ endothelial corneal dystrophy
(FECD) in 16 eyes (15.1%), pseudophakic bullous dystrophy
in 74 eyes (69.8 %), and other indications in 16 eyes (15.1
%). Table 1 summarizes the demographic characteristics.

Among the predictors, BCVA, etiology, CCT, ARA-comb,
and ACW exhibited the highest correlation with post-
DMEK OHT incidence (Fig. 3a). The correlation matrix of
the biometric measures revealed no significant collinearity
among variables, with the highest correlation coefficient of
0.53 observed between ARA-comb and ACD (Fig. 3b).

Feature Importance Evaluation

The feature importance of XGBoost, random forest,
CatBoost, and logistic regression model was evaluated
(Fig. 4). ATA, ARA-comb, CCT, and BCVA were highly ranked
across XGBoost, random forest, and CatBoost, whereas
donor graft size and ARA-comb were the most significant
variables in logistic regression model (Table 2).

Model Construction and Prediction-Reliable
Group Selection

Table 3 presents the final selected features for each model.
ARA-comb and BCVA remained in all four models after
feature-dropping, while donor graft size, ATA, CLR, and CCT
were included in three of the final modified models. Using

TABLE 1. Baseline Characteristics of the Dataset

Normal Group Postoperative OHT Group Total P Value

Number of cases 75 (70.8%) 31 (29.2%) 106 (100%) —
Follow-up time, month (SD) 18.9 (15.2) 27.1 (19.6) 21.2 (17.0) 0.043*

Patient age, year (SD) 61.0 (13.5) 57.3 (15.4) 59.8 (14.1) 0.214
Female sex 39 (52%) 13 (41.9%) 52 (49.1%) 0.346
Right eye 26 (34.7%) 19 (61.3%) 45 (42.5%) 0.012*

Etiology
FECD 12 (16%) 4 (12.9%) 16 (15.1%) 0.230
PBK 49 (65.3%) 25 (80.6%) 74 (69.8%)
Other 14 (18.7%) 2 (6.5%) 16 (15.1%)

Phakic eyes 31 (41.3%) 11 (35.5%) 42 (39.6%) 0.663

FECD, Fuchs’ endothelial corneal dystrophy; PBK, pseudophakic bullous keratopathy; SD, standard deviation.
Overall, 31 (29.2%) of 106 eyes experienced intraocular pressure elevation after DMEK. The P value of each feature between the normal

and IOP-elevated groups are shown in the table.
* Statistical significance.
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(a) (b)

FIGURE 3. Correlations among the variables of the dataset. (a) The correlation coefficient between predictors and postoperative OHT
incidence. The variables were aligned in a descending manner. The correlation coefficient of ± 0.15 was marked with a dashed line. BCVA,
etiology, CCT, ARA-comb, and ACW showed the highest correlation with postoperative OHT. (b) Correlation matrix between topographic
variables. No notable collinearity was observed between the variables. AXL, axial length; DM, diabetes mellitus history; POG, preoperative
glaucoma incidence; POK, preoperative keratoplasty history.

these selected features for training, the AUC-ROC values of
the ML models, XGBoost, random forest, CatBoost, and logis-
tic regression, were 64.9%, 65.4%, 67.7%, and 73.5%, respec-
tively.

According to predictions by the ensemble model of the
four ML models, 61 eyes (57.5%) of the 106 eyes were identi-
fied as reliable. Among these, 11 eyes (18.0%) were predicted
positive for post-DMEK OHT across all models, whereas 50
eyes (82.0%) were predicted negative. The average accu-
racy, precision, recall, AUC-ROC, and AUC-PR values of the
ensemble model obtained by a 5-fold cross-validation were
80.2%, 60.0%, 59.7%, 82.3%, and 68.0%, respectively, repre-
senting a significant enhancement in performance compared
to the individual ML models (Supplementary Fig. S1). Among
the four ML models, no single model caused a notable
performance change compared to the other ML models
when excluded from the ensemble, indicating that each
model contributed evenly to the ensemble model (Supple-
mentary Table S1).

Survival Analysis

P values of each feature in the ensemble model were esti-
mated with the Cox proportional hazards model. Only ACW
exhibited a significant association (P < 0.05) (Table 4).
The Kaplan–Meier curve of the ensemble model is shown
in Figure 5. The estimated P value obtained using the log-
rank test demonstrated a significant difference between the
two groups (P = 0.0089).

DISCUSSION

Glaucoma is associated with multiple risk factors, highlight-
ing the necessity of an ML-based approach for glaucoma
prediction, as suggested in several studies.12,18,19 However,
to the best of our knowledge, no previous study has intro-
duced ML models specifically to predict post-keratoplasty
glaucoma. Previous investigations assessing the risk factors
for post-keratoplasty glaucoma primarily relied on retro-
spective statistical analyses, often incorporating postoper-
ative values. Although valuable for understanding the roles
of individual factors in glaucoma pathogenesis, these studies
may not be suitable for preoperative glaucoma prediction.

In this study, the significance of each risk factor in
predicting post-DMEK OHT was evaluated using four
selected ML models. Each model underwent feature selec-
tion and was combined to develop the final prediction
model. Among the 106 eyes, consistent predictions were
obtained from all four ML models within the final ensemble
model for 61 eyes. The ensemble model demonstrated reli-
able performance, achieving an average accuracy of 80.2%
and an AUC-ROC of 82.3% in the selected prediction-reliable
group. Furthermore, the survival analysis of this group
revealed significant differences in hazard ratios between
each predicted group. These findings underscore the reli-
ability of our ML models for predicting post-DMEK OHT
based on a retrospectively collected dataset.

In the pathophysiology of glaucoma, disrupted drainage
of the aqueous humor, especially in the trabecular mesh-
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(a) (b)

(c) (d)

FIGURE 4. Feature importance of the (a) XGBoost, (b) random forest, (c) CatBoost, and (d) logistic regression models. Information gain
and GINI importance were used for feature importance assessment in XGBoost and random forest respectively. For CatBoost, feature
importance was automatically estimated using catboost python package based on prediction value change and loss function change. The
feature significance in the logistic regression model is estimated with the P value of each variable, with P = 0.05 marked in red. The ML
models were subjected with feature dropping for better model performances, and the final selected features in each model are colored
orange. AXL, axial length; DM, diabetes mellitus history; POG, preoperative glaucoma incidence; POK, preoperative keratoplasty history.
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TABLE 2. Feature Evaluation Using the Multiple Logistic Regression
Model

Coefficient SE P Value

Donor size −0.5328 0.242 0.027*

ARA-comb −0.6443 0.293 0.028*

BCVA 0.5548 0.269 0.039*

Preoperative glaucoma 0.4554 0.244 0.062
ACW −0.536 0.287 0.062
Lens status −0.4816 0.314 0.125
Preoperative keratopathy −0.3924 0.264 0.137
Age −0.3752 0.27 0.164
AXL 0.2825 0.268 0.291
Etiology 0.2511 0.241 0.297
Re-bubbling 0.2042 0.229 0.372
DM −0.2115 0.267 0.428
Sex −0.143 0.254 0.574
CCT −0.1664 0.301 0.58
Reoperation −0.1372 0.258 0.595
ACD 0.1779 0.341 0.602
ATA 0.0574 0.275 0.835
CLR 0.019 0.266 0.943

AXL, axial length; DM, diabetes mellitus history; SE, standard
error.

* Statistical significance.

TABLE 3. Final Selected Variables for the XGBoost, Random Forest,
CatBoost, and Logistic Regression Models

ML Models Selected Variables

XGBoost Re-bubbling, ATA, CLR, ARA-comb, CCT, BCVA
Random Forest ARA-comb, BCVA, ACW, ATA, CLR, CCT, ACD,

AXL, donor size
CatBoost ARA-comb, ATA, BCVA, CCT, ACW, AXL, CLR,

ACD, donor size
Logistic

regression
Donor size, BCVA, ARA-comb, preoperative

glaucoma

AXL, axial length.
All models included ARA-comb and BCVA as significant predic-

tors. Donor graft size, ATA, CLR, and CCT were selected in three of
the models.

TABLE 4. The P Value of Each Covariate Obtained From the Multi-
variate Cox Proportional Hazards Regression Model

Features P-Value

ACW 0.016*

BCVA 0.086
AXL 0.142
Pre-op keratopathy 0.196
Pre-op glaucoma 0.210
Re-operation 0.215
ARA-comb 0.254
Lens status 0.256
DM 0.507
ATA 0.547
Sex 0.661
Etiology 0.714
ACD 0.728
CLR 0.787
CCT 0.813
Age 0.893
Donor size 0.928
Re-bubbling 0.948

AXL, axial length; DM, diabetes mellitus history; op, operation.
* Statistical significance.

work, is a leading cause of the condition’s progression.20 The
drainage pathway relies heavily on the anatomical structure
of the anterior segment, and several studies have analyzed
AS-OCT-obtained topographic measurements of the anterior
segment as crucial predictors of glaucoma.21,22 However,
these biometric variables are often neglected in the retro-
spective analyses of patients with glaucoma after corneal
transplantation.

The variables for the prediction in our study consisted
of two groups; demographic information and topographic
biometric measurements obtained retrospectively from elec-
tronic medical records and AS-OCT. Based on the evalu-
ated feature importance, ARA-comb, BCVA, donor graft size,
ATA, CLR, and CCT were significantly selected in more than
three of the four trained ML models, including risk factors
derived from both medical records and biometric measure-
ments. Among the biometric measurements, ARA-comb, an
integrated variable of ARA and ITC, was selected as the most
influential predictor among all four models.

Reduction in the anterior chamber angle directly
contributes to glaucoma pathogenesis as it induces obstruc-
tion of the drainage pathway of the aqueous humor, lead-
ing to angle-closure glaucoma.23 Assessment of this angle
obstruction requires a multidimensional approach, since
both the extent of the obstructed area and the severity
of constriction at each location contribute to the reduced
outflow of the aqueous humor. In the present study, we
introduced two different variables, ARA and ITC, which are
topographic variables obtained with AS-OCT, for a compre-
hensive assessment of obstruction. AOD, ARA, TISA, and
TIA, the biometric variables obtained with AS-OCT, can indi-
cate the severity of obstruction in different sections, as their
values diminish proportionally with the narrowing of the
angle. Specifically, ARA measures the triangular area from
the angle recess to the AOD and thus comprehends the
topographic characteristics near the trabecular meshwork.
Conversely, the ITC index, which is the coronally measured
proportion of the area with iridotrabecular contact, offers a
comprehensive measure of angle closure across the entire
eye. Taken together, the substantial significance of ARA-
comb suggests that integrating ARA and ITC provides a
comprehensive understanding of the extent of angle closure.

In PKP, transplant size and suturing techniques are
closely associated with postoperative IOP elevation.
Zimmerman et al.24 identified that a donor graft with a
0.5-mm larger button than the recipient bed significantly
lowered IOP levels after PKP, as shorter donor grafts induce
compression that leads to the collapse of iridocorneal angles.
The graft compression is associated with the relative length
between the donor graft and recipient bed. Among the
topographic variables, ATA, which quantifies the distance
between the iridocorneal angles, directly reflects the size of
the host corneal bed. Therefore, the notable significance of
donor graft size and ATA in the ML models suggests that
a relatively small donor graft to the recipient cornea may
provoke ocular compression, not only in PKP but also in
DMEK.

In addition to these conventional risk factors, potential
prognostic biomarkers such as CCT or BCVA also showed
significance in our ensemble model. The prognostic signifi-
cance of CCT in OHT and glaucoma progress has been well
established.25,26 Belovay and Goldberg26 found that a thinner
CCT was associated with the progression of primary open-
angle glaucoma in patients with OHT. However, considering
that variables indicative of angle closure as a primary cause
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FIGURE 5. Kaplan–Meier curve of the cohort. Each eye was predicted using the XGBoost, random forest, CatBoost, and logistic regression
models and classified based on the number of positively predicted models among the four models. Groups with consistent predictions, with
no positively predicted models or with four positively predicted models, are indicated in orange and blue, respectively. The log-rank test
between two groups that were predicted positive and negative unanimously in the four models resulted in a P value = 0.0089.

for post-DMEK OHT, such as ARA-comb and graft donor
size, were significant in our ensemble model, the implica-
tions of CCT should be interpreted attentively. Moreover, our
dataset included eyes with abnormally elevated preoperative
CCT, likely due to corneal edema from endothelial disor-
ders, further complicating the connection between CCT and
post-DMEK OHT. Meanwhile, the correlation between visual
acuity and OHT is also uncertain. Although visual acuity is a
critical prognostic parameter affected by glaucoma, research
on its application in predicting glaucoma or OHT is limited.
Thus the precise role of CCT and BCVA in predicting post-
DMEK OHT remains unresolved in this study and requires
further investigation.

Post-keratoplasty OHT is a primary cause of graft fail-
ure and vision loss; therefore various studies have empha-
sized the importance of pre and postoperative monitoring of
IOP levels for early detection of the condition.27,28 However,
early postoperative IOP monitoring is often hindered by
factors such as corneal thickening, irregular surfaces, and
scarring.28 Consequently, methods for assessing the risk
of glaucoma preoperatively are urgently needed. More-
over, preoperative awareness of the risk of glaucoma can
greatly support treatment planning after transplantation. For
instance, corticosteroids are commonly administered post-
keratoplasty despite their potential to elevate IOP.27,29 Clas-
sifying patients based on preoperative risk estimates can
facilitate personalized postoperative treatments, including

intensified IOP monitoring and targeted medication, such
as prostaglandin eye drops. Therefore our ensemble model,
which provides preoperative prediction and patient classifi-
cation, offers substantial clinical advantages for enhancing
postoperative treatment planning.

When selecting the ML models for analysis, we consid-
ered models capable of feature importance analysis and suit-
able for supervised learning. Alongside the four ML models
analyzed in our study, a support vector machine with a
linear kernel and a decision tree model were also trained for
prediction. However, these models were excluded because
of their poor performance.

A limitation of our study is its retrospective and single-
institution dataset, with some prognostic markers of kerato-
plasty, such as endothelial cell density, unavailable for analy-
sis due to incomplete recordings.30 Further prospective stud-
ies are required to assess the risks associated with these
features. Additionally, the cohort size was constrained by
data collection from a single institution. AI models based
on deep learning have outperformed traditional ML models
in terms of predictive accuracy. In particular, explainable
AI models provide feature importance evaluation and have
been employed in predicting various conditions, including
acute appendicitis, non-alcoholic fatty liver disease, hepati-
tis, and stroke.31–34 Despite these advantages, deep learning
models could not be used in this study since training deep
learning-based AI models requires larger datasets to mitigate
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overfitting. Therefore further studies with larger datasets,
such as those with extended follow-up or multi-institutional
data, should be conducted to explore explainable AI models
for more precise risk factor analysis and prediction. Further-
more, our study primarily targeted to develop a preoperative
screening model, which may contribute to a higher false-
positive rate, particularly considering the use of mean impu-
tation for handling missing data. This limitation also under-
scores the importance of further validation using larger
datasets to refine predictive accuracy and ensure the robust-
ness of the model.

In summary, we developed an ensemble ML model
for predicting post-DMEK OHT. The topographic variables
obtained with AS-OCT were identified as significant predis-
posing risk factors. The ensemble model effectively stratified
patients into the high- and low-risk groups for postoperative
OHT, and survival analysis demonstrated significant differ-
ences between these groups. Although the specific roles of
several risk factors require further investigation, the preoper-
ative risk assessment of post-DMEK OHT can guide tailored
postoperative treatments and reduce complications.
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