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This study aimed to confirm the characteristics of deep-learning image reconstruction (DLIR) intensity in

abdominopelvic computed tomography (CT) using noise level and blind quality evaluation parameters. The

study was conducted using phantoms and patients, and CT images were obtained while adjusting the intensity

of DLIR to low (DLIR-L), middle (DLIR-M), and high (DLIR-H). To quantitatively evaluate image quality, the

coefficient of variation (COV) and contrast-to-noise ratio (CNR), as well as natural image quality evaluation

(NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE), were used. In both the noise level

and blind quality evaluation results, a higher strength of DLIR resulted in better results derived from the phan-

tom and patient studies. In particular, the results of the phantom study confirmed that NIQE and BRISQUE of

CT images acquired using DLIR-H were improved by approximately 5 % and 1 %, respectively, compared to

the corresponding the application of DLIR-L. Moreover, when high-strength deep-learning was applied to a

real patient's CT image reconstruction method, the NIQE and BRISQUE results improved by approximately 6

% and 4 %, respectively, compared with their respective medium levels. In conclusion, we quantitatively ana-

lyzed the image quality according to the intensity of the recently developed deep-learning-based CT image

reconstruction method. 

Keywords : Abdominopelvic computed tomography (CT), Deep-learning image reconstruction (DLIR) intensity,

Noise level evaluation, Blind image quality evaluation

1. Introduction

The most used method for reconstructing cross-

sectional images in computed tomography (CT) is filtered

back-projection (FBP). This method is based on the

principle of back-projecting X-ray projection data from

various angles after filter correction. In this case, blurring

of the reconstructed cross-sectional image can be removed

using filter correction. The noise of the cross-section

images can be removed according to the type of filter, and

the spatial resolution may be improved. However, because

FBP images require hundreds of projection images to

obtain high-quality images and cause increased radiation

exposure, the proposed method for obtaining high-quality

images while lowering the radiation dose is an iterative

reconstruction (IR) [1].

IR consists of hybrid IR and model-based IR (MBIR).

Hybrid IR has the advantages of fast reconstruction

speed, high spatial resolution, and reduced exposure dose

[2-5]. Adaptive statistical reconstruction (ASIR; GE

Healthcare, Waukesha, Wisconsin, USA) is the most

widely studied hybrid IR, which reduces radiation doses

by 40 % while providing clinically acceptable image

quality [6]. ASIR-V, which was developed by GE Health-

care, enables a feasible dose reduction while providing a

better image quality than that provided by ASIR [7-9].

MBIR, which has become available as a fully iterative

method, provides the flexibility to incorporate a model of

each factor, such as X-ray tube response, detector response,

system noise, object, photon statistics, and electronic

noise [10,11]. It provides better image quality than FBP

and ASIR, even at ultralow doses [1, 12]. However, some

studies have reported that hybrid IR, especially when

using IR of strong intensity, is related to image quality

problems (e.g., an artificial texture or a blotchy ap-
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pearance) [13, 14]. Additionally, MBIR requires a long

processing time; thus, it is not widely used in clinical

practice [1, 12, 15].

Recently, artificial intelligence technology has been

developed by for application in CT image development

[16]. Deep-learning image reconstruction (DLIR) outputs

images by inputting sinogram data through a deep con-

volutional neural network that pre-trains large volumes of

image data. The output images are obtained by mathe-

matically comparing and analyzing “ground truth” images

with the high-contrast resolution, low-contrast resolution,

image noise, image texture, CT number accuracy, and

anatomical characteristics. DLIR is expected to solve

limitations of natural FBP images such as the unnatural

texture in IR images [17].

For medical images, it is important to accurately

visualize the information. However, a stronger intensity of

reconstruction makes it difficult to determine whether all

information has been visualized. In some IR studies,

stronger intensity was associated with stronger artificial

textures [14], which was not selected for clinical appli-

cation. The intensity of DLIR has three stages. It is

important to accurately determine and implement the

amount of noise reduction and contrast enhancement

based on the intensity of DLIR in clinical applications. In

clinical practice, obese or arm-down patients, and

unexpected artifacts may result in increased image noise

and decreased SNR and contrast. In this case, under-

standing the difference in image quality change based on

the DLIR intensity makes it possible to obtain accurate

images. Several studies have evaluated low-contrast

detectability by quantifying contrast-to-noise ratio (CNR)

and standard deviation for noise [18, 19]. However, this

methodology can be misleading as it neglects factors such

as region size, contrast, and image texture [20, 21]. In this

study, we used blind-quality-based evaluation parameters,

namely NIQE and BRISQUE, to demonstrate their

practical applicability in assessing DLIR intensity in the

field of imaging. The purpose of this study was to

evaluate image quality based on the characteristics of

DLIR intensity in abdominopelvic CT using noise level

and blind quality evaluations.

2. Materials and Methods

2.1. Phantom and patient selection

This study used an adult male phantom (CIRS, Virginia,

USA) and a 256-slice multidetector CT scanner (Revolu-

tion; GE Healthcare, Milwaukee, Wisconsin, USA). 

This study included 30 consecutive adult patients (10

women, 20 men; mean age ± standard deviation (SD),

60.26 ± 12.65 years old and mean body mass index of

23.59 ± 3.78 kg/m2 (range, 16.18-31.87 kg/m2)) who

underwent contrast-enhanced abdominopelvic CT ex-

aminations including hepatic venous phase (HVP) CT,

between 2015 and 2022. Three patients were under-

weight, 18 were healthy weight, eight were overweight,

and one was obese. All patients underwent CT for

clinically indicated reasons. The clinical indications for

CT were cancer, liver cysts, chronic liver disease,

abdominal pain, sigmoid colon tumor, GB stones, and

renal cysts.

The study was conducted according to the guidelines of

the Declaration of Helsinki and approved by the

Institutional Review Board of Severance Hospital (4-

2022-0356).

2.2. CT scanning methods

The phantom scan parameters were as follows:100 kV,

450 mA average tube current, 0.5 seconds rotation time,

and 0.99 pitch. Raw data were reconstructed using DLIR

(TrueFidelity, GE Healthcare, Chicago, Illinois, USA) at

low-, medium-, and high-strength levels (DLIR-L, DLIR-

M, and DLIR-H, respectively) with a 3-mm slice thick-

ness and 0 % overlap.

All abdominopelvic CT scans ranged from 1 cm

superior to the diaphragm to the lesser trochanter. HVP

CT was obtained 55 s after the attenuation in the

abdominal aorta increased to 100 Hounsfield units

compared to that at the baseline. When HVP phase

images were obtained, an intravenous injection of 2.0

mL/kg (up to a maximum of 150 mL when patients

weighed more than 75 kg) of iodinated contrast media

(Omnipaque 300 (Iohexol), GE Healthcare, Cork, Ireland)

was administered, followed by a bolus injection of 40 mL

of saline chaser. The patient scan parameters were as

follows: 100 kV, 323 mA average tube current, 0.5-s

rotation time, and 0.99 pitch. Raw data were re-

constructed using DLIR at medium and high-strength

levels (DLIR-M and DLIR-H, respectively) with a 3-mm

slice thickness and 0 % overlap.

2.3. Quantitative evaluation of image quality

This study used the COV and CNR parameters as

quantitative evaluation methods for assessing the noise

levels in CT images. The regions of interest (ROI) for

calculating the COV and CNR used in the phantom and

patient studies are shown in Fig. 1(a) and Fig. 2(a),

respectively. The formulas for calculating COV and CNR

are as follows:

(1)COV = 
T

ST

-----
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where ST and T are the mean and standard deviation

values   of the target region (bone and tissue), respectively,

and are the mean and standard deviation values   of the

background (ROI_3 in Fig. 2(a)), respectively. Two

representative methods were used as blind quality

evaluation parameters: natural image quality evaluation

(NIQE) and blind/referenceless image spatial quality

evaluation (BRISQUE). NIQE and BRISQUE, which can

evaluate image quality based on no reference, were

introduced by Mittal et al. [22, 23]. Both evaluation

methods use the principle of including the statistical

properties hidden in a natural image through mean

subtraction and contrast normalization (MSCN) pre-

processing. 

3. Results

Fig. 1 shows the resulting image using various deep-

learning-based reconstruction algorithms when acquiring

a CT phantom image of the 75th slice. A CT image slice

in which the bone and tissue regions of the abdomen of

the human body were well-marked was selected, and

DLIR-L, M, and H were applied to display the image.

Fig. 2 shows an image of the result obtained using a

deep-learning-based reconstruction algorithm that can be

applied when acquiring a real patient's abdominal CT

image. Figs. 2(a) and (b) show the abdominal CT images

of a real patient obtained by applying DLIR-M and H,

respectively. We set such that the middle abdomen, liver,

and pelvic areas could be included when selecting the

slices for the two images.

To analyze the CT phantom image quantitatively, the

noise level and blind quality were evaluated using the

ROIs shown in Fig. 1, and the resulting graph is shown in

Fig. 3. The COV and CNR results of the CT phantom

images obtained using the intensity of the deep-learning-

based reconstruction algorithm are shown in Figs. 3(a)

and (b), respectively. When DLIR-L, M, and H were

applied, the quantitative analysis of COV in the bone

region revealed values of 0.0145, 0.0122, and 0.0118,

respectively. The COV values   in the addition and tissue

regions were 0.0178, 0.0148, and 0.0109, respectively,

when DLIR-L, M, and H were applied. In CNR values

  where contrast and noise could be observed simultane-

ously, values   of 55.19, 63.55, and 75.79 were derived

from the CT phantom images obtained by applying

DLIR-L, M, and H, respectively. We obtained the lowest

value in DLIR-L and the most improved value in DLIR-H

among the parameters that can evaluate the two noise

levels. The NIQE and BRISQUE results of the CT

phantom images obtained using the intensity of the deep-

CNR = 
ST SB–

T

2

B

2

+

----------------------

Fig. 1. CT phantom axial images after the application of a

deep-learning-based reconstruction algorithm with various

intensities: (a) DLIR-L, (b) DLIR-M, and (c) DLIR-H. (a)

includes ROIs of the bone and tissue regions for COV and

CNR measurements.
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learning-based reconstruction algorithm are shown in

Figs. 3(c) and (d), respectively. Quantitative analysis of

the NIQE in the acquired CT phantom images revealed

that when DLIR-L, M, and H were applied, the measured

values were 8.60, 8.42, and 8.15, respectively. In the case

of BRISQUE, values of 42.33, 42.05, and 42.03 were

derived from CT phantom images obtained by applying

DLIR-L, M, and H, respectively. The NIQE and BRISQUE

parameters, which can evaluate blind quality, represent

the ideal image quality as the values   are smaller, so we

could confirm the same trend as the noise level evaluation

results.

Results from the CT images of real patients were

derived from the average data of all 30 patients. The

COV and CNR results of the real patient CT images

obtained using the intensity of the deep-learning-based

reconstruction algorithm are shown in Figs. 4(a) and (b),

respectively. When DLIR-M and DLIR-H were applied

during CT image acquisition, the average COV values   in

the bone region were 0.0156 and 0.0115, respectively.

Furthermore, when DLIR-M and H were applied to

acquire the CT images, the average COV values   in the

tissue area were 0.0191 and 0.0161, respectively. On

analyzing the average noise level of CT images of 30

patients, we confirmed that DLIR-H improved COV in

the bone and tissue regions by 1.36 and 1.19 times,

respectively, compared to DLIR-M. Additionally, we

demonstrated that the average CNR was improved by

1.19 times in DLIR-H compared to DLIR-M. The NIQE

and BRISQUE results of real patient CT images obtained

using the intensity of the deep-learning-based recon-

struction algorithm are shown in Figs. 4(c) and (d),

respectively. When DLIR-M and H were applied, the

quantitative analysis of the average NIQE in the acquired

real patient CT images revealed values of 15.17 and

14.33, respectively. Average BRISQUE values of 47.85

and 45.99 were derived from real patient CT images

obtained by applying DLIR-M and H, respectively.

Fig. 2. CT patient axial images after the application of a deep-learning-based reconstruction algorithm with (a) DLIR-M and (b)

DLIR-H. The middle abdomen, liver, and pelvis areas were used for CT image evaluation, and ROI_1 and ROI_2 shown in (a)

denote COV evaluation, and ROI_3 denotes CNR evaluation.
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4. Discussion

Although IR images were able to reduce the radiation

dose while maintaining image quality, it is recommended

to use IR of less intensity despite more noise reduction

due to unnatural image texture when using IR of strong

intensity. The DLIR images trained from the FBP image

are expected to have less artificial texture. The design

process for a deep learning image reconstruction engine

involves creating a Deep Neural Network (DNN) capable

of handling millions of parameters. During the training

phase, a low dose sinogram is inputted through the DNN

and compared to a high dose version of the same data

across multiple parameters, such as image noise and low

contrast resolution. The network reports the differences

via backpropagation and adjusts the strength of the

equations until the output image matches the ground truth

image. In the verification phase, the network reconstructs

unseen clinical and phantom cases, including rare ones, to

confirm its robustness. The Deep Learning Image Recon-

struction (DLIR) offers three levels of reconstruction

strength (low, medium, high) to control noise reduction.

These levels can be incorporated into the reconstruction

protocols based on clinical applications and radiologist

preference without affecting the reconstruction speed

[24]. In this study, a blind quality evaluation parameter

that enables image evaluation without a comparison

group and a gold standard image were used for image

evaluation according to the increase in DLIR intensity.

Some studies have evaluated low-contrast detectability by

measuring simple CNR and standard deviation for noise

[18, 19]. However, this can provide misleading results

because the region size, contrast, and image texture are

not considered [20, 21]. The blind-quality-based NIQE

Fig. 3. Graphs of noise level and blind quality evaluation in CT phantom images according to deep-learning-based reconstruction

method: (a) COV, (b) CNR, (c) NIQE, and (d) BRISQUE.
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and BRISQUE evaluation parameters are well-demon-

strated in the field of imaging, enabling the evaluation of

clinical utility according to the DLIR intensity. The

reason for using NIQE and BRISQUE evaluation factors

in this study is to understand the effect of each intensity

image without reference and to determine the image

intensity more efficiently in clinical practice. This is

necessary because iterative reconstruction images and

deep-learning-based images have been clinically proven

to be superior to FBP images over a long period of time.

As a result, the number of tests that perform diagnostic

evaluation using repetitive reconstructed images without

FBP images is increasing. Therefore, we presented an

elaborate analysis of the influence of bone and tissue on

the resulting images to help determine DLIR intensity

without FBP imaging in clinical practice.

In the phantom study, COV and CNR evaluation

resulted in improved noise levels, while the blind quality

evaluation of NIQE and BRISQUE resulted in improved

values as the reconstruction strength of the DLIR

increased. The COV and CNR results showed that when

DLIR-H was used, it was improved by approximately 29

% and 37 %, respectively, compared to DLIR-L. More-

over, the results of NIQE and BRISQUE improved by

approximately 5 % and 1 %, respectively, when DLIR-H

was applied. Consequently, the tendency between the

noise level and blind quality evaluation was almost

consistent, and noise contributed significantly to the

image quality of the overall CT image. The difference in

the results for each intensity in the blind quality

evaluation was not large (a difference of within 5 %).

Based on a previous phantom study, advanced modeled

Fig. 4. Graphs of noise level and blind quality evaluation in CT patient images according to deep-learning-based reconstruction

method: (a) NIQE results according to DLIR intensity, (b) BRISQUE results according to DLIR intensity; there is a statistically sig-

nificant difference between DLIR-M and DLIR-H (p=0.021), (c) COV (in bone and tissue) results according to DLIR intensity;

there is a statistically significant difference between DLIR-M and DLIR-H (p=0.049), and (d) CNR results according to DLIR

intensity; there is a statistically significant difference between DLIR-M and DLIR-H (p=0.000).
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IR (ADMIRE) showed a greater blind quality evaluation

difference than that of DLIR as the intensity increased.

Despite the greater noise reduction in ADMIRE 5 than in

ADMIRE 3, the more recommended use of ADMIRE 3

in clinical practice is because a stronger ADMIRE

intensity results in greater negative image textures, such

as plastic and oil paint. Unlike this, DLIR does not have a

large intensity-dependent gap in blind quality evaluation.

In the case of DLIR, even if noise reduction increases

using a strong intensity, it does not increase the artificial

image texture.

Jensen et al. [25] reported greater diagnostic confidence

in DLIR-H and DLIR-M than in DLIR-L. In another

study, DLIR-L was not beneficial in terms of noise

reduction when compared to IR [26]. In this study, DLIR-

M and DLIR-H were analyzed in-depth in the patient

study. In the patient study, noise levels through COV and

CNR evaluation factors and blind quality evaluation of

NIQE and BRISQUE resulted in improved values as the

reconstruction strength of the DLIR increased. The COV

and CNR results showed that when DLIR-H was used, it

was improved by approximately 20 % and 19 %, respec-

tively, compared to that associated with the use of DLIR-

M. Further, the results of NIQE and BRISQUE improved

by approximately 6 % and 4 %, respectively, when DLIR-

H was applied. As with the phantom results, the tendency

between the noise levels and blind quality evaluation has

been almost consistent. Furthermore, the difference

between DLIR-H and DLIR-M in patient images was

greater in all evaluations except COV (tissue) than the

corresponding differences in the phantom results. 

The COV in bones and tissues was ascertained;

resultantly, higher reconstruction strength of DLIR in the

bone region was associated with a lower COV. Moreover,

the lowest COV was observed when DLIR-H was used.

Similarly, in the case of the tissue region, a higher

reconstruction strength of the DLIR in the bone region

was associated with a lower COV. Further, the lowest

COV was observed when DLIR-H was used. In the

phantom study, the COV, according to the difference in

reconstruction strength of DLIR in tissues, exhibited a

significant gap compared to that in bones. In patients,

there was a significant gap in the COV according to the

difference in reconstruction strength of DLIR in both

bones and tissues. 

In the reconstruction process, the blur of the image edge

hinders detection, particularly for small lesions. As

reported in previous studies [27], the DLIR-H image was

disadvantageous in detecting small malignant lesions and

low contrast differences in the hepatic region due to edge

blurring. Still, the results of this study were different. In

this study, blurring was only evaluated with the reader's

eyes. In this study, the results of BRISQUE were lower at

DLIR-H than at DLIR-M, and DLIR-H showed the best

performance in terms of the spatial resolution of the

image. According to Frank et al. [26], low-contrast

visibility was the best in DLIR-H due to analyzing the

three readers' phantom images, indicating a similar

tendency to our results. Another study demonstrated the

advantage of DLIR-H for diagnosing small lesions in

low-dose abdominal images [28, 29]. 

This study had several limitations. First, the sample size

was relatively small, and the study was conducted at a

single hospital, which might have caused selection bias.

Second, we used only a single reconstruction kernel. The

image texture and edge expression differ depending on

the kernel type and when applying DLIR. Third, only one

DLIR image acquired from one vendor was evaluated in

this study. Thirdly, it is important to note that the

evaluation was conducted solely on a commercial deep

learning reconstruction package provided by a single

vendor. Therefore, further clinical studies are required for

devices from other vendors.

5. Conclusion

In this study, abdominal CT image quality was quan-

titatively evaluated by performing noise level and blind

quality evaluations to determine the characteristics

according to interpretations in DLIR intensity. The CT

image quality improved as the DLIR intensity increased,

and the deviation gap based on the DLIR intensity was

not large. This study is expected to provide basic research

data on the characteristics of DLIR intensity in abdomino-

pelvic CT imaging.
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