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Abstract: Papillary thyroid cancer (PTC) is one of the most treatable forms of cancer, with many cases
being fully curable. However, resistance to anticancer drugs often leads to metastasis or recurrence,
contributing to the failure of cancer therapy and, ultimately, patient mortality. The mechanisms under-
lying molecular differences in patients with metastatic or recurrent PTC, particularly those resistant
to anticancer drugs through epigenetic reprogramming, remain poorly understood. Consequently,
refractory PTC presents a critical challenge, and effective therapeutic strategies are urgently needed.
Therefore, this study aimed to identify small-molecule inhibitors to enhance treatment efficacy in
lenvatinib-resistant PTC. We observed an increase in sarco/endoplasmic reticulum calcium ATPase
(SERCA) levels in patient-derived lenvatinib-resistant PTC cells compared with lenvatinib-sensitive
ones, highlighting its potential as a therapeutic target. We subsequently identified two SERCA
inhibitors [candidates 40 (isoflurane) and 42 (ethacrynic acid)] through in silico screening. These
candidates demonstrated significant tumor shrinkage in a xenograft tumor model and reduced cell
viability in patient-derived lenvatinib-resistant PTC cells when used in combination with lenvatinib.
Our findings have potential clinical value for the development of new combination therapies to
effectively target highly malignant, anticancer drug-resistant cancers.

Keywords: papillary thyroid cancer; lenvatinib; drug-resistant; SERCA inhibitors

1. Introduction

Thyroid cancer (TC) is the most common endocrine malignancy, characterized by
the development of cancer cells in the thyroid gland in the neck [1,2]. TC is typically
classified into four subtypes: medullary TC (MTC), follicular TC (FTC), papillary TC (PTC),
and anaplastic TC (ATC) [3]. Clinically, TCs are categorized as either undifferentiated or
differentiated [4,5]. Well-differentiated TC generally has a favorable prognosis, whereas
poorly differentiated or undifferentiated TC (PDTC and UTC) is rare and associated with
a poor prognosis [6,7]. Refractory TC, such as PDTC and UTC, exhibits resistance to anti-
cancer drugs due to epigenetic reprogramming, leading to recurrence or metastasis and
ultimately patient death [8]. Despite clear clinical behaviors, the biological and molecular
mechanisms underlying drug sensitivity and resistance in these cancers require further
investigation [9,10]. Consequently, research has focused on elucidating the differences
between drug-sensitive and drug-resistant cancers, particularly through the analysis of mu-
tations [11,12]. PTC is well known general endocrine malignancy, which represents almosty
over 80% of whole well-differentiated TC, a 10 year survival of about 90%, it is regarded a
slothful cancer [13]. Even though the properties of PTCs are well differentiated with a low
rate of recurrences or metastases, partial drug resistant subclone shows aggressive variants,
with distinct clinical and pathological features. Among mostly aggressive variants of PTC

Int. J. Mol. Sci. 2024, 25, 10646. https://doi.org/10.3390/ijms251910646 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms251910646
https://doi.org/10.3390/ijms251910646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6004-0782
https://orcid.org/0000-0002-3435-3985
https://doi.org/10.3390/ijms251910646
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms251910646?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 10646 2 of 16

are the tall cell variant (TCV), diffuse sclerosing variant (DSV), solid variant (SV), hobnail
variant (HV) and columnar cell variant (CCV). These variants have been involved with
higher rates of recurrence and metastasis, as well as in several cases may have lower sur-
vival rate [14]. However, the molecular mechanisms of drug resistance in PTC remain poorly
understood. This resistance, driven by epigenetic reprogramming, contributes significantly
to the increased mortality associated with anticancer drug-resistant PTC, underscoring the
need for effective therapeutic strategies [15]. Lenvatinib targets fibroblast growth factor
receptors 1–4 (FGFR-1–4), vascular endothelial growth factor receptors 1–3 (VEGFR1–3),
and platelet-derived growth factor receptor α (PDGFRα) in PTC. In lenvatinib-resistant
cancer cells, several methods to aquire mechanism of lenvatinib-resistant were included
epithelial-mesenchymal transition (EMT), RNA modification, translational modification
and lenvatinib self target signal pathway [16].

This study aimed to identify small-molecule inhibitors to enhance treatment efficacy
in lenvatinib-resistant PTC. The latent role of SERCA in cancer progression and survival
has been a dynamic area of study given its role in cytosolic free calcium homeostasis and
its influence on cell survival and ER stress pathway. Overall, these research propose that
SERCA is a common mechanism to avoid apoptosis under acute ER stress condition [17].
We validated and identified inhibitors of sarco/endoplasmic reticulum calcium ATPase
(SERCA), a crucial regulator of cytoplasmic free calcium levels [17–19], which are notably
elevated in patient-derived lenvatinib-resistant PTC compared with lenvatinib-sensitive
PTC. Cytoplasmic free calcium is implicated in various cellular processes, including those
involved in cell survival and death, such as autophagy and apoptosis, particularly under
severe endoplasmic reticulum (ER) stress conditions [19,20]. Our findings indicated that
the newly identified SERCA inhibitors (compounds 40 and 42) are promising therapeutic
options against refractory PTC, including lenvatinib-resistant PTC.

2. Results
2.1. Patient-Derived PTC Cell Lines and Their Properties

Three classes of PTC cell lines—YUMC-S-P2 (a patient-derived lenvatinib-sensitive
PTC cell line), and YUMC-R-P7 and YUMC-R-P8 (lenvatinib-resistant PTC cell lines)—used
in this study were derived from resected specimens of patients treated at Severance Hos-
pital, Yonsei University College of Medicine, Seoul, Republic of Korea (Table 1). These
patient-derived PTC cells were characterized cancer stemness gene expression profiling
based on RNA-Seq analysis (Figure 1) and immunoblot assay (Supplementary Figure S1).
Immunoblot carried out antibody of B-Raf (V600E mutant specific and ELF3 [E26 transfor-
mation (ETS)-specific related transcription factor-3 (ELF3)] in BRAF wild-type TC (FTC133,
CAL62 and ML1) and BRAF-mutant PTC (8505C,YUMC-S-P2, -R-P7 and –R-P8). BRAF mu-
tation is associated with overexpression of ELF3 in PTC. PTC patients as lenvatinib-sensitive
or -resistant was classified underwent lenvatinib after which the disease progression was
confirmed in the lenvatinib response evaluation. In lenvatinib-resistant PTC patient, cancer
recurrence and metastasis were caused after lenvatinib prescribed. The lenvatinib-resistant
cell lines, YUMC-R-P7 and YUMC-R-P8, exhibited greater resistance than the lenvatinib-
sensitive YUMC-S-P2. This resistance was associated with metastasis or recurrence, as
documented in the pathology reports of these patients (Table 1).

Table 1. Clinical characteristics of patients in the current study. Patient-derived papillary thyroid
cancer (PTC) cells were isolated from specimens collected from these patients.

YUMC-S-P2 YUMC-R-P7 YUMC-R-P8

Age at Diagnosis 53 57 52

Gender Male Female Male

Primary Disease Site Thyroid Thyroid Thyroid

Stage T4aN1bM0 T4aN1bM1 T4aN1bM1
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Table 1. Cont.

YUMC-S-P2 YUMC-R-P7 YUMC-R-P8

Primary Pathology Papillary thyroid cancer
Papillary thyroid cancer

(Recurrence & Metastasis after
lenvatinib treatment)

Papillary thyroid cancer
(Recurrence & Metastasis after

lenvatinib treatment)

Classification of specimen
used for culture Fresh tumor Fresh tumor Fresh tumor

Obtained from Severance Hospital, Seoul,
Republic of Korea

Severance Hospital, Seoul,
Republic of Korea

Severance Hospital, Seoul,
Republic of Korea
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Figure 1. Characteristics of the patient-derived papillary thyroid cancer (PTC) cell lines used in this
study. (A) Hierarchical clustering of gene expression differences between patient-derived lenvatinib-
sensitive and -resistant PTC cells. (B) Analysis of gene expression transitions based on RNA-Seq data,
focusing on cancer stem cell (CSC) markers, fibroblast growth factor (FGF) and FGF receptor-related
genes, and epithelial-mesenchymal transition (EMT) markers in lenvatinib-sensitive and -resistant
PTC cells. (C) Bar plot showing 15 significant pathways induced in the lenvatinib-resistant PTC
cells, with comparisons between YUMC-R-P7 (top) and YUMC-R-P8 (bottom). (D) Variations in
SERCA isoform-dependent RNA expression between lenvatinib-sensitive and lenvatinib-resistant
PTC cells under basal conditions. * p < 0.05 vs. lenvatinib-sensitive PTC cells, YUMC-S-P2; ** p < 0.01
vs. lenvatinib-sensitive PTC cells, YUMC-S-P2.

2.2. Distinctions in Genetic Alterations and Activated Signaling Pathways between
Patient-Derived Lenvatinib-Sensitive and -Resistant PTC Cell Lines

Cancer stem cell (CSC) properties and the activation of survival signaling pathways
are more pronounced in certain cells that survive under severe ER stress conditions than
in non-CSC cells [21–25]. These features are crucial in understanding how CSCs exhibit
resistance to therapeutic agents [26,27]. Drug-resistant cancer cells often display traits asso-
ciated with cancer stemness, as evidenced by several studies [20,22,24]. In this study, we
identified genetic alterations through epigenetic reprogramming between drug-sensitive
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and -resistant cancer cells. To elucidate the genetic changes and the stimulated signal-
ing pathways between lenvatinib-sensitive (YUMC-S-P2) and -resistant (YUMC-R-P7 and
YUMC-R-P8) PTC, we conducted RNA sequencing (RNA-Seq) to perform a transcriptome
analysis (Figure 1A–C). Based on RNA-Seq analysis, gene expression profiling revealed
that, compared with YUMC-S-P2, YUMC-R-P7 and YUMC-R-P8 cells showed a significant
upregulation of cancer stemness markers (KRT17high, ALDH1A1high, CD133high, CD44high,
SOX2high, KRT19low, and CD24low) (Figure 1B, top). EMT is known as involved in drug resis-
tance characteristic of cancer cells. Furthermore, FGF/FGFR signaling pathway involved
in cancer development and drug resistance. In lenvatinib-resistant PTC, notable differences
were also observed in cancer fibroblast growth factors and their receptors (FGF1, FGF5,
FGF11, FGF13, FGF16, FGFR2, FGFR3, and FGFR4), and additional EMT markers [zinc finger
protein SNAIL1 (SNAIL1), SNAIL2, zinc finger E-box-binding homeobox 1 (ZEB1), ZEB2, and
twist family bHLH transcription factor 1 (TWIST1)] (Figure 1B, middle and bottom).

Particularly, KEGG pathway analysis indicated that signaling pathways related to
calcium and cancer stemness, including Notch, Wnt, PPAR, PI3K/Akt, and TGF/SMAD,
were significantly more activated in lenvatinib-resistant PTC than in lenvatinib-sensitive
PTC (Figure 1C, top and bottom) [23,24,28–30]. We hypothesize that these highly activated
calcium-related genes and signaling pathways in lenvatinib-resistant PTC cells are crucial
in enabling PTC cells to evade cytoplasmic calcium-mediated apoptosis under severe ER
stress conditions induced by drug treatment such as lenvatinib [23,28]. ER stress enhances
the release of cytosolic free calcium from the ER to the cytosol via IP3R (inositol 1,4,5-
trisphosphate) receptors, which is regulated by calcium pumps, exchangers, and channels
to maintain cellular calcium homeostasis. However, inordinate elevation of cytosolic
free calcium beyond physiological levels triggers apoptotic signals under acute ER stress
conditions by drug treatment. SERCA is a pivotal regulator and therapeutic target in the
regulation of cytosolic overburdened calcium in cancer [28,29].

The RNA-Seq analysis also highlighted a significant difference in the expression levels
of SERCA (ATP2A) isoforms, known to be key regulators of calcium homeostasis. The
basal levels of selective SERCA 1 expression among SERCA 2 and 3, which influence
survival of drug-resistant PTC under severe ER stress conditions [18,31–33], were higher in
YUMC-R-P7 and YUMC-R-P8 compared with those in YUMC-S-P2 (Figure 1D). Therefore,
the use of lenvatinib-resistant PTC in the current study could be instrumental in develop-
ing therapeutic strategies for managing cancer metastasis or recurrence in patients with
refractory PTC subtypes. The current results showes that the increase of SERCA expression
could be therapeutic target in lenvatinib-resistant PTC cells.

2.3. Identification of Therapeutic Molecules, Candidates 40 and 42, Based on SERCA Structure
through In-Silico Screening for Suppression of Lenvatinib-Resistant PTC

To provide a foundation for our findings, we hypothesized that the functional inhibi-
tion of SERCA could offer a viable clinical strategy for suppressing lenvatinib-resistant PTC
cells. We screened numerous chemical compounds for their ability to bind with SERCA,
assessing their pharmacophoric binding interactions via in-silico screening. The potential
SERCA inhibitors were screened from virtual chemical library based on chemical binding
similarity to the previously-known SERCA1 inhibitors. The chemical compounds that have
high similarity to the known inhibitors (cutoff 0.75) were selected as a candidate for exper-
imental validation. The number of selected molecules were six from synthetic chemical
library and nine from approved or experimental drugs in DrugBank database. As expected,
three drugs known to target SERCA1 (DrugBank ID DB04638, DB07604 and DB03909)
showed very high SERCA-binding score (>0.8). Most of the candidates found in Drug-
Bank are known to bind P-type ATPase family such as sodium/potassium-transporting
ATPase subunit alpha-1 (AT1A1_HUMAN), potassium-transporting ATPase alpha chain
1 (ATP4A_HUMAN), and mitochondrial ATP synthase subunit delta (ATPD_HUMAN),
which belong to the same protein family with SERCA1 (calcium-translocating P-type AT-
Pase and HAD-IC family P-type ATPase). Notably, candidates 40 and 42 were identified
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and selected owing to their relatively high binding affinity to the molecular structure of
SERCA. These candidates showed considerable suppression of SERCA function, leading to
their selection as SERCA inhibitors in this study (Figure 2A). Candidates 40 and 42 repre-
sent therapeutic small molecules aimed at suppressing lenvatinib-resistant PTC. However
candidate 40 and 42 alone treatment respectively was no considerably influenced to normal
parathyroid cell in a dose-dependent manner (Supplementary Figure S2). Lenvatinib treat-
ment alone was showed siginificantly suppressed to cell viability of normal parathyroid
cell (Supplementary Figure S2).
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sensitive (left) and lenvatinib-resistant (middle: YUMC-R-P7, right: YUMC-R-P8) PTC cells exposed
to the SERCA inhibitors (thapsigargin; positive control, candidates 40 and 42) in combination with
lenvatinib. Points represent the mean percentage of values relative to the solvent-treated control.
(C) Immunoblot analysis showing the effects of combining lenvatinib with the SERCA inhibitors
on both lenvatinib-sensitive and lenvatinib-resistant PTC cells. All experiments were conducted in
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We conducted cell viability and immunoblot analyses to evaluate the anticancer effects of
these candidates on lenvatinib-sensitive (YUMC-S-P2) and lenvatinib-resistant (YUMC-R-P7
and YUMC-R-P8) (Figure 2B,C) PTC cells, both with lenvatinib alone and in combination
with the SERCA inhibitors, candidates 40 or 42. The viability of lenvatinib-sensitive PTC cells
(YUMC-S-P2) was significantly reduced in a dose-dependent manner following treatment
with lenvatinib, regardless of the presence or absence of SERCA inhibitors (Figure 2B, left).
In contrast, lenvatinib had no significant impact on the viability of lenvatinib-resistant PTC
cells (YUMC-R-P7 and YUMC-R-P8) under the same conditions. However, the combined
treatment of lenvatinib and SERCA inhibitors (thapsigargin as a positive control, along with
candidates 40 and 42) significantly decreased the viability of lenvatinib-resistant PTC cells in
a dose-dependent manner (Figure 2B, middle and right). Treatment with SERCA inhibitors
alone did not significantly affect the viability of either lenvatinib-sensitive or -resistant PTC
cells. The half-maximal inhibitory concentration (IC50) of the lenvatinib treatment alone
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was 12 µM in lenvatinib-sensitive PTC cells (Table 2). There is no considerable difference
in the IC50 of lenvatinb alone or combined with SERCA inhibitors during treatment. Mean-
while, the anti-cancer influence of lenvatinib treatment alone showed no meaningful point in
lenvatinib-resistant PTC. However, the anti-cancer influence of lenvatinib was significantly
strong, when combined with SERCA inhibitors. The IC50 of combination with lenvatinib and
SERCA inhibitors was respectively 12–25 µM in YUMC-R-P7 and -P8, lenvatinib-sensitive
PTC cells (Table 2). Unlike lenvatinib-sensitive PTC, lenvatinib-resistant PTC cells showed a
marked increase in the expression of BCL-2 and SERCA1 among the SERCA isoforms when
treated with lenvatinib (Figure 2C). However, combination therapy with lenvatinib and the
SERCA inhibitors (candidates 40 and 42) significantly increased markers of ER stress (CHOP)
and apoptosis (cleaved-caspase 3) through the functional inhibition of SERCA (Figure 2C).
Therefore, SERCA inhibitors may play a critical role in enhancing survival by managing the
overload of cytoplasmic free calcium under severe ER stress conditions induced by lenvatinib
in lenvatinib-resistant PTC.

Table 2. IC50 values for combinational value of SERCA inhibitors with lenvatinib in lenvatinib-
sensitive and -resistant PTC cells. Each data point infers the mean of three particular MTT assays,
carried out in triplicate. SEM, standard error of the mean; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; IC50, half-maximal inhibitory concentration. L; lenvatinib, T; Thapsi-
gargin, C40; Candidate 40, C42; Candidate 42.

Cell Line Histopathology Animal
Cell Proliferation IC50 (µM)

Lenvatinib L + T L + C40 S + C42

YUMC-S-P2 Thyroid, Papillary Human 12 (±0.1) 12 (±0.2) 12 (±0.2) 12 (±0.2)

YUMC-R-P7 Thyroid, Papillary Human – 12 (±0.3) 25 (±0.2) 23 (±0.1)

YUMC-R-P8 Thyroid, Papillary Human – 23 (±0.2) 13 (±0.2) 13 (±0.4)

2.4. SERCA1 as a Key Player in Lenvatinib-Resistant PTC Cells for Prolonging Survival under
Lenvatinib Treatment

Previous research highlights SERCA as a crucial regulator of cytoplasmic free calcium-
mediated apoptosis under severe ER stress conditions, particularly during anticancer drug
treatment [18,31,33,34]. We observed a significant increase in SERCA1, among other SERCA
isoforms, in lenvatinib-resistant PTC cells (YUMC-R-P7 and YUMC-R-P8) under severe ER
stress induced by lenvatinib treatment than in lenvatinib-sensitive PTC (YUMC-S-P2) cells
(Figure 3A). We conducted a cell viability assay using a calcium channel blocker (bepridil,
verapamil, or nifedipine), NCX (Na+/Ca2+ exchanger) inhibitor (KB-R7943), plasma mem-
brane calcium ATPase (PMCA) inhibitor (caloxin 2A1), and SERCA inhibitors (thapsigargin,
C40, and C42), alone or in combination with lenvatinib. These tests demonstrated that,
unlike NCX or calcium ion channels, SERCA played a pivotal role in prolonging survival in
lenvatinib-resistant PTC cells under severe ER stress conditions (Figure 3B,C). When tested
individually, none of the inhibitors significantly affected the viability of lenvatinib-resistant
PTC cells (YUMC-R-P7 and YUMC-R-P8). Additionally, SERCA1 expression showed a con-
siderable increase under lenvatinib treatment compared to conditions without lenvatinib.

Interestingly, despite this increase in SERCA1 expression in lenvatinib-resistant PTC cells,
the ER stress marker CHOP was notably higher in the thapsigargin-treated group (a SERCA
inhibitor) compared with groups treated with inhibitors of calcium channels, NCX, or PMCA
(Figure 3D). Lenvatinib-resistant PTC was significantly increased SERCA1 expression but
nevertheless only SERCA inhibitors treatment with lenvatinib group was showed considerably
increase of CHOP, ER stress marker. Bepridil, verapamil, nifedipine, KB-R7943 and caloxin
2A1 were no significantly influenced to ER combination with lenvatinib.
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Figure 3. SERCA as a critical factor in enhancing survival under severe ER stress conditions induced
by lenvatinib treatment. (A) Immunoblot analysis to assess changes in SERCA isoforms in patient-
derived lenvatinib-sensitive and -resistant PTC cells, with and without lenvatinib treatment. (B,C) Cell
viability assays using a calcium channel blocker (nifedipine), Na+/Ca2+ exchanger (NCX) inhibitor
(KB-R7943), PMCA inhibitor (caloxin 2A1), and SERCA inhibitors (thapsigargin as a positive control,
and candidates C40 and C42), both alone and in combination with lenvatinib. (D) Immunoblot
analysis to detect changes in SERCA and CHOP (an ER stress marker) levels following treatment
with a calcium channel blocker (nifedipine), NCX inhibitor (KB-R7943), PMCA inhibitor (caloxin
2A1), and SERCA inhibitors (thapsigargin as a positive control, and candidates C40 and C42), either
alone or in combination with lenvatinib. * p < 0.05 and ** p < 0.01 versus control. L; Lenvatinib, T;
Thapsigargin, C40; Candidates 40, C42; Candidates 42, *,**; combination treatment with lenvatinib
and thapsigagin, *,** (red); combination treatment with lenvatinib and C40, *,** (blue); combination
treatment with lenvatinib and C42.

These results demonstrated that in lenvatinib-resistant PTC cells, SERCA isoforms is the
reasonable target for drug-resistnat PTC cells evading the cytoplasmic free calcium-mediated
apoptosis under severe ER stress conditions produced by drug treatment such as lenvatinib.

2.5. Targeted Therapy In Vivo Treatment with Candidates 40 and 42 in a Patient-Derived
Lenvatinib-Resistant PTC Cell Mouse Xenograft Model

To evaluate the anticancer effects of combining lenvatinib with candidates 40 and 42,
we utilized a mouse xenograft model with both lenvatinib-sensitive (YUMC-S-P2) and
-resistant (YUMC-R-P7 and YUMC-R-P8) PTC cells. Mouse xenograft model of lenvatinib-
sensitive and -resistant cells were treated lenvatinib alone or in combination with SERCA
inhibitors). In the lenvatinib-sensitive PTC cell xenograft model, tumor shrinkage was
significantly induced by lenvatinib treatment, regardless combined with SERCA inhibitors
(Figure 4A, top). However, lenvatinib treatment alone did not produce a considerable
change in tumor volume in the lenvatinib-resistant PTC xenograft model (Figure 4B,C, top)
In these lenvatinib-resistant PTC xenograft models, combination treatment with lenvatinib
and SERCA inhibitors (thapsigargin as a positive control, candidates 40 and 42 as inhibitors)
markedly increased tumor shrinkage (Figure 4B,C, top). The resected tumor weight corre-
sponded closely with the changes in tumor volume (Figure 4A–C, middle). The treatment
with all agents alone did not impact the overall body weight of the mice (Figure 4A–C,
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bottom). We conducted an immunoblot assay on total tumor tissue lysates to evaluate the
relationship between SERCA and CHOP (a marker of ER stress) protein expression under
severe ER stress conditions induced by lenvatinib treatment. SERCA1 expression showed
no significant change in lenvatinib-sensitive PTC when treated with lenvatinib alone or in
combination with SERCA inhibitors (Figure 5A). CHOP expression was increased in the
lenvatinib-treated group regardless of the presence of SERCA inhibitors. In contrast, in
lenvatinib-resistant PTC, SERCA1 expression was high under treatment with lenvatinib,
with or without SERCA inhibitors (Figure 5B,C). Notably, despite the high increase of
SERCA1 in lenvatinib-resistant PTC, CHOP levels did not increase, whereas ER stress
was significantly elevated due to the functional inhibition of SERCA by the combination
treatment with lenvatinib and the SERCA inhibitors identified in this study (Figure 5B,C).
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Taken together these results propose that the SERCA inhibitors, candidate 40 and 42,
would offer a new clinical approach to considerably induction of tumor shrink in refractory
cancer such as drug-resistant PTCs.
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3. Discussion

PTC is the most common type of thyroid cancer, accounting for approximately 80% of
all thyroid carcinoma cases. It generally has a favorable prognosis and is curable. However,
in rare instances, drug-resistant PTCs lead to recurrence or metastasis, resulting in a poor
prognosis and potentially the death of the patient [35]. Notably, managing these refractory
PTCs with existing clinical approaches is challenging [36,37]. Numerous cytogenetic
events and oncogenic mechanisms contribute to the development of advanced TCs [38,39].
Further, the role of epigenetic reprogramming in the aggressiveness of refractory PTC
remains unclear [39].

Previous research has demonstrated that preoperative chemotherapy can improve
survival rates post-surgery, and many studies have confirmed the efficacy of combined
chemotherapy and surgery, even when expedited treatment was previously deemed im-
practical [40,41]. However, effective therapies for neoadjuvant or basal-adjuvant treatment
of drug-resistant cancers remain lacking [42,43], contributing to a significant number of
patient deaths. Therefore, rational and reliable therapies are urgently needed for patients
with drug-resistant cancer.

In this study, we identified new small molecules that may suppress lenvatinib-resistant
and potentially other aggressive cancers through RNA-Seq analysis of patient-derived
lenvatinib-sensitive and lenvatinib-resistant PTC cells. We particularly focused on the
Notch and calcium signaling pathways among the 15 significantly activated signaling
pathways in the lenvatinib-resistant PTC cells compared to those in lenvatinib-sensitive
cells. Previous studies have explored the interactions between Notch and calcium signaling
pathways [44–46], and notably, Notch signaling is regulated by SERCA [47,48]. Our findings
indicate that the regulation of SERCA expression in lenvatinib-resistant PTC cells is a
critical factor in prolonging survival under conditions treated with lenvatinib. Further,
SERCA isoforms, particularly SERCA1, are promising targets for countering the evasion of
cytoplasmic free calcium-mediated apoptosis in lenvatinib-resistant PTC cells under severe
ER stress conditions induced by anticancer drug treatment.

The study findings will be beneficial for devising future therapeutic approaches for
refractory cancers. This study highlights therapeutic access based on epigenetic changes
as a practical approach for the management of patients with refractory cancers. PTC is
s generally known to be well-treated and high-survival rate. However unfortunately in
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not a few cases, exhibits resistance to anti-cancer drugs due to epigenetic reprogramming,
leading to recurrence or metastasis and ultimately patient death. Drug resistance mainly
derives from unusual, but highly probable presence of CSCs. Ability to differentiation
and self-renewal into heterogeneous cancer cells, and hiding phenotypically and morpho-
logically distinct cells are prominent prpperties of CSCs. They own some mechanisms
that support them to survive even after disclosure to chemotherapy drugs by epigenetic
reprogramming. Even though chemotherapy is able to destruct whole tumor cells, CSCs
are left almost undamaged, and cause to drug-resistant. In current stduy was identificatied
small molecules based on only one survival mechanism among a lot of survival related
mechanisms in lenvatinib-resistant PTC compare then lenvatinib-sensitive PTC under acute
ER stress conditions by lenvatinib treatment. In these lenvatinib resistant PTC was avoid to
microenvironment with overload cytosolic free calcium-mediated apoptosis by increase
of SERCA. Of course, the role of epigenetic reprogramming in the aggressiveness of re-
fractory PTC remains unclear. We believe that our study makes a significant contribution
to the literature because the scientific content of this manuscript successfully builds upon
previous studies, and is reflective of a deep understanding regarding the molecular and
genetic mechanisms underlying lenvatinib-resistant cancer. We believe that our study can
significantly improve therapeutic approaches towards cancer, particularly those resistant
to drugs. We prioritized the investigation of key genes and signaling pathways involved
in managing excessive free calcium to enhance survival under severe ER stress conditions
caused by lenvatinib treatment in lenvatinib-resistant PTC cells. The newly identified small
molecules, candidates 40 and 42, significantly increase cell death in lenvatinib-resistant PTC
cells through the functional inhibition of SERCA under severe ER stress conditions induced
by lenvatinib treatment. Therefore, the SERCA inhibitors, candidates 40 and 42, could
provide a new clinical strategy to significantly induce tumor shrinkage in refractory cancers,
such as drug-resistant PTCs. However, several further studies were needed to the restric-
tions of only few patient results. To breakthrough these restrictions, not inconsiderable
researchs are on going on diverse cases of patient-derived drug-resistant cancer.

4. Materials and Methods
4.1. Study Design and Ethical Considerations

Current research was showed retrospective study, which single central analysis of
patients with PTC, detail information was indicated in our previous study [22,29,49]. All
procedures involving patients were performed in accordance with the institutional ethical
standards, all applicable local/national regulations, and guidelines of the 1964 Helsinki
Declaration and its later amendments. In accordance with the Bioethics and Safety Act of
Republic of Korea, formal written consent was not required for this type of retrospective,
observational analysis. The study protocol was approved by the Institutional Review
Board (IRB) of Severance Hospital, Yonsei University College of Medicine (IRB protocol:
3-2022-0331). Cell samples were isolated from patient specimen at the Severance Hospital,
Yonsei University College of Medicine, Seoul, Republic of Korea.

4.2. Patients
4.2.1. Patient 1

YUMC-S-P2 was 53-year-old man with papillary thyroid cancer. This patient had bi-
lateral thyroid tumors with extrathyroidal extension. This patient underwent bilateral total
thyroidectomy and bilateral modified radical neck dissection with central compartment
neck dissection. Surgical findings showed that the tumor invaded the recurrent laryngeal
nerve and was removed by careful shaving. After surgery, she was given 3 times high-dose
radioiodine ablation therapy. Currently, radiologic examination and thyroid hormone tests
are being followed without recurrence.
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4.2.2. Patients 2 and 3

YUMC-R-P7 (patient 2) and -P8 (patient 3) were 57 and 52-year-old woman and man
with papillary thyroid cancer. This patient had multiple tumors and extensive extrathyroidal
extension. This patient underwent bilateral total thyroidectomy with central compartment
neck dissection. One year after surgery, metastasis to the mediastinum and right lateral
cervical lymph nodes was confirmed, and she underwent mediastinal dissection through
partial sternotomy and right modified radical neck dissection. The specimens for culture were
obtained after the last operation. This patient underwent sorafenib after which the disease
progression was confirmed in the sorafenib drug response evaluation. Currently, cancer
recurrence and metastasis were caused and confirmed after lenvatinib prescribed.

4.3. Patient Tissue Specimens

Fresh tumor specimen was dissected from patients with biochemical and histologically
proven PTC who were cured at the Severance Hospital, Yonsei University College of
Medicine, Seoul, Republic of Korea. Fresh tumors were collected throughout surgical
excision of PTC metastatic and primary sites.

4.4. Primary Culture and Cancer Cell Isolation

The patient-derived cancer cells were obtained from fresh tumors of patients. YUMC-
S-P2, YUMC-R-P7 and -8 were obtained from papillary thyroid cancer patients treated at
the Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
After resection, tumors were kept in phosphate-buffered saline (PBS) with antifungal and
antibiotics and moved to the laboratory. Normal tissue and fat were eliminated and rinsed
with 1× Hank’s Balanced Salt Solution. Tumors were minced in a tube with dissociation
medium containing DMEM/F12 with 20% fetal bovine serum supplemented with 1 mg/mL
collagenase type IV (Sigma-Aldrich, St. Louis, MO, USA; C5138). The isolated cancer cells
were grown in Dulbecco′s Modified Eagle′s Medium, supplemented with 10% fetal bovine
serum. Candidates 40 (Sigma-Aldrich) and 42 (Sigma-Aldrich) treatment was diluted with
PBS. Mycoplasmal contamination was checked for with the Lookout Mycoplasma PCR
Detection Kit (Sigma-Aldrich, St. Louis, MO, USA; MP0035). Further protocol details are as
described in our previous article [25].

4.5. mRNA-seq Data

We preprocessed the raw reads from the sequencer to remove low quality and adapter
sequences before analysis and aligned the processed reads to the Homo sapiens genome
assembly (GRCh37) using HISAT v2.1.0 (HISAT2, RRID: SCR 015530) [50]. HISAT utilizes
two types of indexes for alignment: a global, whole-genome index, and tens of thousands of
small local indexes. Both are constructed using the same Burrows–Wheeler transform (BWT)
or graph FM index (GFM) as Bowtie2 (Bowtie 2, RRID: SCR 016368). Because of the use of
these efficient data structures and algorithms, HISAT generates spliced alignments several
times faster than Bowtie and the widely used BWA (BWA, RRID: SCR 010910). The reference
genome sequence of Homo sapiens (GRCh37) and annotation data were downloaded from the
National Center for Biotechnology Information (NCBI). Then, transcript assembly of known
transcripts was processed using StringTie v2.1.3b (StringTie, RRID: SCR016323) [51,52]. Based
on these results, expression abundance of transcript and gene were calculated as read count or
fragments per kilobase of exon per million fragments mapped (FPKM) value per sample. The
expression profiles were used for additional analyses, such as of differentially expressed genes
(DEGs). In groups with different conditions, differentially expressed genes or transcripts were
filtered through statistical hypothesis testing.

4.6. Statistical Analysis of Gene Expression Level

We performed statistical analyses to find differentially expressed genes using the
estimates of abundances for each gene in the samples. Genes with one more than zeroed
Read Count values in the samples were excluded. To facilitate log2 transformation, 1 was
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added to each Read Count value of filtered genes. Filtered data were log2-transformed and
subjected to trimmed mean of M-values (TMM) normalization. The statistical significance
of the differential expression data was determined using exactTest, edgeR and fold change,
in which the null hypothesis was that no difference exists among groups. False discovery
rate (FDR) was controlled by adjusting the p-value using the Benjamini-Hochberg algorithm.
For DEG sets, hierarchical clustering analysis was performed using complete linkage and
Euclidean distance as a measure of similarity. Gene-enrichment and functional annotation
analysis and pathway analysis for significant gene list were performed based on Gene
Ontology and KEGG pathway analyses.

4.7. Hierarchical Clustering

Hierarchical clustering analysis was carried out with complete linkage and Euclidean
distance as calculate of resemblance to indicate the expression patterns of dissimilarly
indicated transcripts which are satisfied with |fold change| ≥ 2 and independent t-test
raw p < 0.05. All data analysis and visualization of dissimilarly indicated genes was directed
with R 3.5.1 (www.r-project.org, accessed on 16 March 2022).

4.8. Total RNA Extraction and Quantitative Reverse Transcription-Polymerase Chain Reaction

Total RNA was extracted from tumor cells using the RNeasy Mini Kit (Qiagen,
Germany, Cat# 74106) and One-Step reverse transcription-polymerase chain reaction
(RT-PCR) Kit (Qiagen, Germany, Cat#204243) according to the manufacturer’s protocols.
All data were normalized to α-tubulin expression. The following primers for SERCA1,
SERCA2, and SERCA3 were used for quantitative RT-PCR (qRT-PCR) analysis: SERCA1, 5′-
GTGATCCGCCAGCTAATG-3′ (forward) and 5′-CGAATGTCAGGTCCGTCT-3′ (reverse);
SERCA2, 5′-GGTGGTTCATTGCTGCTGAC-3′ (forward) and 5′-TTTCGGACAAGCTGTT
GAGG-3′ (reverse); SERCA3, 5′-GATGGAGTGAACGACGCA-3′ (forward) and 5′-CCA
GGTATCGGAAGAAGAG-3′ (reverse); and α-tubulin; 5′- CGGGCAGTGTTTGTAGACTTG
G-3′ (forward) and 5′-CTCCTTGCCAATGGTGTAGTGC-3′ (reverse).

4.9. Cell Viability Assay

Cell viability was calculated by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenylte
trazolium Bromide) assay, cells were seeded in 96-well plates at 8 × 103 cells per well and
cultured overnight to achieve over 80% confluency. The detailed protocol can be found
in [24]. Data were indicated as a percentage of the signal observed in vehicle-treated cells
and are shown as the means ± SEM of triplicate experiments.

4.10. Immunoblot Analysis

The primary antibodies SERCA1 (1:500, Abcam, Cambridge, UK, Cat# 133275), SERCA2
(1:500, Abcam, Cat# 137020), SERCA3 (1:300, Abcam, Cat# 154259), C/-EBP homologous
protein (CHOP, 1:100, Santa Cruz Biotechnology, Cat# 7351), Bcl-2 (1:500, Cell Signaling
Technology, Beverly, MA, USA, Cat# 4223S), caspase-3 (1:500, Cat# 9661, Cell Signaling
Technology) and β-actin (1:2000, Santa Cruz Biotechnology, Cat# 47778) were purchased
and maintained overnight at 4 ◦C. The detailed protocol can be found in our previous
article [22,24,29,49].

4.11. Human PTC Cell Xenograft

All experiments were approved by the Animal Experiment Committee of Yonsei Uni-
versity. YUMC-S-P2, YUMC-R-P7 and -P8 patient-derived PTC cells (6.2 × 106 cells/mouse)
were cultured in vitro and then injected subcutaneously into the upper left flank region of
female NOD/Shi-scid, IL-2Rγ KOJic (NOG) mice. After 14 days, tumor-bearing mice were
grouped randomly (n = 10 per group) and treated 25 mg/kg SERCA inhibitors, thapsigar-
gin, candidate 40 and 42 (p.o.) with 10 mg/kg lenvatinib (p.o.) either alone or combination
(excluded for combination of SERCA inhibitors). Tumor size was measured every two day
using calipers. Tumor volume was gauged by following method: L × S2/2 (L, longest

www.r-project.org
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diameter; S, shortest diameter). Animals were maintained under specific pathogen-free
conditions, and all experiments were approved by the Animal Experiment Committee of
Yonsei University (IACUC approval No 2022-0105).

4.12. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 6.0 software (GraphPad
Software, La Jolla, CA, USA), Microsoft Excel (Microsoft Corp, Redmond, WA, USA), and R
version 2.17. One-way ANOVA was performed for the multi group analysis, and two-tailed
Student’s t-test was performed for the two-group analysis. Values were expressed as mean
± standard error of mean. p values < 0.05 were considered statistically significant.

4.13. Virtual Screening with Chemical Binding Similarity

The potential SERCA-binding chemical compounds were screened by evolutionary
chemical binding similarity (ECBS), which is built based on classification similarity-learning
to prioritize evolutionarily-related chemical pairs (ERCPs). By ECBS, chemical pairs are
considered as “similar” when their binding targets are identical or evolutionarily related.
Among variants of ECBS models, the target-specific ensemble ECBS (TS-ensECBS) model
was adapted for the virtual screening owing to the highest test accuracy in our previous
study1. TS-ensECBS model was built for SERCA1 (i.e., the ERCPs are only defined for
SERCA1 and its homologous proteins). The model was then used to calculate chemical
binding similarity (ECBS score) between previously-known seven SERCA1 inhibitors
(obtained from DrugBank and BindingDB database) and the virtual chemical library
(141,102 chemicals combined from Maybridge and Chembridge screening collection, and
DrugBank). The maximum ECBS score assigned for each molecule in chemical library was
considered as a final SERCA-binding score. Thus, the output similarity score ranges from
0 to 1, and the scores closer to 1 represent higher binding probability to SERCA1. More
details about the ECBS model can be found in our previous work [53].

5. Conclusions

SERCA plays a crucial role in managing overloaded free calcium under severe ER
stress conditions induced by anticancer drugs, such as lenvatinib. Our findings revealed
that SERCA1, one of the SERCA isoforms, is predominantly expressed in patient-derived
lenvatinib-resistant PTC cells under genotoxic stress caused by lenvatinib. Further, our
results demonstrated significant tumor shrinkage in patient-derived lenvatinib-resistant
PTC cells, both in vitro and in vivo, when treated with the SERCA inhibitors identified
in this study. These findings support the efficacy of new combination therapies that
incorporate these SERCA inhibitors to target highly refractory cancer cells, including those
resistant to anticancer drugs.

Collectively, our study suggests that clinical approaches based on the genetic and
signaling pathway differences between patient-derived lenvatinib-sensitive and lenvatinib-
resistant PTC could be effective against refractory drug-resistant TCs. These findings
could help establish prospective clinical strategies against refractory TC. However, further
research is necessary to develop a targeted therapeutic approach for various drug-resistant
cancer subtypes.
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