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Recent advancements in next-generation sequencing (NGS) technologies have created new 
opportunities for comprehensive screening of multiple parasite species. In this study, we cloned 
the 18 S rDNA V9 region of 11 species of intestinal parasites into plasmids. Equal amounts and 
concentrations of these 11 plasmids were pooled, and amplicon NGS targeting the 18 S rDNA V9 region 
was performed using the Illumina iSeq 100 platform. A total of 434,849 reads were identified, and 
all 11 parasite species were detected, although the number of output reads for each parasite varied. 
The read count ratio, in descending order, was as follows: Clonorchis sinensis, 17.2%; Entamoeba 
histolytica, 16.7%; Dibothriocephalus latus, 14.4%; Trichuris trichiura, 10.8%; Fasciola hepatica, 8.7%; 
Necator americanus, 8.5%; Paragonimus westermani, 8.5%; Taenia saginata, 7.1%; Giardia intestinalis, 
5.0%; Ascaris lumbricoides, 1.7%; and Enterobius vermicularis, 0.9%. We found that the DNA secondary 
structures showed a negative association with the number of output reads. Additionally, variations 
in the amplicon PCR annealing temperature affected the relative abundance of output reads for each 
parasite. These findings can be applied to improve parasite detection methodologies and ultimately 
enhance efforts to control and prevent intestinal parasitic infections.
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Background
Intestinal parasite infections, which represent a significant global public health concern, disproportionately affect 
marginalized communities with limited access to clean water and sanitation facilities1–4. According to the World 
Health Organization (WHO), an estimated 3.5 billion people are at risk of intestinal parasite infection, and of 
this number, approximately 1.5 billion people currently suffer from some form of intestinal parasitic infection5.

Intestinal parasites constitute a diverse group of organisms, including helminths such as nematodes 
(roundworms), trematodes (flatworms), and cestodes (tapeworms)6, as well as protozoa such as Giardia lamblia 
and Entamoeba histolytica7. These insidious pathogens represent a major threat to public health and often lead 
to severe morbidity, malnutrition, and even mortality6,8. It has also been reported that understanding disease-
related pathogens and accurately diagnosing infectious illnesses are paramount for the development of effective 
control and prevention strategies9. This need has spurred decades of research and innovation in the field of 
parasitology.

Conventional methods for parasite detection, including microscopic examination10,11, polymerase chain 
reaction (PCR)12–16, and enzyme-linked immunosorbent assay (ELISA)17–24, still play a crucial role in the 
diagnosis and monitoring of intestinal parasite infections. However, they do have some limitations.
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The accuracy of microscopy with respect to the identification of intestinal parasites depends on the skill 
level of the operating technician, and microscopic examinations may not lead to the detection of infections 
when the number of parasites present is low. It can also be time-consuming and labor-intensive, requiring 
trained personnel and specialized equipment25–28. Further, serological assays, such as ELISA, show promise for 
diagnosing parasitic infections, but when used in isolation, they are prone to showing higher rates of false results, 
especially in cases where there is cross-reactivity among antigens from different parasite species29. Furthermore, 
one of the drawbacks of PCR is its requirement for meticulously designed primers tailored to specific target 
parasites30, and designing these primers demands an in-depth understanding of the parasite’s genetic makeup. 
Thus, the process is often time-consuming and expensive.

Therefore, new strategies are needed for screening multiple samples for various pathogens, and the 
advancement of molecular diagnostics requires rigorous validation of lab-developed assays for accurate 
infectious disease diagnosis31. Recent advances in molecular biology and next-generation sequencing (NGS) 
technologies have opened new avenues for the rapid and accurate screening of multiple parasite species. 
Specifically, metabarcoding, a methodology that enables the simultaneous screening of multiple parasite species 
within a single sample, has shown great promise in the field of parasitology32–36.

In this study, 11 intestinal parasite species were screened using 18 S ribosomal RNA (rRNA) gene amplicon-
based NGS. The purpose of this study was to simultaneously detect these 11 intestinal parasites using 
metabarcoding and investigate the optimization of library preparation protocols for NGS so as to shed light on 
factors affecting NGS results in relation to parasitic infections. The results obtained may be useful for improving 
diagnostic accuracy and may ultimately aid public health efforts to control and prevent intestinal parasitic 
infections.

Methods
DNA extraction
Helminth samples (Ascaris lumbricoides, Clonorchis sinensis, Dibothriocephalus latus, Enterobius vermicularis, 
Fasciola hepatica, Necator americanus, Paragonimus westermani, Taenia saginata, Trichuris trichiura) preserved 
in ethanol as specimens and protozoa samples (Giardia intestinalis, Entamoeba histolytica) cultured in the 
laboratory of the Department of Tropical Medicine, Yonsei University College of Medicine, were used in this 
study37,38. The DNA of the parasites was extracted using the Fast DNA SPIN Kit for Soil (MP Biomedicals, 
Carlsbad, CA, USA) according to the manufacturer’s protocol. The DNA samples were stored at -80 °C until 
needed.

Thymine-adenine (TA) clone targeting of the 18 S rRNA gene V9 region
PCR was performed to amplify the V9 region of the 18 S rRNA gene of the parasites using the individual DNA 
samples. The primers used were 1391  F (5’- ​G​T​A​C​A​C​A​C​C​G​C​C​C​G​T​C-3’) and EukBR (5’-​T​G​A​T​C​C​T​T​C​T​G​
C​A​G​G​T​T​C​A​C​C​T​A​C-3’). The cloning of the amplicons of the 18  S V9 regions of the 11 intestinal parasites 
under study was performed using the TOPcloner TA Kit (Enzynomics, Daejeon, Korea) in accordance with the 
manufacturer’s instructions. The recombinant colonies obtained were then stored at -80 °C until use. In brief, the 
cloned plasmids were extracted using the Exprep Plasmid SV Mini Kit (GeneAll, Seoul, Korea) after culturing 
overnight in Luria–Bertani broth containing ampicillin. Finally, the concentrations of the extracted plasmids 
were measured using a Quantus™ fluorometer (Promega, Madison, WI, USA). The flow chart shows the outline 
of sample preparation and amplicon sequencing for this study (Fig. 1).

Restriction enzyme for plasmid linearization
To minimize the steric hindrance of the circular plasmids and primers, the plasmids were linearized using a 
restriction enzyme, NcoI (Thermo Scientific™, Waltham, MA, USA) at a concentration of 10 U/µL, which has 
one restriction site in all 11 types of plasmids. Three groups of samples were prepared for the amplicon NGS 
analysis: The first group comprised 11 samples that were not treated with the restriction enzyme. The second 
group comprised 11 samples that were first pooled and then simultaneously treated with the restriction enzyme. 
The third group comprised 11 samples that were treated individually with the restriction enzyme and thereafter 
pooled. There were two plasmid concentrations: 20 ng/µL and 2 ng/µL.

Illumina sequencing for eukaryotic metabarcoding
The plasmids of the 11 parasite species were amplified using primers targeting the 18 S rRNA V9 region, with 
adaptors for NGS attached to the primers: 1391 F (5′-​T​C​G​T​C​G​G​C​A​G​C​G​T​C​A​G​A​T​G​T​G​T​A​T​A​A​G​A​G​A​C​A​G​G​
T​A​C​A​C​A​C​C​G​C​C​C​G​T​C-3′) and EukBR (5′-​G​T​C​T​C​G​T​G​G​G​C​T​C​G​G​A​G​A​T​G​T​G​T​A​T​A​A​G​A​G​A​C​A​G​T​G​A​T​C​
C​T​T​C​T​G​C​A​G​G​T​T​C​A​C​C​T​A​C-3′)33. We chose to amplify the V9 region of the 18 S rDNA due to its potential 
to efficiently capture a broader range of eukaryotes on the Illumina sequencing platform39,40. The master mix, 
KAPA HiFi HotStart ReadyMix (Roche Sequencing Solutions, Pleasanton, CA, USA), contained the primers 
and 3 µl of pooled total DNA, derived by diluting each of the 11 plasmid DNAs to equal concentrations based 
on the lowest measured plasmid concentration of 20 ng/µl. PCR amplification was then performed using an 
Applied Biosystems Veriti 96-Well Fast Thermal Cycler (Thermo Scientific™, Waltham, MA, USA) as follows: 
95 °C for 5 min, 30 cycles of 98 °C for 30 s; 55 °C for 30 s; 72 °C for 30 s, and a final extension step of 72 °C 
for 5  min. A limited-cycle (8-cycle) amplification step was also performed to add multiplexing indices and 
Illumina sequencing adapters. Thereafter, mixed amplicons were pooled and sequenced on an Illumina iSeq 100 
sequencing system using the Illumina iSeq™ 100 i1 Reagent v2 kit (Illumina Inc., San Diego, CA, USA) according 
to the manufacturer’s protocol. In addition, to evaluate the effect of annealing temperature on the NGS output 
during the amplicon PCR process, various annealing conditions ranging from 40 to 70 °C, in 3 °C increments, 
were tested for library preparation.
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Bioinformatic procedures
Quantitative Insights Into Microbial Ecology v2 (QIIME 2™) (2023.2) was used to analyze the iSeq 100 data41. 
Low-quality sequence reads were demultiplexed and trimmed using Cutadapt (v4.5)42. Thereafter, the trimmed 
reads were denoised and dereplicated. Chimera reads were filtered out using the DADA2 (v1.26)43, a widely used 
noise reduction algorithm in 18 S rDNA metabarcoding44–47. To obtain a table for the taxonomic assignation of 
amplicon sequence variant sequences, we utilized the complete set of sequences available in the NCBI nucleotide 
database (https://www.ncbi.nlm.nih.gov/nuccore/) as it encompasses a broader range of parasite sequences 
compared to curated databases. We conducted an advanced search for gene names, specifically “18S rRNA”48. 
Thereafter, we extracted sequences from the NCBI database to construct a database for vertebrates and parasites. 
Subsequently, clustered sequences with 100% identity were compared against the 18 S rRNA sequences in the 
database to generate the classification table. The taxonomical classification of the representative sequences was 
performed using a feature classifier based on the consensus search method49. Unassigned reads (0.07% of the 
total reads) were removed from subsequent analyses.

Fig. 1.  Flow chart outlining the sample preparation and amplicon sequencing process.
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Prediction of 18 S rDNA V9 secondary structure
The DNA secondary structure of the 18 S rDNA V9 region of each parasite was predicted, and the number of 
intra-GC pairs was counted using Vector Builder software (https://www.vectorbuilder.kr/tool/dna-secondary-
structure.html) and Geneious Prime (version 2023.2.1, https://www.geneious.com).

Statistical analysis
All statistical analyses were performed using R Statistical Software (v4.3.2; R Core Team, 2023). Data 
visualizations were created with the ggplot2 package (v3.5.1; Wickham, 2016). To investigate the relationship 
between the number of intra-GC base pairs in the hairpin structure (independent variable) and the relative 
abundance value (dependent variable) expressed as a percentage for each target species at 55°C as the annealing 
temperature for amplicon PCR, we conducted a simple linear regression analysis using the ‘lm’ function in R. 
P-value and regression coefficient reported here are derived from the regression model. A significance level of 
0.05 was set for p-values.

Results
Metabarcoding of the 18 S V9 region of the 11 parasites under study
After cloning the 18 S rDNA V9 region (18 S V9) of human parasites detectable in human stool, 11 plasmids were 
extracted and pooled in equal amounts to prepare libraries for parasite metabarcoding. The NGS output showed 
a total of 434,849 reads, and all 11 parasite species were detected, suggesting that parasite metabarcoding is an 
effective method for detecting intestinal parasites. Interestingly, the sequenced read count ratio was different for 
each parasite despite the use of the same input amount (Fig. 2, Supplementary Table 1). Further, the read count 
ratio decreased as follows: C. sinensis, 74,893 reads (17.21%); E. histolytica, 73,045 reads (16.79%); D. latus, 
62,728 reads (14.41%); T. trichiura, 47,320 reads (10.87%); F. hepatica, 37,994 reads (8.73%); N. americanus, 
37,101 reads (8.53%); P. westermani, 37,017 reads (8.51%); T. saginata, 31,184 reads (7.17%); G. intestinalis, 
21,895 reads (5.03%); A. lumbricoides, 7,529 reads (1.73%); and E. vermicularis, 4,143 reads (1.73%).

The DNA sequence of the 18 S V9 region formed a specific DNA secondary structure (a hairpin structure). 
Thus, we hypothesized that the GC base pairs in the hairpin structure are associated with the different 
sequenced ratios. The hairpin structures were computationally constructed, and the number of intra-GC pairs 
therein was counted (Fig. 3; Table 1). Next, linear regression analysis was performed between the NGS output 
ratio (a dependent variable) and the number of GC pairs in the hairpin (an independent variable). Thus, we 
observed that the greater the number of GC pairs in the hairpin of the 18  S V9 region, the lower the NGS 
output ratio, and this relationship was statistically significant (regression coefficient = − 1.0473, p = 0.00485; 
intercept = 28.6097, p = 0.00048 in Vector Builder). We repeated the test using the number of intra-GC pairs 
from a different program (Geneious Prime) and it also produced almost the same result as the previous one 
(regression coefficient = − 1.0133, p = 0.0179; intercept = 27.5076, p = 0.0022).

Effect of plasmid linearization on NGS output
We used the restriction enzyme to linearize the plasmid and prepared three sample groups for amplicon NGS 
analysis: untreated samples, samples pooled before enzyme treatment, and samples treated individually with the 
enzyme before pooling (Fig. 4a, Supplementary Table 2). Amplicon NGS performed on these groups revealed 
no differences in relative abundance between the enzyme-treated and non-treated samples. This result was 
consistent even in the 10-fold diluted samples (Fig. 4b).

Metabarcoding at different annealing temperatures
We evaluated the effect of annealing temperature on the amplicon PCR process. In the first experiment (Figs. 2 
and 3), the annealing temperature for the amplicon PCR process targeting the 18 S V9 region was 55 °C. Given 
that PCR efficiency may vary depending on the annealing temperature, we set various annealing conditions 
ranging from 40 to 70  °C with 3  °C increments for library preparation. As the temperature increased, an 
interesting NGS output pattern emerged; the number of reads for the different parasites became more similar 
(Fig. 5, Supplementary Table 3). Specifically, parasites that were initially detected in lower numbers, such as 

Fig. 2.  Relative abundances of the sequence reads in 11 intestinal parasite species: Ascaris lumbricoides, 
Clonorchis sinensis, Dibothriocephalus latus, Entamoeba histolytica, Enterobius vermicularis, Fasciola hepatica, 
Giardia intestinalis, Necator americanus, Paragonimus westermani, Taenia saginata, and Trichuris trichiura.

 

Scientific Reports |        (2024) 14:25049 4| https://doi.org/10.1038/s41598-024-76304-1

www.nature.com/scientificreports/

https://www.vectorbuilder.kr/tool/dna-secondary-structure.html
https://www.vectorbuilder.kr/tool/dna-secondary-structure.html
https://www.geneious.com
http://www.nature.com/scientificreports


A. lumbricoides, E. vermicularis, and T. saginata, showed an increasing number of reads as the temperature 
increased.

Only F. hepatica reads showed a different pattern as the annealing temperature increased; its read number 
rather decreased with increasing temperature. Its relative abundance was only 0.2% at 70 °C. To confirm the 

Parasite species
Number of intra GC pairs in the hairpin 
(Vector Builder)

Number of intra GC pairs in the 
hairpin (Geneious Prime) Output reads

Composition 
(%)

Ascaris lumbricoides 21 20 7529 1.73

Clonorchis sinensis 16 17 74,893 17.21

Dibothriocephalus latus 17 17 62,728 14.41

Entamoeba histolytica 10 9 73,045 16.79

Enterobius vermicularis 24 23 4143 0.95

Fasciola hepatica 17 17 37,994 8.73

Giardia intestinalis 24 21 21,895 5.03

Necator americanus 18 19 37,101 8.53

Paragonimus westermani 17 18 37,017 8.51

Taenia saginata 19 17 31,184 7.17

Trichuris trichiura 22 22 47,320 10.87

Table 1.  Next-generation sequencing output and the number of intra-GC pairs in the hairpin structure of the 
18 S rDNA V9 region of 11 intestinal parasites.

 

Fig. 3.  Secondary structure of the 18 S rDNA V9 region and GC pair numbers. (a) Trichuris trichiura, (b) 
Fasciola hepatica, (c) Clonorchis sinensis, (d) Dibothriocephalus latus, (e) Enterobius vermicularis, (f) Necator 
americanus, (g) Giardia intestinalis, (h) Entamoeba histolytica, (i) Paragonimus westermani, (j) Ascaris 
lumbricoides, (k) Taenia saginata.
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decrease in the number of F. hepatica reads with increasing annealing temperature, PCR was performed, and 
for each individual plasmid containing the 18 S V9 region, the concentration of each amplicon was measured at 
5 °C increments in annealing temperature. Thus, we observed that the F. hepatica amplicon concentration was 
notably lower than that of the other parasites at higher temperatures (65 and 70 °C) (Table 2).

Discussion
Metabarcoding, which employs high-throughput sequencing of 18 S rRNA gene amplicons, plays a crucial role 
in the assessment of the diversity of eukaryotes in various ecosystems39. In this study, we used metabarcoding 
to screen various human intestinal parasites simultaneously. Studies in this regard are limited, and specifically, 
there are no reports on the identification of efficient methods for such analyses.

Via metabarcoding, we detected all 11 intestinal parasite species. DNA metabarcoding involves the 
utilization of NGS technology as an extension of barcoding. The advent of readily available NGS technologies 
has transformed the fields of clinical and public health microbiology50–52. Apart from expedited and precise 
pathogen identification, the amalgamation of high-throughput methodologies and bioinformatics offers novel 
understanding regarding disease transmission, virulence, and antimicrobial resistance.

Several studies have documented the use of NGS in detecting a wide range of parasites in humans. Targeted 
amplicon NGS identified 16 species of blood-borne helminths and protozoa, including Plasmodium falciparum, 
Leishmania infantum, Trypanosoma cruzi, and Brugia malayi53. Intestinal eukaryotic protists were detected 
in stool samples from healthy Tunisian individuals, including Dientamoeba fragilis, Giardia intestinalis, 
Cryptosporidium spp., Blastocystis sp., and Entamoeba sp36. Furthermore, long-read nanopore sequencing 
technology has proven effective in accurately detecting and characterizing a diverse range of filarial worms54. 
NGS has also been employed to identify Pneumocystis jirovecii and other pathogens in bronchoalveolar lavage 
fluid from patients with lung diseases55,56.

We investigated the effects of GC bonds, annealing temperature, and linearization of the plasmid DNA on 
the sequencing results of pooled libraries containing 11 species of intestinal parasites. Thus, we observed that 
the 11 intestinal parasite species all had different relative abundances. This could be attributed to the correlation 
between the GC pairs of the DNA secondary structure. Additionally, GC-rich regions, owing to the formation 
of stable and complex secondary structures within a DNA template, can block DNA polymerase during PCR 
and lead to ineffective amplification57. These regions in templates also often form intricate secondary structures 
that can resist denaturation during the PCR annealing phase. Moreover, the primers utilized for amplifying 
these GC-rich regions have a propensity to self-anneal and cross-anneal, creating stem-loop structures that may 
hinder the progression of DNA polymerase along the template58. Hydrogen bonding plays a crucial role in the 
interactions within a DNA base pair. The hydrogen bond energy between nucleobases that form a base pair has 
been calculated in numerous theoretical studies59. Thus, it has been reported that the G-C base pair is stronger 

Fig. 4.  Bar plot showing the relative abundances of the plasmids of 11 species. Plasmid concentration at (a) 20 
ng/µl and (b) 2 ng/µl. Bottom, no restriction enzyme treatment was performed; middle, the 11 plasmids were 
pooled first and then treated with the restriction enzyme, Nco1; top, each plasmid was first treated with the 
restriction enzyme (Nco1) and then pooled.
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Parasite/Ta (℃) 45 50 55 65 70

Ascaris lumbricoides 9.5 18.7 57 144 145

Clonorchis sinensis 50 53 106.5 98.5 144

Dibothriocephalus latus 40.55 57 70 121 77.5

Entamoeba histolytica 11.55 17.1 52.5 45.9 44.6

Enterobius vermicularis 11.9 24.95 68 150.5 150

Fasciola hepatica 9.95 38.45 73.5 51 8.3

Giardia intestinalis 16.4 14.65 38.4 45.1 34.45

Necator americanus 11.1 23.7 66 105 71.5

Paragonimus westermani 20.35 29.4 98 165.5 93.5

Taenia saginata 17.5 26.35 39.95 158 85

Trichuris trichiura 40.3 55.5 83 126.5 142.5

Table 2.  Changes in PCR amplicon total amounts (ng) on individual parasite plasmids with various annealing 
temperatures.

 

Fig. 5.  Effect of annealing temperature on the relative abundance of sequence reads in 11 intestinal parasites.
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than the A-T base pair owing to the greater number of hydrogen bonds formed between them. Specifically, the 
G-C base pair forms three hydrogen bonds, while the A-T base pair forms two hydrogen bonds60. Additionally, 
other factors, such as length, may also have an effect61.

Increasing the annealing temperature during PCR enhances the amplification of a specific DNA sequence57. 
This is due to improved specificity, reduced primer-dimer formation, increased stability of primer-template 
interaction, and optimal Tm (melting temperature) matching, all facilitated by the principles of thermodynamics 
and DNA base pairing. Specifically, an escalation in temperature increases the kinetic energy of DNA strands, 
diminishing the possibility of nonspecific interactions and fostering the creation of robust, targeted primer-
template pairings. Further, at high temperatures, non-specific DNA regions are less likely to form stable 
interactions with the primers due to weak binding affinity. This minimizes the potential for non-specific 
amplification.

The effect of Tm on GC content does not necessarily disappear at high temperatures; it remains a factor 
that influences primer-template interactions. High annealing temperatures can compensate to some extent for 
differences in GC content between primers and templates, but it is still important to consider GC content when 
designing primers, regardless of the annealing temperature employed.

In summary, higher annealing temperatures ensure that primers bind specifically to the target DNA region, 
minimizing non-specific amplification and promoting efficient and accurate DNA amplification. In this study, we 
observed that when the temperature was raised, A. lumbriocoides, E. vermicularis, G. intestinalis, and T. saginata 
were well detected. Therefore, if metabarcoding is performed to detect these species, then it is recommended 
to set a relatively high annealing temperature. For F. hepatica, the read number was strangely reduced when 
the temperature was high. Therefore, in this case, it is necessary to pay attention to the fact that detection may 
become challenging at high annealing temperatures.

The results obtained notwithstanding, this study had some limitations. Similar amplification was achieved 
at elevated temperatures for all samples except F. hepatica. Although this species was characterized, the results 
obtained from its sequencing at high temperatures were limited; thus, we decided that an annealing temperature 
of 55 °C was the most appropriate for amplicon sequencing.

One limitation of our study is the use of universal eukaryotic primers. While this approach offers broader 
taxonomic coverage, it can also amplify DNA from hosts and other food materials present in faecal samples. 
This can lead to a masking effect, where parasite DNA is obscured by the more abundant host or non-target 
DNA, potentially underestimating parasite burden or missing low-abundance parasites32,33,62. To address 
this limitation in future studies, several strategies can be considered. Firstly, methods to decrease host DNA 
abundance, such as enzymatic removal or alternative depletion techniques based on previous studies53,63, can 
be employed. Additionally, using other target regions, such as the ITS2 region for nemabiome analysis and 
mitochondrial rRNA genes for helminth metabarcoding, as complementary methods to 18 S rDNA amplicon 
sequencing64–70, can provide highly accurate identification of nematode and helminth parasites, although this 
may reduce broader parasite detection coverage, particularly for protozoa. Another limitation of our study is 
the lack of validation with real-world samples, such as faeces. Despite our efforts, finding suitable faecal samples 
with multiple parasite infections was not possible. Nevertheless, our study provides valuable insights into factors 
influencing read counts and NGS library preparation optimization. This paves the way for future research using 
more specific methods for parasite detection in real-world samples.

Conclusions
Our findings provide insights into the factors that influence NGS read count and the optimization of library 
preparation protocols for parasite metabarcoding. The number of GC bonds in the secondary hairpin structure 
of amplicon DNA was found to be a significant determinant of amplification efficiency. Optimizing the annealing 
temperature for specific library preparation protocols can be proposed as a potential approach to improve the 
detection rate of specific parasites. Advancements in NGS technology, leading to greater accuracy and reduced 
costs, make the routine use of metabarcoding for helminth detection more feasible. These advancements hold 
promise for enhancing efforts to control and prevent intestinal parasitic infections, ultimately contributing to 
better public health outcomes.

Data availability
Raw sequence data are available in NCBI GenBank under BioProject PRJNA1026347.
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