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Abstract

Background Artificial intelligence (Al) that utilizes deep learning (DL) has potential for systemic disease prediction
using retinal imaging. The retina’s unique features enable non-invasive visualization of the central nervous system
and microvascular circulation, aiding early detection and personalized treatment plans for personalized care. This
review explores the value of retinal assessment, Al-based retinal biomarkers, and the importance of longitudinal pre-
diction models in personalized care.

Main text This narrative review extensively surveys the literature for relevant studies in PubMed and Google Scholar,
investigating the application of Al-based retina biomarkers in predicting systemic diseases using retinal fundus pho-
tography. The study settings, sample sizes, utilized Al models and corresponding results were extracted and analysed.

This review highlights the substantial potential of Al-based retinal biomarkers in predicting neurodegenerative,
cardiovascular, and chronic kidney diseases. Notably, DL algorithms have demonstrated effectiveness in identifying
retinal image features associated with cognitive decline, dementia, Parkinson’s disease, and cardiovascular risk factors.
Furthermore, longitudinal prediction models leveraging retinal images have shown potential in continuous disease
risk assessment and early detection. Al-based retinal biomarkers are non-invasive, accurate, and efficient for disease
forecasting and personalized care.

Conclusion Al-based retinal imaging hold promise in transforming primary care and systemic disease management.
Together, the retina’s unique features and the power of Al enable early detection, risk stratification, and help revo-
lutionizing disease management plans. However, to fully realize the potential of Al in this domain, further research
and validation in real-world settings are essential.
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Background

Artificial intelligence (Al) is a branch of computer sci-
ence that was developed in the 1950s with the goal
of creating intelligent machines [1]. Machine learn-
ing (ML), a subset of Al, involves algorithms that
learn from examples rather than being manually pro-
grammed [1]. On the other hand, deep learning (DL) is
built upon the artificial neural networks (ANN), which
mimic the functional structure of a human central
nervous system (CNS) [1]. In DL, a single deep neural
network can gather data as well as learn to separate out
features that are appropriate for specific classification
task and then categorize them [1]. In essence, the key
distinction between ML and DL lies in how they learn
and process information. ML relies on algorithms to
perform task without explicit programming, while DL
employs a complex algorithmic structure inspired by
the human brain [1].

This understanding of Al, ML and DL forms the foun-
dation for their application in ophthalmology, particu-
larly in the realm of retinal imaging for systemic disease
prediction and diagnosis.

Artificial intelligence (AI) and DL techniques with
ophthalmology have gained momentum, capitalizing on
the retina’s unique role as a direct window into the CNS
and microvascular circulation [2]. Retinal changes have
been linked to systemic conditions like cardiovascular
disease (CVD) and neurological disorders, evidenced by
vascular tortuosity and retinal nerve fiber layer thinning
[3, 4], prompting exploration of Al-driven retinal imag-
ing for systemic disease prediction and diagnosis. Beyond
its visual significance, the retina holds profound insights
into overall health, with robust connections established
between retinal findings and conditions such as hyper-
tension, diabetes mellitus (DM), CVD, and neurode-
generative disorders including Alzheimer’s disease (AD)
[5-7]. This underlines the retina’s potential as an invalu-
able diagnostic tool for early detection and intervention,
emphasizing its pivotal role in reshaping disease assess-
ment and risk evaluation.

In essence, a retinal biomarker is an objective measure
used in predicting, evaluating, diagnosing, and planning
treatment for various medical conditions. It is essential to
note that this concept of biomarkers predates the work
of Cheung et al. [8], who made a notable contribution in
elaborating on the concept. DL is transforming the field
of retinal biomarkers by utilizing extensive datasets and
powerful computational algorithms to derive valuable
insights from retinal imaging [8]. DL proficiency in learn-
ing intricate image features leads to the developing of a
“retinal fingerprint” for diseases [8]. This profound analy-
sis of retinal images empowers DL models to construct
robust predictive frameworks for systemic diseases,
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revolutionizing disease detection and offering a powerful
tool for precise diagnostics [8].

Central to Al's potential is its longitudinal predic-
tive prowess, which holds distinct advantages in the
shift towards value-based healthcare. Utilizing baseline
retinal photos, longitudinal prediction models forecast
the likelihood of future systemic diseases such as CVD
and chronic kidney disease (CKD) [9]. By continuously
assessing disease risk, these models enable timely inter-
ventions, personalized treatments, and optimized patient
outcomes [10]. Al's unparalleled ability for longitudinal
prediction lies in its innate capacity to uncover hidden
trends and subtle shifts that evade human perception
[10].

Unlike cross-sectional prediction reliant on single data
point, longitudinal prediction quantifies and anticipates
disease progression, thereby transforming disease man-
agement and heralding a new era of precision medicine
[10]. AT has demonstrated significant promise in quantifi-
able risk assessment in specific contexts, where DL mod-
els have been rigorously compared to human assessment,
indicating its potential to enhance disease prediction and
management strategies [11].

Here, we aim to explore the traditional value of the ret-
ina for systemic disease assessment, examine the poten-
tial of Al-based retinal biomarkers in predicting various
systemic diseases, and emphasize the importance of lon-
gitudinal prediction models for early detection and per-
sonalized care. We will review relevant studies that have
utilized DL algorithms on longitudinal data to forecast
the incidence of systemic diseases, including hyperten-
sion, DM, CVD, AD, Parkinson’s disease (PD), and CKD.
By understanding the current landscape and challenges
in this emerging field, we can pave the way for future
advancements and applications of Al in ophthalmology
for improved patient care.

Main text
Electronic bibliographic searches in PubMed and Google
Scholar up to 20 June 2023 were carried out for this nar-
rative review. MeSH terms and all-field search terms were
searched for the following criteria: “artificial intelligence’,
“deep learning’, “systemic disease’, “cardiovascular dis-
ease’, “neurodegenerative disease’, “retinal imaging’, “eye’,
and “longitudinal’;, “fundus photographs” The search was
supplemented further by using references listed in the
publications that were identified. We excluded abstracts,
correspondence, opinions, editorials, letters, cross-
sectional studies, and studies involving optical coher-
ence tomography (OCT) scans from our selection. Only
papers in the English language were used in this review.
Data extracted include study setting details (study
name, first author, year of publication, study design, study
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type, adjusted variables in the model), study popula-
tion (sample size, internal dataset, and external dataset),
application (name of systemic disease, disease category,
outcome formality, definition of the retinal biomarker),
Al model used (name of the neural network, training
platform), study results and their conclusions (Tables 1,
2 and 3).

Neurodegenerative diseases

The retina shares developmental origins, anatomical
features, and physiological properties with vital organs,
such as the brain. It can be considered an extension of
the CNS [24, 25]. These properties include microvascu-
lar architecture, regulation of blood flow, the function
of vascular barriers, and the crucial role of neurovascu-
lar coupling responses in maintaining homeostasis [24,
25]. The intimate connection between the CNS and the
microcirculation in the brain also has a significant and
direct influence on the microcirculation within the ret-
ina [24, 25]. This holds significant implications for the
detection and understanding of various neurodegenera-
tive conditions, including PD and AD, which primarily
affect the brain and spinal cord [26]. Research studies
have shown that certain ocular indicators can be corre-
lated with early-stage cognitive impairment, shedding
light on the potential role of ocular assessments in the
early detection of cognitive decline [27]. Thinning of the
retinal nerve fiber layer has been observed in individu-
als with cognitive impairment, suggesting a potential link
between retinal changes and early-stage cognitive decline
[15]. An investigation into the visual abnormalities in PD
have provided valuable insights [28]. Extensive research
indicates that retinal dopamine deficiency significantly
contributes to the visual impairments experienced by PD
patients, including deficits in acuity, contrast sensitivity,
and color perception. This is supported by evidence such
as reduced dopamine innervation around the fovea [27],
decreased retinal dopamine concentration, thinner inner
retinal layers, reduced retinal electrical activity [28—31].
Additionally, the presence of misfolded a-synuclein,
a hallmark of PD, in the inner retinal layer further sup-
ports the notion of retinal involvement in the disease [28,
32]. Other studies have also shown that OCT-measured
retinal thickness is associated with frontal temporal lobe
dementia and the severity of the disease is correlated
with retinal thinning [33].

Role of retinal biomarkers in neurodegenerative disease
without Al

Invasive techniques were used in the early diagnosis
of AD, including positron emission tomography (PET)
scans and cerebrospinal fluid (CSF) analysis, which pose
a risk to patients [34]. These methods are expensive and
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have poor sensitivity, often necessitating postmortem
histological examination for a conclusive diagnosis [35].
Recent studies, however, suggest that non-invasive meth-
ods, notably retinal imaging, can be extremely useful in
identifying AD.

Retinal imaging techniques such as OCT, opti-
cal coherence tomography angiography (OCTA), and
dynamic vessel analysis have emerged as promising non-
invasive methods to investigate functional and structural
retinal biomarkers associated with AD and vascular cog-
nitive impairment and dementia [36]. Retinal imaging
allows for a non-invasive examination of the anatomical
and functional changes impacting the brain, making AD
detection more practical and affordable.

In the last two decades, significant progress has been
made in the field of retinal imaging. The development
of semiautomated software has enabled more precise
quantitative measurement of retinal vessel calibres from
retina fundus photographs. This non-invasive approach
has proven to be extremely valuable in identifying AD
and exploring its association with cognitive function [7,
35, 37-39]. However, most of these studies often adopt a
cross-sectional approach design [7, 35, 37—39], with only
a few longitudinal studies [40] investigating the detection
of subtle changes in the link between retinal vessel cali-
bres and the risk of cognitive decline and dementia [40].
Consequently, the absence of longitudinal data hinders
the ability to draw definitive conclusions.

Furthermore, the use of semiautomated retinal ves-
sel measurement software has its own limitations. This
software heavily relies on human input and is a time-con-
suming and error prone procedure [41, 42]. As a result,
the variability in measuring retinal vessel calibre could
have contributed to inconsistent findings [41, 42].

Al-driven retinal biomarkers for neurodegenerative
diseases

Al-based retinal biomarkers have emerged as a promis-
ing approach for the early detection and monitoring of
neurodegenerative diseases. Several studies have dem-
onstrated the effectiveness of Al-based approaches in
predicting and diagnosing neurodegenerative diseases
using retinal imaging data (Table 1). A prospective study
conducted by Cheung et al. [12], which utilized a DL
algorithm on retinal photographs, investigated the rela-
tionship between DL retinal vessel calibre measurement
and the risk of cognitive decline and dementia [12]. Their
study adds to the growing body of evidence that narrow
retinal arteriolar calibre at baseline is associated with an
increased risk of cognitive decline, and it is also found to
be predictive of future dementia development [12]. This
longitudinal approach highlights the potential of retinal
imaging and vessel assessment as non-invasive tools for
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early screening and stratification of individuals suscepti-
ble to cognitive decline and dementia.

In another study, a DL algorithm was employed to
examine the association between the retinal age gap (reti-
nal age—chronological age) and the risk of developing PD
measured through retinal images. The finding revealed
that an increase of one year in the retinal age gap was
independently associated with a 10% higher risk of PD
[13, 43]. The study’s results highlighted the potential of
the retinal age gap, measured using a DL algorithm, as
a promising biomarker for identifying individuals at a
higher risk of developing PD. The use of the retinal age
gap, a non-invasive and cost-effective measure obtained
through retinal imaging, offers an opportunity for large-
scale screening. However, this study’s limitations include
selection bias due to a healthier and younger participant
sample from the UK Biobank, limited incident PD cases
for subgroup analysis, the absence of longitudinal retinal
age gap data, and the possibility of unaccounted residual
confounders [13].

Additionally, the AlzEye study [14] aims to integrate
longitudinal retinal imaging data from Moorfields Eye
Hospital NHS Foundation Trust with systemic disease
data from hospital admissions. By linking these data-
sets together, the primary focus of the analysis will be on
CVDs and dementia, with the objective of uncovering
hidden retinal signatures that can facilitate earlier detec-
tion and risk management [14]. AlzEye study’s limita-
tions include potential biases from reliance on hospital
admission data, which may not fully capture the general
population and could lead to under-recording of crucial
variables as well as the inherent selection bias associated
with the AlzEye cohort, which consists of individuals
with definite or suspected ophthalmic disease, potentially
limiting the external validity of the findings [14].

The work conducted by Cheung et al. [15] presents a
significant breakthrough in the field of AD detection.
Traditional methods for diagnosing AD are known for
their complexity and invasiveness, often involving PET
scans, CSF collection, and plasma assays to measure bio-
markers such as amyloid p and phosphorylated tau [15,
44]. In contrast, this study introduced a novel approach
that harnesses the capabilities of DL, specifically tailored
to analyse retinal photographs [15]. The study’s meth-
odology involved the compilation of data from 11 sepa-
rate studies, amalgamating retinal images from both AD
patients and healthy subjects. During the model’s internal
validation, impressive results were achieved, with accu-
racy of 83.6%, sensitivity of 93.2%, specificity of 82.0%,
and an area under the receiver operating characteristic
curve (AUROC) of 0.93 [15]. Subsequent testing across
diverse datasets demonstrated accuracy levels ranging
from 79.6% to 92.1%, accompanied by AUROCs spanning
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from 0.73 to 0.91 [15]. Additionally, the DL algorithm
exhibited the capability to distinguish between partici-
pants with positive and negative amyloid f status [15].
This research signifies a pivotal advancement in AD
screening, providing an innovative and non-invasive
means of early detection using retinal images [15]. How-
ever, the study has limitations, including a small training
dataset, potential labelling inaccuracies in the clinician-
derived diagnosis, unaccounted biases, and variable
model performance across testing cohorts [15]. None-
theless, it represents a groundbreaking approach in AD
detection using retinal images, offering a promising non-
invasive screening method [15].

Cardiovascular diseases (CVD)

The retina shares embryological, anatomical, and physi-
ological characteristics with vital organs such as the brain
and kidneys, making it a valuable source of information
about the systemic microvasculature [45]. Through the
analysis of retinal vessels, which indirectly reflect the
state of the systemic microvasculature, valuable informa-
tion can be obtained concerning microvascular altera-
tions that commonly occur prior to the development of
macrovascular disorders such as stroke and ischemic
heart disease [46].

Role of retinal biomarkers in CVD without Al

Retinal studies have revealed associations between reti-
nal changes and various systemic CVDs. For instance,
diabetic retinopathy (DR) and hypertensive retinopathy,
both well-established retinal diseases, have been associ-
ated with premature morbidity and mortality of CVDs
[47-49]. For instance, DR, which primarily affects indi-
viduals with poorly controlled diabetes and/or prolonged
diabetes duration, highlights the intricate relationship
between retinal alterations and systemic health. By iden-
tifying and characterizing these retinal biomarkers, clini-
cians gain insights into an individual’s health status and
disease risk, enabling timely interventions [50, 51].

One limitation of traditional methods is the subjectiv-
ity and potential variability introduced by human visual
perception. Different individuals may have varying levels
of expertise and subjective interpretations when analys-
ing retinal images. This can lead to inconsistencies and
potential errors in identifying and quantifying specific
retinal changes associated with CVDs [19].

In summary, traditional retinal studies helped lay the
foundation for understanding the association between
retinal changes and systemic diseases, including CVD.
These studies have demonstrated the potential of reti-
nal imaging as a non-invasive tool for early detection,
risk assessment and monitoring of various systemic
conditions.
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Al-driven retinal biomarkers for CVD

Research incorporating DL techniques demonstrate
promising outcomes in predicting and diagnosing CVD
through retinal imaging. CVD events were characterized
as instances of hospitalization or mortality resulting from
specific conditions such as myocardial infarction, stroke,
unstable angina, transient ischemic attack, peripheral
vascular disease, acute coronary heart disease, as well
as procedures including coronary, carotid, or peripheral
artery revascularizations, and major associated amputa-
tions [52]. For instance, DL showcases a robust correla-
tion between fundus image features and CVD risk [52],
introducing a new dimension to the existing compre-
hension of retinal biomarkers. Notably, integrating a DL
score into predictive models along with conventional
clinical risk factors subtly yet significantly enhances the
prediction of CVD risk for individuals with diabetes [52].

One study from Table 2, by Rim et al.,, developed a
DL-based algorithm to predict cardiovascular risk using
retinal photographs [16]. Their algorithm, RetiCAC,
outperformed single clinical parameters, such as age,
glucose, or smoking status in predicting the presence of
coronary artery calcium (CAC) [16] with an AUC of 0.742
[16, 17]. Additionally, the study evaluated the synergy
between RetiCAC and the pool cohort equation (PCE),
a well-established risk stratification framework endorsed
by the American College of Cardiology/American Heart
Association (ACC/AHA) guidelines [53, 54]. When inte-
grating RetiCAC with PCE, the researchers observed
an improved risk stratification for individuals classified
within the intermediate and borderline risk groups. The
study suggests that retinal photograph-based DL can
serve as an alternative measure of CAC, particularly in
low-resource settings [16, 17]. Additionally, it is nota-
ble that the study acknowledges its own limitations. The
study encompasses a diverse range of ethnicities, includ-
ing those in Singapore (comprising predominantly Chi-
nese, Malay, and Indian populations), South Korea, and
the United Kingdom, but broader ethnic representation
could enhance its validity [16]. A following study led by
Tseng RMWW et al. validates Reti-CVD (formerly Reti-
CAC) as a promising biomarker for identifying individu-
als with a 10% or higher 10-year CVD risk and enhancing
risk assessment for those in the borderline group (risk of
7.5%—-10%). This is particularly relevant when consider-
ing traditional risk calculators like QRISK3, a clinical
algorithm used to estimate 10-year CVD risk [17]. This
study emphasizes the potential of Reti-CVD to advance
cardiovascular risk stratification [17].

In another study, Diaz-Pinto et al. [55] developed a sys-
tem that utilizes retinal photographs and patient demo-
graphic data to estimate cardiac indices [55]. The study
presents a system that has a potential in predicting
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future myocardial infarction (MI) events during rou-
tine ophthalmic visits, by estimating the left ventricular
mass (LVM) and left ventricular end-diastolic volume
(LVEDV) [55]. The ability to predict forthcoming MI
events from retinal images in the UK Biobank popula-
tion demonstrated a sensitivity of 0.74, specificity of 0.72,
and precision/positive predictive value (PPV) of 0.68
when considering only age and gender as supplementary
demographic factors [55]. In the Age-Related Eye Dis-
ease Study (AREDS) population, the approach’s sensitiv-
ity, specificity, and precision/PPV for predicting future
MI events from retinal images were 0.70, 0.67, and 0.67,
respectively, following the exclusion of all age-related
macular degeneration (AMD) cases [55]. By incorporat-
ing cardiac indices and demographic data, the system
demonstrated improved accuracy in predicting MI com-
pared to using demographic data alone [55].

Cheung et al. [19] conducted a comprehensive study
on the use of DL models to automatically measure retinal
vessel calibre in retinal photographs, aiming to evaluate
the correlation with CVD risk [19]. The research involved
a diverse dataset with a substantial number of images
collected from various ethnicities and countries. The DL
models exhibited strong agreement with expert human
graders in accurately measuring retinal vessel calibre
[19]. Moreover, the models demonstrated comparable or
superior performance to human graders in associating
retinal vessel calibre with key CVD risk factors, includ-
ing blood pressure, body mass index, total cholesterol,
and glycated haemoglobin levels [19]. Notably, the study
revealed that the initial measurements obtained through
the DL system were prospectively linked to incident CVD
in retrospectively analysed datasets. However, the study
by Cheung et al. [19] has several limitations. They only
trained and tested the DL model on gradable retinal pho-
tographs, potentially excluding ungradable images that
could provide valuable data [19]. Additionally, the study
relied on human measurements as ground-truth labels,
introducing the possibility of intergrader variability
affecting the model’s performance and accuracy [19].

In the study by Rudnicka AR et al. [20], the authors
aimed to enhance the understanding of the relation-
ship between retinal vasculometry (RV) and CVD risk
by developing an algorithm that utilized DL methods
to distinguish between arterioles and venules, and thus
incorporating Al-enabled retinal vasculometry as an
alternative biomarker [20]. This Al-based retinal vascu-
lometry employed a fully automated system known as
QUARTZ [20]. QUARTZ utilized a supervised ML model
to create an image quality score, and DL algorithms
were used to distinguish between arterioles and venules
[20]. The study compared the performance of Framing-
ham risk score (FRS) for incident stroke and MI with the
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addition of RV to FRS, as well as a simpler model based
on RV, age, smoking status, and medical history. How-
ever, the addition of RV to FRS did not improve the pre-
diction of incident stroke and MI in either cohort [20].
Interestingly, the simpler RV model performed equally or
better than FRS [20]. The study concluded that RV could
serve as an alternative predictive biomarker for vascular
health without the need for invasive blood sampling or
blood pressure measurement [20]. However, it is impor-
tant to acknowledge the study’s limitations, including
its reliance on cohorts who are considered healthy with
low event rates and a predominantly White population,
which may affect the generalizability of the findings [20].
Further validation in more diverse and high-risk cohorts
is needed to confirm its applicability in broader popula-
tions [20].

Another study by Poplin et al. [56] demonstrated the
potential of DL models to extract cardiovascular risk fac-
tors from retinal photographs. The results showed that
the DL models were able to accurately predict various
risk factors, including age, gender, smoking status, sys-
tolic blood pressure, and major adverse cardiac events
with AUC 0.73 [95% confidence interval (CI):0.690.77]
[56]. These predictions were based on anatomical fea-
tures present in the retina, such as blood vessels and the
optic disc. However, the study acknowledges its limita-
tions, including a relatively small dataset with narrow
field of view images and missing essential clinical inputs,
emphasizing the need for validation on larger, more
diverse datasets to enhance the accuracy and generaliz-
ability of their DL models [56].

A study conducted by Chang et al. [18] created a DL
model that could predict atherosclerosis using retinal
images and examined its clinical complications. The
findings showed that individuals with higher DL-fundu-
scopic atherosclerosis score (FAS) had an increased risk
of CVD disease related deaths compared to those with
lower DL-FAS scores [18]. The DL-FAS also improved
the prediction of CVD deaths when combined with the
Framingham risk score (FRS), a commonly used risk
assessment tool [18]. However, the limitation of the study
is that it is a single-center database which comprised
solely of South Koreans, and thus limits its generalizabil-
ity, a critical concern given the dependency of CVD risk
on ethnicity [57].

Chronic kidney disease (CKD)

CKD frequently presents insidiously, with patients typi-
cally remaining asymptomatic during the early stages for
prolonged periods, leading to low awareness of the con-
dition [58]. However, as the disease progresses, patients
may experience symptoms such as polyuria or fatigue due
to anaemia, highlighting a critical stage where the risk of
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complications and progression to end-stage renal disease
(ESRD) significantly increases [59]. The assessment of
kidney function primarily relies on glomerular filtration
rate (GFR) measurements, often calculated using serum
creatinine concentration through specific formulas such
as the Chronic Kidney Disease Epidemiology Collabo-
ration (CKD-EPI) equation [59]. Additionally, CKD can
be detected by abnormal results in routine blood tests,
such as elevated urea nitrogen, cystatin C levels, and the
presence of protein or albumin in urine [59]. By harness-
ing DL’s analytical capabilities for retinal imaging, which
shares, anatomical, embryological, and physiological
characteristics with vital organs such as the kidneys [45],
researchers can explore the potential link between retinal
microvascular alterations and early stages of CKD. These
findings hold promise for uncovering novel prognostic
markers and risk stratification tools, empowering clini-
cians to intervene early and mitigate the burden of CKD-
related complications.

Prior research on retinal biomarkers without Al

Prior to the use of Al, studies examined the relationship
between elevated blood urea nitrogen and creatinine lev-
els and the occurrence of specific eye conditions, includ-
ing posterior subcapsular cataract [60], late AMD [61],
and DR [62], suggesting potential associations with kid-
ney function changes. Conversely, alterations in retinal
signs have been observed to potentially indicate changes
in kidney function. The utilization of AI can help early
identification with retinal imaging and can help identify
and minimize vascular damage to the kidneys.

Al-driven retinal biomarkers for CKD

The longitudinal studies that evaluate retinal biomark-
ers that can be utilized for CKD assessment have been
summarized in Table 3. Zhang et al. [21] utilized a DL-
based model to assess the risk of progressing to advanced
(stage 3) and severe (stages 4 and 5) CKD over a span of
six years within a longitudinal cohort. Additionally, their
research, as presented in Table 3, focused on predicting
the development of CKD in the same cohort, incorporat-
ing baseline retinal imaging and clinical metadata [21].
The findings revealed that the combined model, which
integrated risk scores extracted from retinal images and
clinical metadata, demonstrated significantly enhanced
predictive performance compared to utilizing clinical
metadata alone [21]. This indicates the potential of reti-
nal images as a valuable screening tool for risk assess-
ment and personalized treatment in the context of CKD.
This was seen in the model, where the Al was used in the
identification of type 2 diabetes mellitus (T2DM) using
retinal images of T2DM from healthy controls with high
area under the curve (AUC) values for the metadata-only
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model (AUC=0.828), the fundus image-only model
(AUC=0.923), and the combined model (AUC=0.929)
on the internal test set [21]. Additionally, the DL model
successfully stratified patients into low-, medium- and
high-risk groups for developing CKD [21]. This demon-
strates the potential for early detection and risk strati-
fication using Al-based retinal biomarkers. However,
training of the DL model was limited to a predominately
Chinese population [21]. The study can benefit from
additional validation with an external multi-ethnic popu-
lation [21].

Additionally, in another study by Zhang et al. [23], who
developed a DL model to assess retinal age, the difference
between model-based retinal age and chronological age,
termed the retinal age gap, was used to predict the risk
of ESRD. Through Cox proportional hazards regression
models, they observed that a one-year increase in the ret-
inal age gap corresponded to a 10% rise in the risk of inci-
dent ESRD [hazard ratio (HR)=1.10, 95% CI: 1.03-1.17]
[23]. Given the suitability of retinal images for early pre-
diction and longitudinal assessment, the study not only
provided valuable data for the estimation of the progres-
sion of ESRD but also served as a predictive indicator of
mortality [23]. Therefore, retina images have the capabil-
ity to serve as a screening method for evaluating risk and
providing individualized treatment. In tandem with pre-
viously mentioned studies that utilized the UK Biobank
cohort, this study also exhibits limitations, including a
restricted subgroup analysis due to a small number of
patients with kidney failure and the absence of longitudi-
nal fundus photography data, which may impact the gen-
eralizability and depth of findings [23].

Last, a study by Joo et al. [22] developed a non-invasive
CKD risk stratification tool called “Reti-CKD” derived
from retina-based DL and clinical factors [22]. The per-
formance of the Reti-CKD was compared against tradi-
tional estimated glomerular filtration rate (eGFR) based
methods that assess the kidneys’ ability to filter toxins or
waste from our blood [22]. When compared to the cur-
rent standard of care (eGFR-CKD score), the Reti-CKD
score exhibited significantly greater predictive per-
formance based on C-statistic and net reclassification
index (NRI) values [22]. Overall, the study showcases
the potential of an Al-based biomarker, the Reti-CKD
score, in a non-invasive way for predicting the risk of
CKD development by leveraging DL algorithms trained
on retinal photographs and incorporating clinical fac-
tors [22]. The Reti-CKD score outperformed traditional
eGFR-based methods [22]. Lastly, external validation of
this study was limited due to the Korean Diabetic Cohort,
warranting the need of further validation in diverse dis-
ease populations and ethnicities [22].
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Overall limitations of Al in retinal biomarkers

While AI holds promise in retinal imaging for systemic
disease prediction, its practical application faces limi-
tations. Robust models demand extensive and diverse
datasets, highlighting the challenge of bias-free data col-
lection. Moreover, the potential of longitudinal prediction
models for personalized treatment plans is hindered by
scarce longitudinal data for training and validation. Thus,
capturing disease progression over time is essential for
systemic disease prediction. Additionally, unaccounted
confounding factors, such as pulse cycle-induced retinal
calibre variations, medical history (such as hypertension
and diabetes), medications, and distinct individual retinal
pathologies, can impact outcomes [12]. Notably, some
studies exhibit imbalanced distributions of clinical condi-
tions and demographics among participants, potentially
distorting relationships between retinal biomarkers (e.g.,
retinal vessels calibre) and neurodegenerative conditions,
leading to misleading conclusions [12].

There are ethical concerns surrounding the use of Al in
healthcare. An example would be the technical limitation
of Al utilization, stemming from the fact that Al-based
systems frequently suffer from a lack of transparency
[63]. While it was once common to label DL as black
boxes due to their limited explainability [63, 64], the field
of explainable artificial intelligence (XAI) has made sig-
nificant progress in recent years [65]. Today, there are
numerous XAI methods that have been developed to
address the issue of model transparency and interpret-
ability [65]. These methods provide insights into how
Al models arrive at a specific prediction, enhancing our
ability to understand their output [65]. One example in
the context of cardiac imaging studies is the application
of post hoc interpretability methods such as “gradient-
weighted class activation mapping (Grad-CAM)” which
has been proven invaluable [65]. Grad-CAM generates
heatmaps that visually reveal which specific areas within
a medical image have influenced the Al model’s diag-
nostic decision. By highlighting the regions that played a
pivotal role in the model’s output, these heatmaps offer
clinicians and researchers a clear and interpretable rep-
resentation of how Al algorithms arrive at their conclu-
sions [65].

In the context of Al investigations within the field of
ophthalmology, there are various limitations that affect
the development and application of Al algorithms for
retinal biomarkers. The issue relates in how potential
biases, geographical skew, and stakeholder diversity
significantly impact the development of guidelines and
recommendations [66]. One example of this represen-
tation is the Developmental and Exploratory Clinical
Investigations of Decision support systems driven by
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Artificial Intelligence (DECIDE-AI) survey which was
heavily skewed towards European and UK scientists
(83% of scientific experts) [66]. This poses a significant
hurdle for generalizability of AI algorithms when used
in different environments [66]. This is because the Al
systems developed were highly dependent on their
operational environment and their performance can be
affected in different settings [67]. This bias in repre-
sentation can lead to challenges in ensuring the broad
applicability of AI algorithms in different ophthalmo-
logical settings [67].

Similarly, the lack of randomized controlled trials
(RCTs) for comparison in the performance of AI mod-
els with the current standard of care can impede the
integration of Al into clinical practice [68].

There is also difficulty in ensuring good quality and
consistency of retinal images across different datasets
[17]. This limitation underscores the need for robust
quality control measures to enhance the reliability
and reproducibility of Al predictions based on retinal
imaging [17].

Lastly, in our comprehensive review, which focused
on the application of Al-based retinal biomarkers in
predicting systemic disease, we acknowledge a limita-
tion pertaining to the exclusion of studies related to
OCT imaging. While we recognize the significance
of OCT as a valuable imaging modality for assessing
retinal health and its potential contributions to under-
standing systemic disease prediction, we deliberately
chose not to include it as a search criterion in our
review for several reasons. First, our research scope
was primarily oriented towards studies that utilize
retinal fundus photography given its wide availability
and non-invasive nature [69]. Second, colour fundus
photography (CFP) offers practicality and accessibility
in ophthalmology and primary care settings, making it
the preferred tool for screening, especially in resource-
limited environments. Third, its simplicity, cost-effec-
tiveness, and ease of use distinguishes it from OCTA
which requires specialized equipment and expertise,
limiting its widespread use, particularly in family or
internal medicine clinics [70]. Fourth, CFP remains a
valuable tool for ophthalmic diagnosis because it pro-
vides information beyond microvascular circulation.
CEP allows for the assessment of colour, reflexes, and
signs such as the copper wiring sign in hypertensive
retinopathy [71], which are essential for a comprehen-
sive evaluation and diagnosis. These clinical features
cannot be fully replicated by OCTA [71].

In the future, we could explore the synergies between
OCT and retinal fundus photography in Al-driven sys-
temic disease prediction.
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Disscusion

The clinical relevance of retinal imaging for systemic dis-
eases is multifaceted. It enables early detection, allow-
ing for timely diagnosis and intervention, all without the
need for invasive procedures or extensive testing. More-
over, it significantly reduces the diagnostic burden on
patients who would otherwise have to visit various spe-
cialists for a comprehensive evaluation.

A recent study conducted by the research teams from
Moorfields Eye Hospital and UCL Institute of Ophthal-
mology illustrates the transformative potential of retinal
biomarkers [72]. They identified indicators of PD an aver-
age of seven years before clinical diagnosis, represent-
ing a paradigm shift in healthcare [72]. It streamlines the
diagnostic process by providing not only ophthalmolo-
gists but also physicians from various specialties such as
neurologists with a non-invasive tool to aid in the early
identification of systemic diseases (e.g., PD) [72]. This not
only enhances patient care by enabling early intervention
but also reduces the burden of multiple, often invasive,
diagnostic procedures [72].

Looking ahead, the enhancement of DL model recog-
nition capabilities in various image segmentation tasks
presents a promising avenue for future research. Domain
adaptation and transfer learning have shown their signifi-
cance in previous studies as demonstrated by the work of
Tian et al. [73]. However, the inevitability of device-based
domain variations in clinical settings necessitates the
development of robust domain adaptation techniques [73].
These techniques will enable DL models to perform effec-
tively when presented with data from previously unseen
databases, and thus enhance the practical utility of DL
models in the field of medical image segmentation [73].

The application of transfer learning techniques can
hold significant potential within the realm of retinal
fundus photography. This approach involves harnessing
knowledge from one task and applying it to a distinct yet
related task, primarily by reusing a pre-trained model
[74]. This methodology proves especially advantageous
when confronted with tasks featuring limited data avail-
ability [74]. To illustrate this concept further, we can
draw inspiration from a 2018 study by Kermany et al.
[74]. Their application of transfer learning involved the
utilization of a fraction of the data typically required by
conventional DL methods for training [74]. They directed
this approach towards an OCT dataset, addressing the
challenge of choroidal neovascularization (CNV) and
three additional classifications [74]. Remarkably, their
model exhibited exceptional performance, achieving an
accuracy rate of 96.6%, a sensitivity score of 97.8%, and
specificity of 97.4%. These results rivalled the diagnostic
proficiency of senior ophthalmologists [74].
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By advancing the capabilities of DL models in the con-
text of retinal imaging, we open the doors to transforma-
tive changes in the early detection and monitoring of
systemic diseases, ultimately improving patient outcomes
and reducing the burden of healthcare procedures.

While the utilization of retinal imaging is not currently
a standard practice in frontline care, there are promising
developments that warrant consideration. One key factor
to highlight is the accessibility and affordability of retinal
imaging technology. Several fully automated retinal imaging
systems are already available in the market [75], and as tech-
nology advances, their cost-effectiveness is likely to improve
[75]. These developments make it increasingly feasible for
retinal vessel examination to become a routine adjunct for
primary care doctors. For example, in primary care settings,
where patients often receive initial assessments for various
health concerns, retinal imaging could serve as a valuable
addition to the diagnostic toolbox [75]. Imagine a scenario
where a patient visits their family physician for a routine
check-up. During this visit, alongside other standard evalu-
ations, a retinal imaging scan is conducted as part of the
assessment. Retinal fundus photography can provide valu-
able information about the patient’s overall health, including
potential indicators of systemic diseases.

Lastly, generalizability is a cornerstone in the develop-
ment of Al algorithms applied to medical image analy-
sis, necessitating the inclusion of diverse subjects during
development and validation through an external dataset.
In our review of 14 studies, we identified two studies —
Cheung et al. [15] and Rim et al. [16] — that meticulously
adhered to these principles. They effectively employed
well-designed DL techniques, including recent advance-
ments like the EfficientNet architecture, and appropri-
ate preprocessing methods, highlighting the potential for
robust and reliable research outcomes in ophthalmology.

Conclusions

In this comprehensive review, we explored the vast landscape
of AI applications in the assessment of systemic diseases,
with a particular emphasis on the transformative potential of
retinal imaging as a predictive tool for detecting and moni-
toring neurodegenerative disease, CVD and CKD. The retina
offers a unique opportunity for non-invasive visualization of
the CNS and microvascular circulation, making it a valuable
source of information for assessing overall health. Various
studies have demonstrated the correlation between retinal
changes and diseases such as neurodegenerative disorders,
CVD, and CKD. Al-based retinal biomarkers have emerged
as a powerful approach for early disease detection, risk
stratification, and personalized care. Longitudinal prediction
models, which utilize baseline retinal images to forecast the
probability of developing specific diseases in the future, offer
significant advantages in monitoring disease progression.

Page 16 of 18

Abbreviations
ACC/AHA American College of Cardiology/American Heart Association
AD Alzheimer’s disease

AMD Age-related macular degeneration

AREDS Age-Related Eye Disease Study

AUROC Area under the receiver operating characteristic curve

CAC Coronary artery calcium

CcvD Cardiovascular disease

CKD Chronic kidney disease

CKD-EPI Chronic Kidney Disease Epidemiology Collaboration

CMERC-HI  Cardiovascular and Metabolic Disease Etiology Research Center-
High Risk

CC-FI China Consortium of Fundus Image Investigation

CMR Cardiovascular magnetic resonance

CNS Central nervous system

cT Computational tomography

DECIDE-Al  Developmental and Exploratory Clinical Investigations of Deci-
sion support systems driven by Artificial Intelligence

DM Diabetes mellitus

DR Diabetic retinopathy

ESRD End-stage renal disease

EPIC European Prospective Investigation into Cancer

FAS Funduscopic atherosclerosis score

FRS Framingham risk score

eGFR Estimated glomerular filtration rate

GFR Glomerular filtration rate

HR Hazard ratio

HKCES Hong Kong Children Eye Study

HPC-SNUH  Health Promotion Center of Seoul National University Hospital

LVEDV Left ventricular end-diastolic volume

LVM Left ventricular mass

M Myocardial infarction

MACE Major adverse cardiovascular events

MACC Memory, Ageing and Cognition Center

OoCT Optical coherence tomography

OCTA Optical coherence tomography angiography

PD Parkinson’s disease

PCE Pool cohort equation

RV Retinal vasculometry

RCTs Randomized controlled trials

SEED Singapore Epidemiology of Eye Diseases

SIVA-DLS Singapore | Vessel Analyzer Deep-Learning System

T2DM Type 2 diabetes mellitus
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