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Development and validation 
of an interpretable model 
for predicting sepsis mortality 
across care settings
Young Seok Lee 1,26, Seungbong Han 2,26, Ye Eun Lee 2, Jaehwa Cho 3, Young Kyun Choi 4, 
Sun‑Young Yoon 5, Dong Kyu Oh 6, Su Yeon Lee 6, Mi Hyeon Park 6, Chae‑Man Lim 6, 
Jae Young Moon 5* & the Korean Sepsis Alliance (KSA) Investigators *

There are numerous prognostic predictive models for evaluating mortality risk, but current scoring 
models might not fully cater to sepsis patients’ needs. This study developed and validated a new 
model for sepsis patients that is suitable for any care setting and accurately forecasts 28-day 
mortality. The derivation dataset, gathered from 20 hospitals between September 2019 and 
December 2021, contrasted with the validation dataset, collected from 15 hospitals from January 2022 
to December 2022. In this study, 7436 patients were classified as members of the derivation dataset, 
and 2284 patients were classified as members of the validation dataset. The point system model 
emerged as the optimal model among the tested predictive models for foreseeing sepsis mortality. 
For community-acquired sepsis, the model’s performance was satisfactory (derivation dataset AUC: 
0.779, 95% CI 0.765–0.792; validation dataset AUC: 0.787, 95% CI 0.765–0.810). Similarly, for hospital-
acquired sepsis, it performed well (derivation dataset AUC: 0.768, 95% CI 0.748–0.788; validation 
dataset AUC: 0.729, 95% CI 0.687–0.770). The calculator, accessible at https://​avonl​ea76.​shiny​apps.​
io/​shiny_​app_​up/, is user-friendly and compatible. The new predictive model of sepsis mortality is 
user-friendly and satisfactorily forecasts 28-day mortality. Its versatility lies in its applicability to all 
patients, encompassing both community-acquired and hospital-acquired sepsis.
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Sepsis is a significant global health issue due to its steep mortality rates and economic impact. While our under-
standing and treatment of sepsis have evolved, sepsis-related deaths still account for an alarming 30–45% of 
global mortality, representing almost 20% of all deaths worldwide1–4. Considering that the prognosis of sepsis 
is influenced by an individual’s clinical condition and the nature of the pathogen, timely individual risk assess-
ment using a prognostic predictive model is crucial. This allows for proper allocation of medical resources and 
can potentially reduce mortality5–8.

There are numerous prognostic predictive models for evaluating mortality risk9–14. Notably, the Acute Physi-
ological and Chronic Health Assessment (APACHE) score and the Simple Acute Physiology Score (SAPS) are 
frequently employed in intensive care units (ICUs) to gauge mortality risk10,11. With evolving patient demo-
graphics in ICUs, such as increasing numbers of elderly, multimorbid, and immunocompromised patients, these 
scoring systems have been periodically updated to ensure effectiveness10,15,16. While beneficial, these models have 
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limitations. Designed primarily for critically ill patients in ICUs, their application is typically upon ICU admission 
rather than at the initial diagnosis. Given that sepsis can be diagnosed in diverse settings, from ICUs to general 
wards or emergency rooms, and the crucial nature of timely intervention, current scoring models might not 
fully cater to sepsis patients’ needs. There is a pressing need for a predictive model that facilitates rapid mortality 
prediction and individualized treatment planning for sepsis patients across all care settings.

This study developed and validated a new model for sepsis patients that accurately predicts the 28-day mor-
tality, which is user-friendly and suitable for any care setting. Particularly, we have prioritized ensuring that the 
final model is interpretable, thereby enhancing its usability for clinicians.

Results
Clinical characteristics of patients in the derivation dataset and the validation dataset
In the sepsis registry database, 10,440 patients were assigned to the derivation dataset, whereas 3344 patients 
were assigned to the validation dataset. Of these, 26 patients with coronavirus disease 2019 (COVID-19) in the 
derivation dataset and 226 patients with COVID-19 in the validation dataset were excluded. In addition, 2978 
patients in the derivation dataset and 834 patients in validation dataset were excluded because of unclear survival 
status at 28 days after sepsis diagnosis. Finally, 7436 patients were included in the derivation dataset, and 2284 
patients were included in the validation dataset (Fig. 1).

The clinical characteristics of the study population for the derivation and validation datasets are described 
in Table 1. In both datasets, nonsurvivors were older and more likely to be male compared to survivors. In 
addition, nonsurvivors had higher clinical frailty scale (CFS), sequential organ failure assessment (SOFA), and 
Charlson’s comorbidity index scores compared to survivors. Comorbidities were similar between the two groups, 
except malignancies. Sepsis caused by a respiratory infection had a poorer prognosis than sepsis caused by 
other infections. The use of steroids, ventilators, and continuous renal replacement therapy (CRRT) was higher 
in nonsurvivors than in survivors. Nonsurvivors had a lower blood pressure and body temperature and higher 
heart and respiratory rates compared to survivors at the time of diagnosis of sepsis. In addition, nonsurvivors 
had a greater rate of organ dysfunction based on initial laboratory findings compared to survivors at the time of 
diagnosis of sepsis (Supplementary Table S1).

New models for predicting 28‑day mortality in sepsis patients
In the derivation dataset, multivariable logistic regression identified the following as significant predictors for 
28-day mortality: age, CFS, presence of malignancy, SOFA score, sepsis originating from respiratory infections, 
use of CRRT, body temperature, albumin levels, international normalized ratio (INR), C-reactive protein (CRP) 
levels, and lactic acid levels at the time of sepsis diagnosis (Supplementary Table S2). These 11 factors were used 
as predictive variables across the seven prediction models.

To identify the most precise models for predicting sepsis mortality, we assessed the point system (PS), ordi-
nary logistic regression (OL), random forest (RF), regularized discriminant analysis (RDA), support vector 
machine (SVM), gradient-boosting machine (GBM), and ensemble method (ENS) predictive models using 
multiple metrics. Based on the analysis of the area under the receiver operating characteristic curve (AUC), cali-
bration plots, the Hosmer–Lemeshow test statistic, and Brier score in both datasets, including cross-validation, 
the performance of the PS model demonstrated similarity to that of other models in predicting sepsis mortality 
(Fig. 2 and Supplementary Tables S3–5). Additionally, the PS model’s ease of interpretation for clinical applica-
tion led to its selection as the final model.

Figure 1.   Flow chart of this study.
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The final predictive model for sepsis mortality was structured as follows: Age (scored from 0 for < 40 years to 
7 for > 80 years in increments based on decade ranges), CFS (scored from 0 for 1–3, up to 7 for 6–9), presence of 
malignancy (7 points), SOFA score (scored from 0 for 2–7 up to 13 for 18–21), sepsis due to respiratory infection 
(6 points), CRRT usage (7 points), body temperature (scored from 0 for > 38℃ to 7 for < 36 ℃), albumin level 
(scored from 0 for ≥ 3.5 g/dL to 7 for < 2.5 g/dL), INR (> 1.3 earns 3 points), CRP level (scored from 0 for ≤ 10 mg/
dL up to 2 for > 20 mg/dL), and lactic acid level (scored as 0 for < 4 mmol/L and 7 for ≥ 4 mmol/L). The maximum 
attainable score was 73 points (Table 2). The associated mortality risk based on the total score can be found in 
Supplementary Table S6.

New predictive model of sepsis mortality in different clinical situations
To assess the efficacy of the new model across diverse clinical scenarios, we examined the ROC curve in both 
the derivation and validation datasets for community-acquired and hospital-acquired sepsis. For community-
acquired sepsis, the model’s performance was satisfactory (derivation dataset AUC: 0.779, 95% CI 0.765–0.792; 

Table 1.   Clinical characteristics of study population in derivation dataset and validation dataset. CCI Charlson 
comorbidity index, SOFA sequential organ failure assessment, ICU intensive care unit, CRRT​ continuous renal 
replacement therapy, LOS length of stay. *Data are presented as means ± standard deviations. Other variables 
are presented as numbers and percentages.

Variables

Derivation dataset Validation dataset

Total (N = 7436)
Survivor 
(N = 4688)

Non-survivor 
(N = 2581) Total (N = 2284)

Survivor 
(N = 1289)

Non-survivor 
(N = 995)

Age* 71 ± 14 70 ± 14 73 ± 13 72 ± 14 71 ± 14 73 ± 13

Male sex 4344 (58.4) 2687 (57.3) 1657 (60.3) 1314 (57.5) 728 (56.5) 586 (58.9)

Body mass index* 22 ± 4 22 ± 4 22 ± 4 23 ± 47 22 ± 4 24 ± 72

Clinical frailty 
scale* 5 ± 2 5 ± 2 6 ± 2 5 ± 2 5 ± 2 6 ± 2

CCI* 6 ± 3 5 ± 3 6 ± 3 6 ± 3 5 ± 3 6 ± 3

Comorbidities

 Cardiovascular 
disease 1323 (17.8) 797 (17) 526 (19.1) 484 (21.2) 263 (20.4) 221 (22.2)

 Pulmonary 
disease 905 (12.2) 533 (11.4) 372 (13.5) 254 (11.1) 132 (10.2) 122 (12.3)

 Neurologic 
disease 2343 (31.5) 1512 (32.3) 831 (30.2) 846 (37) 513 (39.8) 333 (33.5)

 Liver disease 698 (9.4) 429 (9.2) 269 (9.8) 159 (7) 85 (6.6) 74 (7.4)

 Diabetes mellitus 2481 (33.4) 1603 (34.2) 878 (32) 853 (37.3) 514 (39.9) 339 (34.1)

 Chronic kidney 
disease 843 (11.3) 535 (11.4) 308 (11.2) 302 (13.2) 157 (12.2) 145 (14.6)

 Connective tissue 
disease 192 (2.6) 131 (2.8) 61 (2.2) 69 (3) 41 (3.2) 28 (2.8)

 Malignancy 3340 (44.9) 1879 (40.1) 1461 (53.2) 957 (41.9) 444 (34.4) 513 (51.6)

 SOFA score, time 
zero* 7 ± 3 6 ± 3 8 ± 3 7 ± 3 6 ± 3 8 ± 3

Site of infection

 Respiratory 
infection 3269 (44) 1838 (39.2) 1431 (52.1) 1040 (45.5) 469 (36.4) 571 (57.4)

 Gastrointestinal 
infection 2045 (27.5) 1403 (29.9) 642 (23.4) 510 (22.3) 327 (25.4) 183 (18.4)

 Urinary tract 
infection 1051 (14.1) 831 (17.7) 220 (8) 354 (15.5) 278 (21.6) 76 (7.6)

 Skin/soft tissue 
infection 189 (2.5) 132 (2.8) 57 (2.1) 79 (3.5) 52 (4) 27 (2.7)

 Other 882 (11.9) 484 (10.4) 398 (14.4) 301 (13.2) 163 (12.6) 138 (13.9)

Type of infection

 Community-
acquired 4732 (63.6) 2991 (63.8) 1741 (63.4) 1566 (68.6) 905 (70.2) 661 (66.4)

 Hospital-acquired 2704 (36.4) 1697 (36.2) 1007 (36.6) 718 (31.4) 384 (29.8) 334 (33.6)

 Steroid use 1080 (14.5) 593 (12.6) 487 (17.7) 386 (16.9) 201 (15.6) 185 (18.6)

 ICU admission 3612 (48.6) 2357 (50.3) 1255 (45.7) 949 (41.5) 603 (46.8) 346 (34.8)

 Ventilator use 2023 (27.2) 1097 (23.4) 926 (33.7) 542 (23.7) 276 (21.4) 266 (26.7)

 CRRT use 1081 (14.5) 451 (9.6) 630 (22.9) 292 (12.8) 124 (9.6) 168 (16.9)

 Hospital LOS 
(days)* 26 ± 64 34 ± 76 11 ± 16 22 ± 28 29 ± 31 11 ± 19
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Figure 2.   Comparison of 28-day mortality predictive ability among point system (PS), ensemble method 
(ENS), ordinary logistic regression (OL), regularized discriminant analysis (RDA), random forest (RF), support 
vector machine (SVM), and gradient-boosting machine (GBM). (a) Derivation dataset. (b) Validation dataset.

Table 2.   New predictive model of sepsis mortality. SOFA sequential organ failure assessment, CRRT​ 
continuous renal replacement therapy, INR international normalized ratio, CRP C-reactive protein.

Variables Categories Scores

Age

 < 40 years 0

40–49 years 2

50–59 years 3

60–69 years 5

70–79 years 6

 ≥ 80 years 7

Clinical frailty scale

1–3 points 0

4–5 points 4

6–9 points 7

Presence of malignancy Yes 7

SOFA score

2–7 points 0

8–12 points 5

13–17 points 9

18–21 points 13

Respiratory infection Yes 6

CRRT use Yes 7

Body temperature

 > 38 ℃ 0

36 ℃ ≤ body temperature ≤ 38 ℃ 4

 < 36 ℃ 7

Albumin

 ≥ 3.5 g/dL 0

2.5 g/dL ≤ albumin < 3.5 g/dL 4

 < 2.5 g/dL 7

INR  > 1.3 3

CRP

 ≤ 10 mg/dL 0

10 mg/dL < CRP ≤ 20 mg/dL 1

 > 20 mg/dL 2

Lactic acid
 < 4 mmol/L 0

 ≥ 4 mmol/L 7

Total score 73
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validation dataset AUC: 0.787, 95% CI 0.765–0.810; Fig. 3). Similarly, for hospital-acquired sepsis, it performed 
well (derivation dataset AUC: 0.768, 95% CI 0.748–0.788; validation dataset AUC: 0.729, 95% CI 0.687–0.770; 
Fig. 3).

To further assess its efficacy for predicting outcomes for critically ill patients, we compared its ability to predict 
28-day mortality against the established SAPS 3 system using both datasets. Among the 3,612 critically ill sepsis 
patients in the derivation dataset, the performance of the new scoring model (AUC: 0.745) was comparable to 
that of the SAPS 3 model (AUC: 0.722) (difference in AUC; 95% CI 0.005–0.042; P = 0.012), indicating similar 
predictive accuracy. Similarly, in the validation dataset comprising 949 critically ill sepsis patients, the new model 
(AUC: 0.750) tended to show statistically insignificant non-inferior predictive accuracy compared to SAPS (dif-
ference in AUC; 95% CI − 0.001 to 0.071; P = 0.063) (Fig. 4).

Clinical utility of new predictive model of sepsis mortality
To enhance the clinical utility of the new model, we developed a calculator app using shinyapps.io. The calcu-
lator, accessible at https://​avonl​ea76.​shiny​apps.​io/​shiny_​app_​up/, is user-friendly and compatible with both 
smartphones and computers (e.g. electronic medical record). Given the criticality of swift decision-making for 
patients with sepsis, this app promises to be an invaluable tool for predicting sepsis mortality in clinical settings.

Figure 3.   Performance of the new predictive model for predicting sepsis mortality in community-acquired 
sepsis and hospital-acquired sepsis. The 4 panels show receiver operating characteristic curves for patients in 
the (a) derivation dataset in community-acquired sepsis, (b) validation dataset in community-acquired sepsis, 
(c) derivation dataset in hospital-acquired sepsis, and (d) validation dataset in hospital-acquired sepsis after 
predicting 28-day mortality according to their score using the new predictive model.

https://avonlea76.shinyapps.io/shiny_app_up/
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Discussion
This study introduced a new model for predicting 28-day mortality among sepsis patients, incorporating 11 
variables. The model exhibited commendable performance across various clinical scenarios, including both 
community- and hospital-acquired sepsis, positioning it as a valuable instrument for assessing mortality risk 
across all sepsis patients.

Despite advancements in sepsis strategies informed by numerous studies, the overall prognosis for sepsis 
remains suboptimal1–4. For better outcomes, it is imperative for clinicians to differentiate between patients with 
likely favorable outcomes and those at higher risk, ensuring tailored treatment approaches. Mismanagement of 
medical resources can escalate mortality rates, which makes efficient resource allocation vital17–19. If prognostic 
predictions can be made at the time of sepsis diagnosis, those with a poorer outlook could be prioritized for ICU 
beds and resources over those with a more optimistic prognosis.

While established scoring models such as APACHE and SAPS are renowned for their predictive accuracy 
across diverse cohorts of critically ill patients14, they primarily target this patient subset and not the broader popu-
lation. Their adaptation for sepsis patients might be less than ideal. Following the revised sepsis-3 definition20, 
new prognostic models (encompassing biomarker models, immune dysfunction scores, and machine-learning 
models) have been developed and validated13,21–26. Yet, small sample sizes and restricted accessibility limit some, 
such as the biomarker model and immune dysfunction score25,26. Machine-learning models, although superior 
in terms of predictive accuracy compared to older scoring models, are typically institution-specific and their 
performance may not be generalizable. Notably, any lack of laboratory data can postpone the presentation of 
results13,21,22.

The sepsis mortality prediction model presented here has noteworthy advantages over its predecessors. First, 
this study established an optimal scoring point system for predicting the sepsis mortality among seven predictive 
models. The predictive models ranged from original logistic regression models to the latest machine learning 
models.

Based on the AUC, calibration plots, Hosmer–Lemeshow test statistics, and Brier score, the PS model did not 
exhibit inferior performance to other machine learning techniques in the fivefold cross validation and the vali-
dation dataset. In fact, it demonstrated superior performance in terms of calibration. In addition, the PS model 
offered interpretive advantages, leading to its selection as the final prediction model. We concluded that our 
model is the most suitable among several models for predicting sepsis mortality. Second, its applicability spans 
both community- and hospital-acquired sepsis, demonstrating robust performance in both patient categories 
(Fig. 3). Furthermore, it consistently demonstrated performance comparable to SAPS in terms of predicting 
outcomes, even among critically ill sepsis patients (Fig. 4). Third, the model’s design readily accommodates 
real-time clinical data, enabling prompt prognosis predictions concurrent with sepsis diagnosis. Fourth, to aug-
ment the practicality of our model, we developed a user-friendly calculator app, which provides rapid mortality 
prediction, facilitating informed decision-making regarding clinical management and potentially mitigating 
sepsis-associated mortality rates. Finally, the model encompasses foundational clinical parameters such as age, 
CFS, and malignancy presence, infection sites, inflammation metrics, and severity indicators (including organ 

Figure 4.   Comparison of 28-day mortality predictive ability between the new predictive model and simplified 
acute physiology score III(SAPS 3) in sepsis patients admitted to an intensive care unit. The new predictive 
model of sepsis mortality was more accurate than the SAPS 3 scoring system in predicting 28-day mortality 
from sepsis in critically ill patients. (a) Derivation dataset (new predictive model vs. SAPS 3, 0.745 vs. 0.722; 
difference in AUC; 95% CI 0.005–0.042; P = 0.012). (b) Validation dataset (new predictive model vs. SAPS 3, 
0.750 vs.0.715; difference in AUC; 95% CI − 0.001–0.071; P = 0.063.
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dysfunction) making it clinically intuitive. Notably, the inclusion of the CFS, recently identified as a predictor 
of sepsis prognosis, strengthens the model27.

However, this study had several limitations. First, potential selection bias arose in determining survival out-
comes for patients discharged within 28 days after sepsis diagnosis. Second, only Korean patients participated 
in this study. However, the number of included patients was relatively large. Finally, the sepsis mortality rate 
in this study was relatively high because it was conducted in a university-affiliated hospital. During the study 
period, these hospitals admitted more severe patients compared to other periods, primarily because of the low 
medical resources during the COVID-19 pandemic. Despite these limitations, our model was developed using 
a relatively large sample size and diverse modeling techniques. In addition, the calculator based on our model 
is user-friendly and convenient for clinical settings.

In conclusion, the new predictive model of sepsis mortality is user-friendly and effectively forecasts 28-day 
mortality. Its versatility lies in its applicability to all patients, encompassing both community-acquired and 
hospital-acquired sepsis, at the time of diagnosis. To further validate this novel model, multinational studies 
with larger cohorts across diverse scenarios are needed.

Methods
Nationwide multicenter prospective sepsis cohort
The cohort was supported by a research program from the Korea Disease Control and Prevention Agency. 
Clinical data were amassed by the Korean Sepsis Alliance (KSA), encompassing tertiary referral and university-
affiliated hospitals, to study the epidemiology, clinical practices, and outcomes of sepsis patients in the Republic 
of Korea. Between September 2019 and December 2021, 20 hospitals contributed to the sepsis cohort project 
(KSA 3 database). From January 2022 to December 2022, this participation narrowed to 15 hospitals (KSA 4 
database). The database differentiated patients into community-acquired sepsis (diagnosed in emergency rooms) 
and hospital-acquired sepsis (diagnosed 48 h post-admission to a general ward). The study cohort comprised 
adults aged ≥ 19 years diagnosed with life-threatening organ dysfunction caused by a dysregulated host response 
to infection, characterized by a ≥ 2-point increase in the SOFA score20. Data spanned from “time zero” (either 
when community-acquired sepsis was identified in emergency rooms or when hospital-acquired sepsis was diag-
nosed by medical professionals after 48 h of admission in the general ward) until hospital discharge or death27–31.

Study design
This research was a multicenter prospective observational cohort study using data from the Korean Sepsis Alli-
ance’s sepsis cohort. The derivation dataset (KSA 3) was gathered from 20 hospitals between September 2019 
and December 2021; the validation dataset (KSA 4) was collected from 15 hospitals between January 2022 and 
December 2022. We designed and assessed various predictive models for sepsis mortality using both datasets, 
aiming to select the most accurate model. Subsequently, we developed an app to implement the final model, 
facilitating its clinical application. The primary outcome was the 28-day mortality post-sepsis diagnosis. Due 
to the lack of follow-up data in the KSA database, we established an arbitrary definition for 28-day mortality 
following the diagnosis of sepsis. For patients discharged more than 28 days after the diagnosis of sepsis, the 
28-day mortality was recorded. However, patients discharged within 28 days were categorized as survivors if 
they received antibiotics for more than 7 days and did not require life-sustaining treatment. This decision was 
based on the observation that most infections are treated with antibiotics for more than 7 days after the diag-
nosis. Patients from other categories were excluded due to uncertainty regarding their 28-day mortality status. 
In addition, patients with coronavirus disease 2019 (COVID-19) were excluded due to the potential impact on 
clinical outcomes.

Definition of variables
The CFS is a robustly validated nine-point scale that classifies patients based on clinical insight. It was used at 
sepsis diagnosis, leveraging clinical data from up to 2 weeks prior to diagnosis27,32,33. Comorbid patients had 
prior disease diagnoses at the sepsis detection time, and the infection site was identified as the infection’s origin. 
Comorbidities and infection sites were classified following the management of severe sepsis in Asia’s intensive 
care units (MOSAICS) study method2,34. Malignancy, including hematological and solid tumors, indicated cur-
rent malignancy presence at sepsis diagnosis. Vital signs and laboratory results were recorded at sepsis diagnosis; 
the usages of ventilators and CRRT were determined based on need at sepsis diagnosis.

Statistical analysis
We followed the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagno-
sis (TRIPOD) guidelines in developing and validating a 28-day mortality predictive model for sepsis patients35. 
All statistical analyses were conducted using R software (http://​www.r-​proje​ct.​org). Descriptive statistics for both 
derivation and validation datasets are presented as means ± standard deviation (SDs) or frequencies with per-
centages for continuous and categorical variables, respectively. For predicting 28-day mortality, various models 
including OL, RDA, and three machine learning algorithms (RF, SVM, and GBM) were employed.

The RDA employs a classification rule rooted in regularized group covariance matrices, targeting enhance-
ment against multicollinearity of covariates. The RF, an ensemble learning theory derivative, produces multiple 
decision trees during training36. The final class prediction arises from the majority prediction across all trees. 
RF effectively captures both simple and intricate classification functions by recognizing predictor interactions. 
SVM identifies a hyperplane in a high-dimensional space that distinctly separates data points of varying classes. 
It showcases robustness in processing high-dimensional data and employs an influential regularization method 
to prevent overfitting37. GBM, another ensemble learning algorithm, strengthens predictions by progressively 

http://www.r-project.org
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optimizing the log-likelihood loss function, starting from a base model38. Its strengths include discerning com-
plex nonlinear relationships and adeptly managing diverse data types. In addition, we contemplated two other 
techniques for final model selection: the PS39 and an ENS amalgamating OL, RF, RDA, SVM, and GBM, which 
averaged mortality probabilities for a final prediction. Among machine learning models, various options exist for 
hyperparameter selection, including grid search, random search, genetic algorithm, and Bayesian optimization. 
However, current research suggests that none of these methods are extensively employed. Typically, the default 
option is widely utilized in medical data modeling40–42. Nonetheless, hyperparameter selection was conducted 
for RF. The hyperparameters were determined through five-fold cross-validation on the derivation dataset; the 
R package tuneRanger was employed for hyperparameter selection during RF modeling. The hyperparameters 
for other machine learning techniques were selected based on the default settings.

To pinpoint pivotal predictive variables, univariable logistic regression models were initially fitted, with vari-
ables with a p-value < 0.1 becoming primary candidates for predictive models. Multicollinearity was addressed 
by iterative removal of the least significant variable in the multivariable logistic regression model, scrutinized via 
the variation inflation factor index (VIF). Following intensive consultations with clinical and statistical experts, 
we chose 11 predictive variables for the concluding model. For continuous variables such as age, CRP level, and 
SOFA score, which were included in the logistic model, linearity was examined using multivariable fractional 
polynomial models based on the R package mfp (Multi-variable Fractional Polynomials)43. Considering that no 
significant nonlinear relationships were observed, the logistic model was fitted in its original scale without any 
variable transformations. We also fitted a PS model based on a logistic model. Unlike other machine learning 
models, a risk score was assigned to each risk factor, which has interpretive advantages. For this purpose, con-
tinuous variables were categorized and scored according to the level of each category corresponding to a patient 
profile. Each patient’s risk characteristics were assigned a score, which was used to determine the overall risk. 
PS models provide interpretable results compared with black box models, thus facilitating decision-making for 
clinical researchers involved in patient care. However, PS models require an underlying base model, and thus, 
the logistic model previously fitted is considered the base model. The main principle comprises approximating 
the linear combination of covariates as an overall risk score with respect to the risk. For detailed construction 
of the PS model, please refer to Sullivan et al., Zhang et al., and Greving et al.39,44,45. In the derivation dataset, 
the rate of missing data was not high. Variables with a relatively high rate of missing data were body mass index 
(4.78%), international normalized ratio (INR) (4.96%), and albumin (1.29%), all of which were < 5%. Indeed, 
6730 individuals from the derivation dataset and 2033 individuals from the validation dataset, after excluding 
those with significant missing data, were included in the analyses for model fitting. We performed model fitting 
by categorizing variables with well-established categories. In general, ML methods do not require variable cat-
egorization. However, the creation of a PS model requires categorization. In this case, we categorized variables 
according to clinical criteria or socially recognized categories (e.g. age). The categories for continuous variables 
were decided based on the ease of model interpretability. For example, CFS and body temperature values were 
derived from prior studies27,30. Values for albumin, INR, and lactate were established based on clinical significance 
(for instance, albumin levels: ≥ 3.5 g/dL as normal, 2.5 g/dL ≤ albumin < 3.5 g/dL as low, and < 2.5 g/dL indicating 
significant hypoalbuminemia; INR > 1.3 as abnormal; lactic acid ≥ 4 mmol/L as hyperlactatemia). Furthermore, 
no scaling or other variable transformations for continuous variables were performed prior to PS and logistic 
regression modeling. However, in other machine learning techniques, continuous variables were standardized 
before modeling.

Model performances of PS, OL, RF, RDA, SVM, GBM, and ENS were gauged through various metrics: the 
area under the AUC, calibration plots, the Hosmer–Lemeshow test statistic, and the Brier score. The AUC 
gauges patient risk discrimination, and the calibration plot juxtaposes predicted against observed probabilities. 
For calibration assessment, patients were categorized into 10 risk factions. Recognizing the known calibration 
measurement inefficiencies of the Hosmer–Lemeshow test, we abstained from p-value calculations, emphasizing 
test statistic model comparisons instead.

Internal validation was conducted to evaluate the apparent performance of the derivation set using the AUC, 
Hosmer–Lemeshow test statistics, and Brier score. Additionally, fivefold cross-validation was employed to assess 
predictive performance. Furthermore, external validation was conducted to evaluate model performance in the 
validation dataset. In addition, our final model was juxtaposed with the SAPS 3 scoring system using Delong’s 
AUC comparison method46. RF, RDA, SVM, and GBM implementations employed R packages: randomForest, 
klaR, e1071, and mboost, respectively47–50. ROC curves were used to gauge the discrimination capability of the 
predictive model across clinical scenarios such as community-acquired or hospital-acquired sepsis, evaluated 
via R packages pROC and ‘predictABEL’. All p-values were two-sided, with values under 0.05 deemed statisti-
cally significant.
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the participating hospitals.
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