
© 2024 by The Korean Society of Nephrology
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial and No Derivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted non-commercial use, distribution of the material without any modifications, 
and reproduction in any medium, provided the original works properly cited.

Immunoglobulin A nephropathy (IgAN) is one of the most 

common kidney diseases worldwide, which exhibits var-

ious clinical courses [1]. Patients can experience a range 

of disease severity from mild to severe and may progress 

to kidney failure with renal replacement therapy or kidney 

transplantation due to the challenges in treatment. These 

serious complications can significantly impair patient 

survival and quality of life, highlighting the importance of 

accurately predicting IgAN prognosis to initiate timely and 

appropriate treatment and management. 

In this context, a machine learning model for predicting 

the prognosis of IgAN patients can be a highly useful tool in 

the medical field [2–4]. Through this model, nephrologists 

can identify individual patient risks and can intervene ear-

ly to improve prognosis. Therefore, this study emphasizes 

that the development and evaluation of machine learning 

models for predicting IgAN prognosis could be a crucial 

turning point in the treatment and management of kidney 

diseases. Such algorithms can assist healthcare providers 

in properly managing patients and formulating treatment 

plans based on accurate prognosis prediction. 
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The study utilized a retrospective cohort of 1,301 patients 

with IgAN to derive and externally validate a machine 

learning-based random forest model [5]. This model was 

employed to predict both primary outcomes (a 30% decline 

in estimated glomerular filtration rate from baseline or the 

need for renal replacement therapy within 2 years after 

renal biopsy) and secondary outcomes (improvement in 

proteinuria). As a result, for the 2-year prediction of prima-

ry outcomes, metrics such as accuracy, recall, area under 

the curve, precision-recall curve, F1 score, and Brier score 

were found to be 0.259, 0.875, 0.771, 0.242, 0.400, and 0.309, 

respectively (Table 1). In contrast, results for secondary 

outcomes were observed to be 0.904, 0.971, 0.694, 0.903, 

0.955, and 0.113, respectively. Shapley Additive exPlana-

tions (SHAP) analysis revealed that baseline proteinuria 

was the most informative feature for identifying primary 

and secondary outcomes. Furthermore, using probabili-

ties derived from the 2-year primary outcome prediction 

model to forecast 10-year renal outcomes in Kaplan-Meier 

analysis, the high (hazard ratio [HR], 13.00; 95% confidence 

interval [CI], 9.52–17.77) and moderate (HR, 12.90; 95% 

CI, 9.92–16.76) groups exhibited higher risks compared to 

the low-risk group. In the 2-year secondary outcome pre-

diction model, the low (HR, 1.66; 95% CI, 1.42–1.95) and 
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moderate (HR, 1.42; 95% CI, 0.99–2.03) groups were found 

to have greater risks in 10-year prognosis compared to the 

high-risk group. Therefore, the machine learning-based 

2-year risk prediction model for predicting IgAN progres-

sion demonstrated reliable performance and effectively 

predicted long-term renal outcomes. 

A key strength of this paper is its significant contribu-

tion to conditions like IgAN, where accurate prognosis is 

challenging. The validation of the model through external 

validation and reproducibility studies highlights its gener-

alizability. Additionally, the enhancement of interpretabil-

ity through SHAP analysis and confirmation of the model’s 

ability to predict long-term outcomes via Kaplan-Meier 

analysis are also noteworthy strengths of this research. 

However, the development and evaluation of such 

models entail several key considerations. First, additional 

external validation and reproducibility studies are need-

ed to enhance the reliability of the model’s performance 

and generalizability. With many variables being utilized, 

there’s a risk of the model overfitting to the training data, 

potentially leading to issues of overfitting. Indeed, while 

performance metrics within the internal dataset of this 

study appear promising, there’s a notable decrease in per-

formance when applied to external datasets. Therefore, 

reinforcing the model’s generalizability using results from 

external datasets and ensuring consistent predictive per-

formance across diverse environments are crucial. This 

would help elevate the model’s reliability and maintain the 

consistency of predictions. Second, efforts to enhance the 

interpretability and transparency of the model are vital. 

Interpretability refers to the ability to clearly understand 

and explain which variables or features the model bases 

its predictions on. This aids healthcare professionals and 

patients in comprehending and trusting the model’s pre-

dictions. Transparency pertains to the clear disclosure of 

the model’s internal workings and decision-making pro-

cesses. In other words, understanding how the model ana-

lyzes data and makes predictions should be made evident. 

High transparency models not only enhance confidence in 

medical decisions but also provide evidence for why cer-

tain predictions are made, supporting the decision-making 

process. Lastly, empirical studies are necessary to confirm 

whether the model can be effectively utilized in clinical 

settings. Evaluating whether doctors or clinical teams can 

easily apply and comprehend the model is paramount. 

Assessing the impact of the model on actual patients and 

evaluating its usefulness and effectiveness in real-world 

scenarios should follow suit. Empirical studies in clinical 

settings should be conducted iteratively from the model’s 

development stages. Evaluating how the model operates in 

real-world settings allows for the verification of its perfor-

mance and validity. This process enables the assessment of 

whether the model can provide tangible value in medical 

settings and, if necessary, allows for model supplementa-

tion and improvement. Therefore, empirical studies play a 

crucial role in confirming how the model can be applied in 

real-world settings, assessing its practical utility, and deter-

mining its clinical validity. 

In conclusion, this research has made significant strides 

by developing and evaluating a machine learning-based 

predictive model for forecasting the prognosis of IgAN 

patients. However, further research and validation are re-

quired, and additional efforts are needed to evaluate the 

medical utility and clinical applicability of the model. 
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Table 1. Performance metrics for the 2-year prediction model
Metric Primary outcome Secondary outcome
Accuracya 0.259 0.904
Recallb 0.875 0.971
Area under the curvec 0.771 0.694
Precision-recall curved 0.242 0.903
F1 scoree 0.400 0.955
Brier scoref 0.309 0.113

aThe ratio of correctly predicted instances to the total instances. bThe ability 
of the model to correctly identify positive instances. cMeasures the ability 
of the model to distinguish between classes. dA curve that shows the trade-
off between precision and recall for different threshold values. eThe har-
monic mean of precision and recall, providing a balance between the two. 
fMeasures the mean squared difference between predicted probabilities 
and actual outcomes, with lower values indicating better accuracy.
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