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Early mortality after hemodialysis (HD) initiation significantly impacts the longevity of HD patients. 
This study aimed to quantify the effect sizes of risk factors on mortality using various machine 
learning approaches. A cohort of 3284 HD patients from the CRC-ESRD (2008–2014) was analyzed. 
Mortality risk models were validated using logistic regression, ridge regression, lasso regression, 
and decision trees, as well as ensemble methods like bagging and random forest. To better handle 
missing data and time-series variables, a recurrent neural network (RNN) with an autoencoder was 
also developed. Additionally, survival models predicting hazard ratios were employed using survival 
analysis techniques. The analysis included 1750 prevalent and 1534 incident HD patients (mean age 
58.4 ± 13.6 years, 59.3% male). Over a median follow-up of 66.2 months, the overall mortality rate 
was 19.3%. Random forest models achieved an AUC of 0.8321 for first-year mortality prediction, which 
was further improved by the RNN with autoencoder (AUC 0.8357). The survival bagging model had 
the highest hazard ratio predictability (C-index 0.7756). A shorter dialysis duration (< 14.9 months) 
and high modified Charlson comorbidity index scores (7–9) were associated with hazard ratios up 
to 7.76 (C-index 0.7693). Comorbidities were more influential than age in predicting early mortality. 
Monitoring dialysis adequacy (KT/V), RAAS inhibitor use, and urine output is crucial for assessing early 
prognosis.
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Hemodialysis (HD) is a well-established life-saving treatment for patients with end-stage kidney disease 
(ESKD)1,2. However, mortality after HD initiation remains a challenge for improving patient outcomes and 
longevity. With the increasing age of patients undergoing incident dialysis, accurate assessment of the risk factors 
associated with mortality is crucial for timely interventions and optimal patient management3–5. Recent studies 
have investigated different aspects of elderly ESKD patient care, such as the choice between HD and peritoneal 
dialysis (PD)4, access placement timing, and the effect of ESKD on life expectancy and quality of life6. These 
studies have provided valuable insights into trends and factors influencing dialysis initiation, survival rates, and 
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the burden of comorbidities, particularly in high-risk populations. Worldwide, the mortality risk shortly after the 
initiation of hemodialysis is high. By analyzing mortality patterns in 86,886 patients from 11 countries, focusing 
on the early dialysis period using data from the Dialysis Outcomes and Practice Patterns Study (DOPPS), a 
prospective cohort study of in-center hemodialysis7 observed interactions between the dialysis period and age. 
In addition, mortality rate trajectories after the initiation of hemodialysis have shown early peak mortality in 
the US8 and Chinese populations9. One possible explanation for this is the high cardiovascular event (CVE) 
rate during the first year after HD initiation. We assessed the weekly rates of a composite of cardiovascular 
events (CVEs) during the first year and the monthly rates of the composite during the first two years after 
hemodialysis (HD) initiation in Fresenius Medical Care dialysis centers10. Of the 6,308 patients who started 
dialysis within seven days, 1449 experienced 2405 cardiovascular events over the next two years. The first-year 
CVE rate (30.2/100 person-years; 95% CI, 28.7–31.7) greatly exceeded the second-year rate (19.4/100; 95% CI, 
18.1–20.8)10. This trend is more pronounced with age; consequently, early peak mortality is more evident with 
age10. However, it is not yet clear whether this is caused by age or older people having more co-morbidities. 
However, there is still a need for more comprehensive and accurate models to assess and predict the risk of 
premature mortality in patients undergoing HD, which needs to be individualized to consider ESKD treatment 
patterns in individual countries, particularly HD treatment patterns11.

Machine learning models, particularly deep learning, have shown promising results in the field of nephrology, 
specifically in risk prediction and outcome analysis for diverse populations with kidney disease12,13. These 
advanced computational methods may enhance our understanding of the complex relationships among various 
factors and their impact on the diagnosis, treatment, and prognosis14–16. However, these studies have limitations, 
as they often employ different algorithms. They failed to utilize specific information on hemodialysis patients 
and did not incorporate repeated measurement data. These issues highlight the need for further research to 
address these gaps and improve risk assessment and management of hemodialysis patients.

In this study, we aimed to investigate the risk factors for premature mortality in HD patients using a deep 
learning approach in a nationwide prospective cohort in Korea. By leveraging the power of deep learning models, 
we aimed to provide a more comprehensive and accurate understanding of risk factors, ultimately contributing 
to better clinical decision-making and patient care for HD patients. This study proposes a novel machine learning 
approach for clinical outcomes to predict early mortality in HD patients using a multicenter prospective cohort.

Materials and methods
Data source and study participants
Our analysis was performed using data from the Clinical Research Center for End-Stage Renal Disease (CRC 
for ESRD, NCT00931970) database, which is the sole nationwide, multicenter, and prospective cohort of Korean 
patients with ESRD. Data were collected from 36 general and teaching hospitals across South Korea. We included 
5223 patients from the CRC for the ESRD study, of whom 3284 were undergoing hemodialysis (Fig. 1). The 
inclusion criteria for the study specified that all participants were 18 years or older and had initiated dialysis 
between August 2008 and December 2014. Detailed information on the identification and enrollment of dialysis 
patients into the CRC for ESRD cohort has been previously described17,18. Data collection was conducted using a 
web-based platform (http://webdb.crc-esrd.or.kr), following the established methods outlined in earlier studies. 
Among the initially available 72 attributes, we employed machine learning algorithms to analyze the records of 
3284 patients, focusing on over 50 relevant attributes. From this pool of attributes, we selected 24 independent 
variables that were deemed potentially influential in predicting all-cause mortality for model construction. 
Notably, three of these attributes are time-series variables that were tracked at two time points, 0 and 3 months: 
RAAS blockade usage, 24-h urine studies reflecting urine volume (ml), and dialysis adequacy as measured 
by KT/V. Table 1 provides a comprehensive list of the selected attributes utilized for model development. The 
modified Charlson Comorbidity Index (mCCI), which has been validated for dialysis patients, was determined 
by examining the patients’ medical histories at enrollment19. The application of machine learning to CRC-
ESRD is also discussed in our previous study20. All participants were informed about the study; they voluntarily 
participated and provided written informed consent. The study was approved by the institutional review board of 
each center. All the researchers conducted this study in compliance with the guidelines of the 2008 Declaration 
of Helsinki. This study was approved by the Institutional Review Board of Seoul National University Hospital 
(IRB number H-0905-047-281).

Problem statement
We endeavor to forecast the mortality risk among patients based on the aforementioned dataset, addressing two 
distinct objectives:

	1.	� Classification: Our first objective is to predict whether a patient will succumb to death within a one-year 
timeframe. This classification problem entails developing a prediction model that estimates the probability 
of a patient’s mortality within one year. To assess the efficacy of the models, we will employ the AUC (Area 
Under the Receiver Operating Characteristic Curve) as a performance metric.

	2.	� Survival Analysis: Our second objective involves predicting the hazard ratio, which signifies the relative risk 
of experiencing mortality. This survival analysis task encompasses constructing a prediction model that esti-
mates the hazard ratio based on various factors. We will evaluate the accuracy of the prediction model using 
the C-index (Concordance Index), a measure of the model’s ability to rank the survival times of individuals.

By addressing these two distinct challenges, we aim to enhance our understanding of mortality risk among 
patients undergoing hemodialysis and provide valuable insights for prognosis and clinical decision-making.
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Data preprocessing
We implemented several data preprocessing steps on the given dataset, which are as follows:

	1.	� Missing value imputation: Missing values were addressed because our data were collected over seven years, 
from 2008 to 2014, and it was inevitable that some values would be missing. Among the 24 variables, ap-
proximately 32.9% of patients (1,081 individuals) had at least one missing value. For patients with a small 
number of missing values, we performed imputation using the available variable values. We set a threshold of 
four or fewer missing values, resulting in 999 patients. After applying the imputation techniques, the dataset 
consisted of 3202 patients, accounting for 97.5% of the total dataset. The Multivariate Imputation by Chained 
Equations (MICE)21 method using decision tree (CART)22 was primarily employed for imputation, and for 
neural network models, an optional autoencoder approach was used. More comprehensive details on the 
autoencoder method will be provided in the model section.

	2.	� Data split: To ensure the maintenance of outcome (death) proportions, we conducted a stratified random 
sampling when dividing the data into training, validation, and test sets. Out of the 3202 data samples, 962 
samples (30%) were allocated to the test set. The remaining 2240 samples were divided into 1600 for the 
training set and 640 for the validation set.

	3.	� Censored data: In the context of the classification problem, a challenge arises due to right-censored data. This 
means that for patients with a follow-up period of less than one year, the outcome (death) remains unknown. 
Within the dataset, there are 801 patients with right-censored data, comprising 264 individuals in the test 
set and 537 individuals in the combined train and validation sets. We excluded the 264 patients from the test 
set and employed either exclusion or weighting methods23 for the training and validation sets. The weight-
ing method duplicates each piece of right-censored data as 0 and 1, assigning weights based on the survival 
function. For survival analysis, the right-censored data is utilized, without impacting the total number of 
data samples available (Fig. 2).

Model
To address the classification and survival analysis problems, we employed a range of machine learning models. 
For the classification problem, we utilized single models such as logistic regression24, ridge/lasso regression25, 
and decision tree (CART)22. Additionally, ensemble models such as bagging26 and random forest27 were utilized. 
In the case of survival analysis, we employed corresponding models designed for survival analysis, including 
cox regression28, survival ridge/lasso25, survival decision tree22,29, bagging26, and survival random forest27. In 
addition to these models, we also considered the application of Artificial Neural Network (ANN)30 and Recurrent 
Neural Network (RNN) for the classification problem. The RNN was particularly chosen to effectively handle the 
time series variables mentioned earlier: RAAS blockade usage, 24-h urine studies reflecting urine volume (ml), 
and dialysis adequacy measured by KT/V. These variables were concatenated with other variables at different 

Fig. 1.  Comprehensive workflow for data Preprocessing, model Training, and evaluation process. In this study, 
we applied the weighting methods from the study by Zupan et al.23.
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time steps (0/3 months) and served as inputs for each RNN cell. Among the various variants of RNN, we selected 
the Long Short-Term Memory (LSTM) architecture31. Furthermore, we incorporated an optional autoencoder 
(AE)32 for the neural network models (ANN and RNN). An autoencoder is a type of neural network designed to 
predict input values as output values. By constraining the number of nodes in the hidden layer to be fewer than 

Fig. 2.  Patients’ follow up after HD initiation. (A) Number of patients by year of follow-up after dialysis 
initiation. (B) Annual survival ratio comparing non-survivors to survivors following dialysis initiation.

 

Variables
All participants 
(N = 3284)(%)

Within 1 year mortality cases 
(N = 183)(%)

Overall mortality cases 
(N = 634)(%) Survivor (N = 2650)(%) P*

Age (years) 58.4 ± 13.6 66.9 ± 11.4 65.9 ± 11.5 56.6 ± 13.4 < 0.001

Sex (male) 1947 (59.3) 115 (62.8) 399 (62.9) 1548 (58.4) 0.037

BMI (kg/m2) 22.6 ± 3.4 21.7 ± 3.1 22.3 ± 3.2 22.7 ± 3.4 0.003

Primary renal disease < 0.001

 Diabetes 1565 (47.7) 103 (56.3) 380 (59.9) 1185 (44.7)

 Hypertension 546 (16.6) 25 (13.7) 100 (15.8) 446 (16.8)

 Glomerulonephritis 402 (12.2) 14 (7.7) 37 (5.8) 365 (13.8)

 Cystic kidney disease 107 (3.3) 1 (0.5) 12 (1.9) 95 (3.6)

 Unknown 153 (4.7) 9 (4.9) 21 (3.3) 132 (5.0)

 Others 511 (15.6) 31 (16.9) 84 (13.2) 427 (16.1)

History of CVD 1010 (30.8) 88 (48.1) 303 (47.8) 707 (26.7) < 0.001

History of DM 1728 (52.6) 110 (60.1) 409 (64.5) 1319 (49.8) < 0.001

Smoking history 330 (10.0) 20 (10.9) 72 (11.4) 258 (9.7) 0.239

Modified CCI 5.4 ± 2.2 7.0 ± 2.3 6.9 ± 2.2 5.0 ± 2.1 < 0.001

Use of RAAS blockade 1205 (36.7) 59 (32.2) 231 (36.4) 974 (36.8) 0.891

Systolic BP (mmHg) 142 ± 22 142 ± 22 140 ± 21 142 ± 22 0.042

Diastolic BP (mmHg) 77 ± 13 75 ± 14 75 ± 13 77 ± 13 0.001

Hemoglobin (g/dL) 9.8 ± 3.2 9.3 ± 1.5 10.0 ± 4.5 9.8 ± 2.9 0.260

BUN 71.4 ± 35.4 68.8 ± 38.3 64.6 ± 32.2 73.0 ± 35.9 < 0.001

Creatinine 8.3 ± 4.4 6.9 ± 3.4 6.9 ± 3.6 8.6 ± 4.5 < 0.001

Calcium 8.3 ± 1.0 8.1 ± 0.9 8.4 ± 0.9 8.3 ± 1.1 0.007

Phosphorus 5.1 ± 2.2 4.6 ± 1.7 4.8 ± 3.3 5.2 ± 1.8 0.010

Uric acid 7.6 ± 2.2 7.3 ± 2.0 7.3 ± 1.9 7.7 ± 2.2 < 0.001

Total cholesterol 154 ± 42 149 ± 49 150 ± 41 155 ± 42 0.009

Dialysis duration (mon) 54.53 ± 55.0 30.59 ± 46.2 51.2 ± 54.4 55.3 ± 55.1 0.113

Table 1.  Baseline characteristics of study participants for hemodialysis in the CRC-ESRD prospective cohort. 
CVD cardiovascular disease; DM diabetes mellitus; SBP systolic blood pressure; DBP diastolic blood pressure; 
MCCI modified Charlson comorbidity index; LVH left ventricular hypertrophy; cTnT cardiac troponin T; NT 
pro-BNP N-terminal pro-B-type natriuretic peptide; RAAS renin–angiotensin–aldosterone system. *Values are 
presented as n (%) for categoric variables and mean ± standard deviation for continuous variables.
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those in the input layer, the AE can learn a compressed representation of the input data. This constraint enables 
efficient data representation and facilitates the utilization of the AE to handle missing values. During the training 
phase, some input variables were randomly removed (p = 0.2), and the AE was trained to reconstruct them as 
the original values. Figure 3 depicts the comprehensive training and inference method for the AE.

Feature importance analysis
At final, to identify the most influential predictors of patient mortality, we evaluated feature importance 
across five machine learning models: Logistic Regression, Ridge Regression, Lasso Regression, Decision Tree, 
and Random Forest. In linear models–Logistic Regression, Ridge Regression, and Lasso Regression–feature 
importance is determined by the absolute magnitude of the model’s coefficients. Larger absolute coefficients 
indicate a stronger association with the target variable. Specifically, Ridge Regression employs L2 regularization, 
which penalizes the squared magnitude of coefficients, thereby shrinking less important feature weights towards 
zero without eliminating them. In contrast, Lasso Regression utilizes L1 regularization, which can force some 
coefficients to exactly zero, effectively performing feature selection by excluding less significant variables from 
the model. For tree-based models–Decision Tree and Random Forest–feature importance is calculated based on 
the reduction in impurity (i.e.., Gini impurity) that each feature contributes across all the splits in the trees. A 
feature that consistently results in a larger decrease in impurity is considered more important. Random Forest 
aggregates these importance scores across multiple Decision Trees within the ensemble, providing a more stable 
and reliable measure of feature significance compared to a single Decision Tree.

The top 10 important features identified by each model are illustrated in Figs. S1 to S5.

Implementation
The neural network models were implemented using TensorFlow version 1.13, while the remaining models were 
developed in R version 3.4, utilizing the glmnet, rpart, randomForestSRC, ipred, and mice packages.

Results
Demographics
The baseline characteristics utilized for modeling are shown based on mortality in HD patients (Table 1). Of the 
5223 patients on dialysis in this prospective cohort, the final analysis included 3,284 patients undergoing HD. A 
total of 634 participants (19.3%) died during the observation period and 183 participants (5.5%) died within the 
first 12 months (Fig. 2). The average age was 65.9 ± 11.5 years for the overall mortality group and 56.7 ± 13.4 years 
for the survivor group (p < 0.001). The overall mortality group had 62.9% (N = 399) male patients, while the first-
year mortality group had 62.8%; 59.9% of the patients began dialysis owing to diabetes.

Compared with the survivor group, the first-year mortality group had a significantly higher history of 
cardiovascular disease, diabetes, and increased mCCI scores. No differences between the groups regarding 
smoking history or the use of renin–angiotensin–aldosterone system blockade existed. Regarding laboratory 

Fig. 3.  Autoencoder training and inference method. During the training phase, time series variables across 
various time steps are merged with base variables. In the inference phase, the encoded feature (Z) derived from 
both base and time step variables serves as the input for the respective RNN cell.
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findings at dialysis initiation, blood urea nitrogen (BUN), creatinine, and phosphorus levels were significantly 
lower in nonsurvivors than in survivors.

Classification of first-year mortality using traditional machine learning models
Firstly, we attempted to predict the first-year mortality of HD patients using traditional machine learning 
models. The ROC AUC values for the test set are presented in the lower part of Table 2. As mentioned in the data 
preprocessing section, all methods applied imputation for missing values via Multiple Imputation by Chained 
Equations (MICE)21, and selectively applied the weighting method proposed by Zupan et al.23 for censored 
examples. It was observed that tree-based ensemble models, such as random forest and bagging, performed better 
than single models, demonstrating the ensemble effects. Notably, the AUC for random forest was significantly 
higher at 0.8321 compared to 0.7571 for the single decision tree. No significant performance differences were 
noted with the application of the weighting method.

Classification of first-year mortality using neural networks
Next, we explored the same prediction task using neural networks, with results shown in the upper part of Table 
2. The Long Short-Term Memory (LSTM) model outperformed Artificial Neural Networks (ANNs) comprised 
solely of fully connected layers. This indicates that LSTMs are more effective in handling time-series variables. 
Furthermore, in dealing with missing values, an end-to-end trained autoencoder proved to be more effective 
than off-the-shelf methods like MICE. Ultimately, the LSTM model utilizing an autoencoder achieved the 
highest AUC of 0.8357, slightly surpassing the best-performing traditional machine learning model, the random 
forest, which had an AUC of 0.8321.

Hazard ratio prediction
Next, we address the challenge of predicting the hazard ratio, which represents the relative risk level of mortality 
among HD patients. For this purpose, we adapted traditional machine learning models to facilitate survival 
analysis. For instance, in tree-based methods, we utilized survival analysis statistics instead of Gini or entropy 
indices for the splitting rules. Table 3 shows the concordance index (C-index) values for these models. Similar to 
the classification task, ensemble models outperformed single models, with the survival bagging model showing 
the highest performance, achieving a C-index of 0.7756. Figure 4 illustrates the structure of a survival decision 
tree (C-index 0.7693), allowing us to identify which variables and values are crucial in predicting the hazard 
ratio. It is noteworthy that the hazard ratio (HR) values at the leaf nodes indicate the relative HR of that group 
compared to the entire patient population, with higher values signifying a higher risk group. The most significant 
factor identified by this model was the modified Charlson comorbidity index (mCCI) for patients with a short 
dialysis duration of no more than 14.9 months, which was closely linked to premature mortality. Within this 
group, comorbidities were categorized into ≤ 6 and > 6, with the highest mortality observed across all patients, 
indicating a HR of 7.78, irrespective of other factors, including age.

Model Imputation Weighting Hyperparameters AUC (Val) AUC (Test)

LSTM Autoencoder LSTM hnodes = 16/FC hnodes = [16]/AE hnodes = [16] 0.9351 0.8357

ANN Autoencoder hnodes = [8]/AE hnodes = [16] 0.9012 0.8160

LSTM MICE LSTM hnodes = 16/FC hnodes = [16] 0.9058 0.8268

ANN MICE hnodes = [8] 0.8927 0.8056

Random Forest MICE ntree = 300 0.9248 0.8321

Random Forest MICE Zupan et al. ntree = 500 0.8894 0.8272

Bagging MICE Zupan et al. nbagg = 80 0.8893 0.8109

Bagging MICE nbagg = 140 0.9237 0.7997

Logistic Regression MICE 0.8861 0.7815

Logistic Regression MICE Zupan et al. 0.6936 0.7711

Ridge MICE Zupan et al. Alpha = 0.3/lambda = 1e − 05 0.6687 0.7603

Lasso MICE Zupan et al. Lambda = 1e − 04 0.6688 0.7599

Lasso MICE Lambda = 0.006 0.8297 0.7596

Ridge MICE Alpha = 0.9/lambda = 0.007 0.8291 0.7576

Decision tree MICE cp =  − 1/maxdepth = 4 0.8776 0.7571

Decision tree MICE Zupan et al. cp =  − 1/maxdepth = 10 0.7551 0.7399

Table 2.  Comparative performance of first-year mortality prediction models for hemodialysis in the CRC-
ESRD prospective cohort. The term ‘hnodes’ refers to the number of nodes within the hidden layers. Names 
of all other hyperparameters correspond directly to those used in their respective R packages. We applied 
the weighting methods from the study by Zupan et al.23. The best performances on the test set for both deep 
learning models and traditional machine learning models are highlighted in bold font.
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Results of subgroup analysis for high-risk patients
Finally, we conducted an additional analysis of the high-risk subgroup using conventional Cox regression to 
identify the interconnected effects of age and mCCI risk on mortality. A multivariate analysis was performed 
with adjustments for confounding factors such as age, sex, primary cause of renal disease, smoking history, 
dialysis duration, BMI as a categorical group, history of DM, CVD, and use of RAAS blockade. As shown in 
Table 4, a univariate analysis revealed that age was a risk factor for overall mortality. However, the multivariate 
analysis showed that the age group itself did not provide a significant risk for early mortality (old age group 
(≥ 75 years, reference age group < 45 years), HR 2.44, 95% CI 0.89–6.68, p = 0.082). More importantly, the only 
proven prognostic factor that affected mortality in early mortality after dialysis initiation was the high mCCI 
group (old age group (≥ 75 years, reference age group < 45 years), HR 9.84, 95% CI 1.88–51.31, p = 0.007).

Discussion
In this study, we analyzed 3284 hemodialysis (HD) patients from a larger nationwide prospective cohort of 5223 
individuals receiving HD. The study utilized a range of machine learning algorithms to predict the mortality 
within the first year of treatment for HD patients. Among these, the Recurrent Neural Networks (RNN) 
combined with an Autoencoder (AE) yielded the highest accuracy, achieving an Area Under the Curve (AUC) 

Fig. 4.  Survival decision tree architecture. Each leaf node displays the relative mortality risk as a survival 
hazard ratio (HR). Splitting conditions are marked with “YES” for true outcomes and “NO” for false outcomes 
(C-index 0.7693).

 

Model Imputation Hyperparameters C-index (Val) C-index (Test)

Survival Bagging MICE nbagg = 80 0.8430 0.7756

Survival Random Forest MICE Splitrule = logrank/ntree = 600 0.8297 0.7750

Survival Decision Tree MICE cp = 0.008/maxdepth = 6 0.8077 0.7693

Cox Regression MICE 0.7716 0.7525

Survival Lasso MICE Lambda = 0.01 0.7784 0.7369

Survival Ridge MICE Alpha = 0.9/lambda = 0.04 0.7610 0.7310

Table 3.  Comparative performance of hazard ratio prediction models for hemodialysis in the CRC-ESRD 
prospective cohort. Names of all hyperparameters correspond directly to those used in their respective R 
packages. The best performance on the test set is highlighted in bold font.
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of 0.8357. Additionally, for predicting the hazard ratio, the survival bagging model emerged as the top performer 
with a Concordance Index (C-index) of 0.7756.

Investigation into forecasting early prognosis among ESKD patients undergoing dialysis has a long-standing 
history in this population. In 2009, Couchoud et al.33 predicted the 6-month mortality rate of elderly patients 
initiating dialysis based solely on clinical features using French Renal Epidemiology and Information Network 
(REIN) cohort data. Despite selecting nine risk factors and having a good validation of the observed and expected 
deaths, the study only achieved a moderate C-index of 0.70. One limitation was the potential selection bias 
caused by missing imputations. By contrast, our study applied the same model with the same variables but used 
the MICE imputation method for augmentation. As a result, our study achieved an increased C-index of 0.7756 
and revealed that the mCCI had a more significant impact solely on mortality than age. In a systematic review by 
Sanmarchi et al.13 AI and ML techniques showed promise in predicting, diagnosing, and treating chronic kidney 
disease, including ESKD; however, future work is required to enhance the interpretability, generalizability, and 
fairness of machine learning models for clinical practice. It is noteworthy that only five studies utilized RNNs 
and only one study used an autoencoder for data augmentation. Based on our research findings, we anticipate 
improved results through the use of imputation with hemodialysis-specific information in future studies12.

Our study results show that comorbidities are more closely related to prognosis regardless of age, and these 
findings remain consistent even after adjusting for dialysis efficiency, residual renal function presenting with 
urine volume, and RAAS blockade use. Many researchers suspect that a higher number of comorbidities could 
be more strongly associated with a poor prognosis in dialysis patients. Liu et al. published an excellent study 
on the impact of comorbidities on survival prediction in elderly dialysis patients, which modified the existing 
Charlson Comorbidity Index (CCI)34 and developed a new comorbidity index (nCI) for mortality analysis in 
dialysis patients based on comorbid conditions used in the United States Renal Data System (USRDS) and 

Variables

Within 1 year mortality Overall mortality cases

Unadjusted p Adjusted p Unadjusted p Adjusted p

Age (≤ 44, Ref) 1 1 1 1

45 to 59 2.08 (0.97–4.49) 0.059 1.50 (0.58–3.84) 0.395 1.82 (1.24–2.69) 0.002 1.44 (0.91–2.28) 0.113

60 to 74 4.29 (2.08–8.86) < 0.001 1.56 (0.60–4.03) 0.358 3.97 (2.76–5.72) < 0.001 2.05 (1.29–3.25) 0.002

≥ 75 9.71 (4.60–20.49 < 0.001 2.44 (0.89–6.68) 0.082 8.77 (5.98–12.86) < 0.001 3.30 (2.01–5.40) < 0.001

Male (Ref. female) 1.23 (0.91–1.66) 0.171 0.95 (0.65–1.38) 0.814 1.36 (1.16–1.60) < 0.001 1.12 (0.93–1.34) 0.215

BMI (kg/m2)

 18.5 <  0.82 (0.47–1.44) 0.507 1.08 (0.60–1.97) 0.783 0.94 (0.70–1.27) 0.711 1.43 (1.05–1.94) 0.023

 18.5 to 22.9 (ref) 1 1 1 1

 ≥ 23 0.65 (0.46–0.91) 0.012 0.48 (0.32–0.72) < 0.001 0.87 (0.73–1.03) 0.124 0.75 (0.62–0.90) 0.002

Primary renal disease

 Diabetes (Ref.) 1 1 1 1

 Hypertension 0.68 (0.44–1.05) 0.084 0.52 (0.23–1.14) 0.105 0.76 (0.61–0.94) 0.015 0.83 (0.57–1.22) 0.355

 Glomerulonephritis 0.52 (0.29–0.90) 0.022 0.71 (0.29–1.72) 0.458 0.34 (0.24–0.47) < 0.001 0.59 (0.36–0.95) 0.032

 Cystic kidney disease 0.13 (0.01–0.93) 0.043 – – 0.37 (0.21–0.66) 0.001 0.49 (0.25–0.98) 0.044

 Unknown 0.96 (0.48–1.89) 0.907 0.74 (0.27–2.04) 0.566 0.62 (0.40–0.97) 0.038 0.84 (0.48–1.48) 0.557

 Others 0.89 (0.59–1.33) 0.589 1.08 (0.51–2.27) 0.829 0.66 (0.52–0.84) 0.001 0.91 (0.62–1.35) 0.669

CVD (Ref. No CVD) 2.00 (1.50–2.67) < 0.001 1.76 (1.22–2.53) 0.002 2.01 (1.72–2.35) < 0.001 1.45 (1.21–1.73) < 0.001

DM (Ref. No CVD) 1.35 (1.00–1.82) 0.044 0.52 (0.26–1.03) 0.063 1.69 (1.44–1.99) < 0.001 0.79 (0.55–1.13) 0.212

Smoking (Ref. No smoking) 1.13 (0.71–1.80) 0.596 1.46 (0.84–2.53) 0.176 1.28 (1.00–1.64) 0.045 1.36 (1.03–1.79) 0.027

Modified CCI (Ref. 0–2 1 1 1 1

3–5 3.45 (1.07–11.16) 0.038 3.27 (0.070–15.24) 0.176 2.57 (1.51–4.38) < 0.001 1.53 (0.82–2.86) 0.175

6–8 8.58 (2.71–27.10) < 0.001 6.16 (1.25–30.31) 0.025 6.46 (3.85–10.85) < 0.001 2.57 (1.33–4.95) 0.005

≥ 9 16.05 (4.98–51.73) < 0.001 9.84 (1.88–51.31) 0.007 11.92 (7.00–20.29) < 0.001 3.81 (1.90–7.61) < 0.001

Use of RAAS blockade (Ref. 
No use) 0.68 (0.50–0.93) 0.018 1.09 (0.77–1.56) 0.602 0.79 (0.67–0.93) 0.006 0.90 (0.76–1.08) 0.274

Dialysis duration (per month) 0.97 (0.97–0.98) < 0.001 0.97 (0.96–0.98) < 0.001 0.98 (0.98–0.98) < 0.001 0.98 (0.98–0.98) < 0.001

Table 4.  Risk factors analysis for first-year and overall mortality in the CRC-ESRD prospective cohort. CVD, 
cardiovascular disease; DM, diabetes mellitus; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
MCCI, modified Charlson comorbidity index; LVH, left ventricular hypertrophy; cTnT, cardiac troponin T; NT 
pro-BNP, N-terminal pro-B-type natriuretic peptide; RAAS, renin–angiotensin–aldosterone system. *Values 
are presented as n (%) for categoric variables and mean ± standard deviation for continuous variables. mCCI 
group; Low, mCCI score 0–2; Moderate, mCCI score 3–5; High, mCCI score ≥ 6. Multivariate analysis was 
done with adjustment confounding including such as age, sex, primary renal disease, smoking history, dialysis 
duration, BUN, systolic BP, BMI, Hb, Calcium, history of DM, CVD, usage of RAAS blockade, and serum 
albumin. Significant values are in bold.
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administrative data35. The nCI was developed using 2000 US incident dialysis patients and validated using the 
1999 and 2001 incident US dialysis populations and the 2000 prevalent US dialysis population. Interestingly, 
Liu et al.35 comorbidity index included 11 comorbidities (atherosclerotic heart disease, congestive heart failure, 
cerebrovascular accident/transient ischemic attack, peripheral vascular disease, arrhythmia, other heart diseases, 
chronic obstructive pulmonary disease, gastrointestinal bleeding, liver disease, cancer, and diabetes) but did 
not include age, which is a component of the original CCI. The authors demonstrated that the performance 
of nCI was almost identical to that of individual comorbid conditions in terms of model fit, predictive ability, 
and influence on inference, indicating that nCI is a better predictor than CCI. Accurate prediction requires the 
integration of age and comorbidities, which can be challenging. However, our study supports the findings that in 
high-risk patients, such as dialysis patients, comorbidities may be more critical than age.

Cohen et al. also developed a prognostic model to assess the risk of death in dialysis patients by combining 
selected variables, such as mCCI and serum albumin, with nephrologists’ responses to a surprise question 
(“Would you be surprised if this patient died within six months?”)36. This simple bedside tool for predicting six-
month mortality showed an independent superior prognostic value compared with either of the two tools alone. 
However, one could argue that this model has limitations, as it relies on subjective parameters (for example, 
dementia) that are difficult to define in dialysis patients. Moreover, the surprise question may be highly subjective 
and variable depending on the nephrologist’s training and patient knowledge. Our study has some drawbacks, 
such as the young average age of the patients (58.4  years) included in the prospective cohort and a lack of 
information on cognitive impairments. Hence, Floege et al. presented another risk prediction model developed 
in a European hemodialysis cohort with a mean age of 64 years using only objective measurements without 
information on dementia37. This model underwent external validation in the DOPPS cohort and demonstrated 
moderate discrimination (C-statistics 0.68–0.79). The similarity between this cohort and our study population 
has potential implications for our research.

Research introducing ML for prognostic prediction in patients has increased to overcome the limitations of 
previous studies that used traditional statistical methods13. One strength of our study is that we demonstrated 
improved performance by validating almost all ML algorithms for dialysis patients introduced thus far in a step-
by-step manner. The AUROC for traditional statistical mortality prediction models typically falls in the range of 
0.65 to 0.7538. The use of a sophisticated machine learning technique using electronic medical records (EMR), 
specifically random forest models, to forecast sudden cardiac death in elderly patients undergoing HD was an 
initial example of this approach. The model produced an AUROC of up to 0.7939,40, which is comparable to our 
study results (Table 2). The predictive power improved with the use the RNN (AUC 0.8357), and similar research 
was not found in the authors’ search or this systematic review. As mentioned earlier, the first reason is likely 
the increased imputation validity using an autoencoder13, and the second is the simultaneous consideration 
of additional variable selection for the RNN, which greatly impacts prognostic prediction. In addition, dialysis 
adequacy as KT/V, which has been confirmed in many previous studies, including 24-h urine studies as urine 
volume41 and RAAS blockade usage17 as independent prognostic factors in this prospective cohort, likely 
contributed to the improved prediction. Thus, clinical applicability must be considered when applying and 
interpreting deep learning approaches.

Conclusion
This study utilized machine learning algorithms to predict early mortality and assess risk factors in hemodialysis 
patients using a nationwide prospective cohort in South Korea. The recurrent neural network with an 
autoencoder yielded the highest accuracy for predicting first-year mortality (AUC 0.8357), while the survival 
bagging model performed best in predicting hazard ratios (C-index 0.7756). Notably, comorbidities were 
found to be more influential than age in predicting early mortality, with high modified Charlson comorbidity 
index scores (≥ 7) being a significant prognostic factor, especially for patients with shorter dialysis duration 
(< 14.9 months). The study highlights the importance of monitoring factors such as dialysis adequacy (KT/V), 
renin–angiotensin–aldosterone system inhibitor use, and residual urine output for assessing early prognosis in 
hemodialysis patients. These findings contribute to a better understanding of risk factors and can aid in clinical 
decision-making and patient care for hemodialysis patients.

Data availability
To obtain access to the data, interested individuals should contact the corresponding author and submit a rea-
sonable request explaining their need for the data. Upon receiving such a request, the corresponding author will 
determine whether sharing the data is appropriate and feasible.
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