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Abstract: The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens,
pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the
coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in
the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal
immunity in the airways is critical for the development of novel therapeutics and next-generation
vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory
viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses
in the airways has expanded. In this review, we describe the latest knowledge regarding the key
components of the mucosal immune system in the respiratory tract. In addition, we summarize
the host immune responses in the upper and lower airways following SARS-CoV-2 infection and
vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses
against SARS-CoV-2.

Keywords: SARS-CoV-2; COVID-19; respiratory tract; airway; mucosal immune response; allergic
airway

1. Introduction

Since the emergence of the initial case of pneumonia with an unknown cause in Wuhan,
China, in December 2019 [1], the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has rapidly spread worldwide. SARS-CoV-2 infection causes coronavirus
disease 2019 (COVID-19), which manifests a broad spectrum of clinical presentations,
ranging from asymptomatic infection to severe disease [2]. COVID-19 has caused global
morbidity and devastating disruptions in daily life. Prophylactic vaccines using various
platforms were developed during the COVID-19 pandemic, and their administration
started in populations worldwide in December 2020. Despite improved protection against
SARS-CoV-2 infection through the development of vaccines, a deeper understanding of
the immune response to SARS-CoV-2 will help guide the development of next-generation
vaccines or therapeutics against respiratory viral infections. This knowledge will contribute
to improved preparedness for future pandemics.

The COVID-19 outbreak and global efforts to overcome the pandemic have substan-
tially increased our knowledge of immune responses against respiratory viruses, partic-
ularly in the human system. However, although blood cells are not the primary site of
SARS-CoV-2 infection, the majority of the analysis of the immune response has been limited
to peripheral blood (PB). The nasal cavity is the site of both viral entry and the initial replica-
tion of SARS-CoV-2 [3]. SARS-CoV-2 spreads to the epithelial cells of the lower respiratory
tract and causes pneumonia, particularly in cases of severe COVID-19 [4], whereas limited
levels of viral replication can occur in other tissues [5,6]. Respiratory viruses, such as the
coronavirus and influenza virus, are potential causes of future pandemics and primarily
infect the respiratory mucosa; therefore, it is important to understand and measure local
immune responses in the airway.
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Several reviews have discussed the various aspects of the systemic immune response
to SARS-CoV-2 following infection and vaccination [7,8]. In the current review, we focus
on the local immune response to SARS-CoV-2 in the airway. We summarize the current
knowledge of the characteristics of the mucosal immune system in the respiratory tract,
and discuss airway immune responses in the context of COVID-19. Furthermore, we
describe alterations in mucosal immune responses against SARS-CoV-2 under allergic
airway inflammation conditions.

2. An Overview of the Characteristics of Respiratory Mucosal Immunity
2.1. Epithelial Barrier

The epithelial barrier serves as the first line of defense against invasion by respiratory
pathogens and allergens in the airways. It includes cell–cell junctions that function as a
physical barrier, mucociliary clearance for mechanically removing inhaled pathogens and
allergens the commensal microbiota, immunoglobulins (Igs), and defense molecules [9].
These are crucial for trapping and cleansing risk factors and modulating the immune
response. Cell–cell junctions comprise various structures, including tight junctions (TJs),
adherens junctions (AJs), gap junctions, desmosomes, and hemidesmosomes. In particular,
apical junction complexes (AJCs) play an important role in epithelial barrier function. The
AJC consists of the most apically located TJs and underlying AJs [10]. TJs regulate the
movement of ions and molecules, as well as paracellular transport, whereas AJs are essen-
tial for initiating and maintaining cell–cell adhesion [11]. TJs are composed of proteins,
such as occludin (OCLN), claudin, junctional adhesion molecules, and zonula occludens
(ZO), whereas AJs contain complexes such as cadherin/catenin and nectin/afadin [12].
The expression of these genes and proteins in the AJC serves as an indicator of epithelial
barrier function and transepithelial electrical resistance (TER) [13]. In addition, commensal
microbiota plays a defensive role against viral infections in the upper respiratory tract by
modulating-type I and type III interferon (IFN)-mediated immune mechanisms [14–16].
Nasal commensal Staphylococcus epidermidis was reported to provide initial antiviral protec-
tion against influenza A virus infection by enhancing the IFN-λ-dependent innate immune
response in the nasal mucosa [16].

Epithelial barrier dysfunction can be caused by several factors, including mucociliary
dysfunction and microbial dysbiosis. In particular, the disruption of epithelial barrier
integrity leads to a decrease in TER and increased barrier permeability. This disruption
can occur owing to various pathogens, allergens, or other pathological conditions. The
infection of human rhinovirus in human nasal epithelial cells in vitro leads to a decreased
expression of membrane proteins, including ZO-1, E-cadherin, claudin-1, and OCLN [17,18].
Similar alterations were observed after the infection of bronchial epithelial cells (BECs),
where a reduced expression of TJ proteins at the epithelial barrier, decreased TER, and
the dissociation of ZO-1 from the TJs was observed [19]. Several studies have reported
defective epithelial barriers in patients with allergic rhinitis (AR), chronic rhinosinusitis,
and asthma [20–22]. The expression of CLND-1, OCLN, and ZO-1 proteins was found to be
significantly reduced in the BECs of asthmatic children compared to that in non-asthmatic
controls [19]. House dust mites (HDMs) are an AR allergen and exhibit proteolytic activity
that cleaves TJ proteins [23,24]. Steelant et al. reported a decrease in OCLN and ZO-1
expression along with increased epithelial permeability in the nasal epithelium of patients
with HDM-induced AR [22].

2.2. Innate Immunity

Airway surface fluid is composed of mucus, antimicrobial peptides (AMPs), and
enzymes, playing a crucial role as the first line of host defense in nature. Mucus is produced
by mucous glands and goblet cells, capturing inhaled debris and pathogens and facilitating
mucociliary clearance through ciliary beating. The primary components of airway mucus
are O-glycosylated mucin glycoproteins, categorized as gel-forming and transmembrane
mucins. In gel-forming mucins, MUC5AC and MUC5B play a crucial role in effectively
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clearing pathogens through mucociliary clearance. Among the transmembrane mucins,
MUC1, MUC4, and MUC16 are the major ones, with MUC1 being the most abundant.
While MUC1 and MUC4 are present in both the upper and lower respiratory tracts, MUC16
is exclusively expressed in the lower tract. These mucins create a barrier in the respiratory
epithelium, acting as decoy receptors against pathogens. Additionally, they contribute to
mucociliary clearance by shedding the extracellular domain, which binds to pathogens and
releases them into the lumen, from the cell surface [25]. AMPs include cationic defensins like
human β-defensins (HBDs) 1, 2, 3, 4, human cathelicidins (LL-37), and secretory leukocyte
protease inhibitor (SLPI). They exhibit synergistic activity with host defense molecules
like lysozymes and lactoferrin. AMPs are upregulated during infections, demonstrating
microbiocidal effects and immune modulation activities such as chemotactically attracting
immune cells and modulating cytokine production [26].

The immune response to viral infections is initiated by the innate immune system,
which recognizes pathogens and induces the production of pro-inflammatory cytokines and
chemokines. Innate responses are triggered when immune cells with pattern recognition
receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) which include
viral molecules, such as viral RNA or oxidized phospholipids, or damage-associated
molecular patterns (DAMPs), such as endogenous host molecules released from damaged
and dying cells. PRRs, such as Toll-like receptors (TLRs), retinoic acid-inducible gene
(RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs), and other cytosolic virus sensors, initiate the immune response to viral
infections [27].

After the recognition of PAMPs and DAMPs, antiviral responses are activated through
type I or III interferon (IFN) signaling pathways and the production of pro-inflammatory
cytokines and chemokines, ultimately suppressing viral replication, eliminating infected
cells, and initiating an adaptive immune response [28,29]. Viral recognition leads to
IFN induction via three major pathways: cyclic guanosine monophosphate-adenosine
monophosphate synthase/stimulator of IFN genes (cGAS/STING), TLR/TIR-domain-
containing adapter-inducing IFN-β (TRIF)/Myeloid differentiation factor 88 (MyD88),
and RLR/mammalian mitochondrial antiviral signaling protein (MAVS) pathways. All
pathways activate the kinase TBK1 which phosphorylates the transcription factors IFN
regulatory factor (IRF)3 and IRF7, thereby stimulating IFN production. They also activate
the nuclear factor-κB (NF-κB) family of transcription factors and the subsequent production
of pro-inflammatory cytokines [30].

Type I IFNs (IFN-α, IFN-β) bind to IFNAR (IFN-α/β receptor), and type III IFNs
(IFN-λ 1,2,3,4) bind to IFNLR (IFN-λ receptor). Type I and III IFNs are key players in the
antiviral innate immune response and activate several signaling cascades, including the
JAK/STAT pathway. Subsequently, they form IFN-stimulated gene (ISG) factor 3 (ISGF3)
complexes, driving the expression of hundreds of ISGs that primarily elicit an effective
antiviral response [28,31–33]. IFN-λ acts in a more targeted fashion, as the expression of its
receptor IFNLR1 is limited to mucosal epithelial cells of the respiratory, gastrointestinal,
and reproductive tracts and specific immune cells, whereas IFNAR is expressed in most
cells throughout the body [34,35]. Respiratory epithelial cells respond to both IFN-λ and
IFN-α/β. In general, during the early stage of infection, an immune response based on
IFN-β and IFN-λ is produced by infected cells, which is probably local. However, as the
infection progresses, plasmacytoid dendritic cells become major cellular sources of IFN-α,
leading to a more systemic response [36]. In some respiratory virus infections, respiratory
epithelial cells primarily produce IFN-λ rather than IFN-α and IFN-β, implying a key role of
IFN-λ in mediating antiviral immunity in the respiratory tract [37,38]. These results suggest
a significant potential for type III IFN to be used as a therapeutic target for respiratory viral
infections, considering its higher tissue specificity compared to type I IFN.

In addition, dendritic cells (DCs), as one of the most potent types of antigen-presenting
cells, play a crucial role in innate immunity and contribute significantly to antiviral re-
sponses. They consist of two main functional subtypes: conventional or myeloid DCs
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(cDCs) and plasmacytoid DCs (pDCs). cDCs include CD1c+, CD16+, and CD141+ cDC
subsets and also monocyte-derived DCs generated by circulating monocytes in the pres-
ence of inflammation [39]. In human tissues, CD141-expressing cDC1s in the vascular
wall and mucosa stimulate Th1 responses, while CD1c-expressing cDC2s in the lamina
propria produce inflammatory chemokines, facilitating immune cell aggregation, and may
contribute to immune tolerance [40]. pDCs are present throughout the lung tissue including
the airway. They play a vital role in innate immunity by producing a substantial amount of
type I IFN during early antiviral responses through the stimulation of TLR 7/9 [39].

2.3. Tissue-Resident Memory T Cells in the Respiratory Tract

Following the innate immune response, the adaptive immune system is activated to
control and eradicate infections. Despite the importance of humoral immune responses,
coordinated cellular immunity is also essential for disease control [41,42]. Sterilizing
immunity is primarily mediated by antibodies; however, insufficient antibody levels or
mutations in antibody-binding sites may cause reinfection. In such scenarios, memory T
cell responses are crucial for the prevention of viral dissemination and progression into
severe disease, particularly in the context of infections with variants. Previous studies
have shown that virus-specific memory T cells are long-lasting after recovery from viral
infection [43,44]. Robust T-cell responses in the respiratory tract may play a crucial role in
impeding disease progression by rapidly exerting effector functions, given that re-exposure
to respiratory viruses primarily occurs in the airway [45].

Tissue-resident memory T (TRM) cells are a subset of memory T cells characterized
by long-term residency in non-lymphoid tissues [46,47]. TRM cells are found in almost all
peripheral tissues, including the skin [48], lung [49,50], gut [51], brain [52,53], and genital
tract [54]. TRM cells from various tissues exhibit a common gene expression profile, in
addition to some tissue-specific differences in gene expression. In animal models, the tissue-
residency of T cells can be determined by various experimental methods, including para-
biotic surgery, in vivo antibody labeling, T cell depletion, and tissue transplantation [47].
While these techniques rigorously determine TRM cells, their application in humans has
clear limitations. Thus, phenotypic or transcriptional profiling is the primary method for
the identification of TRM cells in humans. TRM cells are frequently defined by the expres-
sion of surface markers associated with tissue retention [46,47]. As CD69 promotes tissue
retention by downregulating sphingosine-1-phosphate receptor-1 (S1PR1) that is required
for tissue egress [55], CD69 is the canonical marker of TRM cells. In addition to CD69, other
surface markers, including adhesion molecules and tissue-homing chemokine receptors,
characterize TRM phenotypes. However, the expression of these surface markers on TRM
cells varies across tissues. CD103 (αE integrin), which binds to E-cadherin on epithelial
cells, is highly expressed on TRM cells in epithelial tissues such as the skin, intestines, and
lungs [47]. In contrast, most CD8+ TRM cells in the liver and secondary lymphoid organs
lack CD103 expression [56–58]. Several studies have reported that CD103+CD4+ TRM cells
are also present in barrier tissues [59,60]. Collectively, the combination of CD69 and CD103
may serve as a reliable marker for identifying human TRM cells, especially in epithelial
tissues. CD49a (integrin α1), which forms very late antigen-1 with CD29 (integrin β1),
is expressed on a subset of CD4+ and CD8+ TRM cells in diverse tissues [57,60–63]. A
recent study in mice demonstrated that CD49a facilitates the locomotion of virus-specific
CD8+ TRM cells within the lungs [64]. In addition, the tissue retention of CD8+ TRM cells is
impaired in the absence of very late antigen-1 [62]. Furthermore, TRM cells express a variety
of tissue-homing chemokine receptors required for localization in tissues. CXCR6, the
chemokine receptor for CXCL16, is highly expressed in human TRM cells in the lungs [65],
liver [57], and lymphoid tissues [60]. Studies in mice have demonstrated that CXCR6 is
required for the recruitment of CD8+ TRM cells to the airway epithelium [65]. CXCR3,
the receptor for the chemokines CXCL9, CXCL10, and CXCL11, is also expressed in a
proportion of lung TRM cells [49,66].
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TRM cells rapidly exert effector functions upon a secondary pathogen encounter and
restrict disease progression. Accumulating evidence has shown a protective role for airway
TRM cells against respiratory viral infections. An experimental respiratory syncytial virus
(RSV) challenge in healthy adult volunteers showed that the abundance of pre-existing
virus-specific CD8+ TRM cells in bronchoalveolar lavage fluid (BALF) before infection
correlated with reduced symptoms and viral loads [67]. In a mouse model, the transfer
of airway TRM cells from previously infected animals led to the protection against RSV
infection [68]. In the mouse model of coronavirus infections, protection from disease
was primarily mediated by virus-specific CD4+ TRM cells in the upper airway to promote
the secretion of IFN-γ and the recruitment of virus-specific CD8+ T cells [69]. Several
studies have also demonstrated that lung CD4+ and CD8+ TRM cells confer protective
immunity against influenza virus infection [66,70]. Virus-specific TRM cells are also critically
required for optimal protection from infection with heterosubtypic influenza viruses [71].
Furthermore, a seminal study has shown that nasal CD8+ TRM cells limit viral spread to the
lungs and reduce the severity of pulmonary diseases [72].

2.4. Tissue-Resident Memory B Cells and Antibody-Secreting Cells in the Respiratory Tract

Similar to memory T cells, memory B cells persist long-term and rapidly differentiate
into antibody-secreting cells upon antigen re-encounter [73]. Memory B cells can re-enter
the germinal center upon antigen re-exposure and undergo further affinity maturation [74].
Antibodies produced by plasma cells that are terminally differentiated cells contribute
to the defense against pathogen reinfection [75]. The cooperation between memory B
cells and plasma cells confers robust protection against pathogens [74]. The proximity
of antigen-presenting cells, memory follicular helper T (TFH) cells, and memory B cells
facilitates robust recall responses.

Analogous to TRM cells, recent data have revealed the existence of a specific subset of
memory B cells residing in peripheral tissues, known as tissue-resident memory B (BRM)
cells [76–80]. Allie et al. conducted a parabiosis surgery and intravenous antibody labeling
and demonstrated that pulmonary influenza infection elicited lung BRM cells with distinct
phenotypes compared to their systemic counterparts [76]. Similarly, another study showed
that intranasal immunization induced IgA-producing BRM cells in the lungs [77]. Specific
markers for the identification of BRM cells are required to investigate their characteristics.
To identify specific markers for BRM cells, the transcriptional profiles of both murine and
human BRM cells have been analyzed [79,81]. The results showed that lung memory B cells
exhibited a higher expression of CXCR3 and CD69 than their counterparts in the mediastinal
lymph nodes and spleen. The downregulation of CCR7, SELL, S1PR1, and KLF2, and the
upregulation of CXCR3, CCR6, and CD69 were observed in lung BRM cells [79]. Consistent
with these results, the upregulation of CD69, CXCR3, and CCR6, the chemokine receptor
for CCL20, has been observed in memory B cells of the human lungs [78,79]. Most CD27+

memory B cells from the human gut also express CD69 [80]. These results suggest that BRM
cells share common signatures underlying tissue residency with TRM cells in non-lymphoid
organs. However, the transcriptional program determining the differentiation and fate of
memory B cells remains unclear.

Humoral responses to pathogen re-encounters have been investigated in peripheral
tissues. BRM cells rapidly differentiate into antibody-secreting cells during secondary infec-
tions and subsequently secrete antibodies against pathogens [76]. In influenza infections,
reinfection induces the formation of inducible bronchus-associated lymphoid tissue, which
supports the maturation and selection of B cells, thereby generating BRM cells as well as
resident memory TFH cells [82]. In addition, mice with IgA-producing lung BRM cells
following local immunization show superior protection against secondary challenges with
both homologous and heterologous strains of the influenza virus, supporting the cross-
reactivity of local humoral immunity [77]. Intriguingly, both CXCR3+CCR6+ virus-specific
B cells and CXCR3−CCR6+ bystander B cells are generated in the lung after infections with
the influenza virus and SARS-CoV-2 [83]. However, the potential benefits of bystander B
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cells remains to be elucidated. In the case of influenza reinfection, alveolar macrophages
are key initiators of humoral recall responses through the secretion of IFN-γ and CXCR3
ligands, which in turn activate the recruitment of CXCR3+ BRM cells to the infection site [84].
Although it remains unclear whether memory TFH cells are critically required for the initia-
tion of these recall responses, it can be assumed that BRM cells as well as resident memory
TFH cells are recruited close to alveolar macrophages, thereby exerting robust protective
immunity.

3. SARS-CoV-2 Entry into the Respiratory Tract

The coronavirus virion contains spike (S), envelope (E), and membrane (M) proteins,
with an RNA genome complexed with nucleocapsid (N) proteins to form a helical cap-
sid [85]. The S protein is anchored to the viral envelope and is composed of S1 and S2
subunits. During infection, two cleavage events occur for cellular entry: the cleavage
at the junction of the S1 and S2 subunits and at the S2′ site, located upstream from the
fusion peptide within the S2 subunit [86]. In SARS-CoV-2, the S1–S2 boundary is cleaved
by furin during virus maturation [87], and when the S protein binds to the angiotensin-
converting enzyme 2 (ACE2) entry receptor of the host target cell, the S2′ cleavage site is
exposed [88]. The exposed S2′ site is cleaved by different host proteases depending on
the entry route. If the transmembrane protease serine subtype 2 (TMPRSS2) is sufficiently
expressed near ACE2 on the target cell, the virus-ACE2 complex encounters TMPRSS2 at
the cell surface, leading to S2′ cleavage followed by membrane fusion to release viral RNA
into the cell cytoplasm [89,90]. This step must occur after ACE2 binding to ensure viral S
protein activation [91,92]. The S protein cleavage by TMPRSS2 facilitates early entry into
the cell membrane as opposed to late entry through the endosome. Although TMPRSS2
can be replaced by other proteases, its binding to the ACE2 receptor is essential for cell
entry. If TMPRSS2 expression is insufficient and the complex does not encounter TMPRSS2,
the virus-ACE2 complex is internalized into endosomes. Cleavage at the S2′ site is then
performed by low pH-triggered cathepsin in the endosomes, leading to the fusion with the
endosomal membrane and the release of viral RNA into the cell cytoplasm [88,93].

Following cellular entry, genomic RNA is translated into two large polyproteins, pp1a,
corresponding to NSP1 to NSP11 from open reading frame (ORF)1a, and pp1ab, corre-
sponding to NSP12 to NSP16 from ORF1b. These encode 16 nonstructural proteins (NSPs)
that facilitate the formation of the viral replication–transcription complex [94]. The SARS-
CoV-2 genome encodes structural proteins, including S, E, M, and N, as well as accessory
proteins, including ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, and 10. These ORFs and NSPs play crucial
roles in viral replication and the evasion of the host immune response [95]. Replicated
genomic RNA and structural proteins are assembled in the endoplasmic reticulum–Golgi
intermediate compartment and the fully formed virions are exocytosed [96].

Numerous studies have focused on the expression levels of ACE2 rather than TMPRSS2
to understand the differences in SARS-CoV-2 infection risk and clinical outcomes [97,98]. The
co-expression of ACE2 and TMPRSS2 within cells is considered important for the entry
of SARS-CoV-2. Notably, these viral entry-associated genes of SARS-CoV-2 are known to
be highly expressed in the nasal epithelial cells [3,99], and their expression in the upper
respiratory epithelium is believed to have a positive correlation with viral susceptibility and
transmissibility. An average three-fold increase in ACE2 expression has been observed in
secretory cells from patients with COVID-19 compared to control individuals [4]. Notably,
SARS-CoV-2 causes a decrease in epithelial barrier function and the disruption of TJs. It
also perturbs ciliogenesis and downregulates Foxj1 expression, leading to the loss of ciliated
epithelial cells and the impairment of mucociliary clearance [100]. These results suggest a
pathogenic mechanism that underlies SARS-CoV-2 spread in the respiratory tract.

4. Innate Immunity to SARS-CoV-2 Infection in the Airway

Innate immune defense plays a key role in controlling SARS-CoV-2 infections, and
deficiencies in the innate immune system can trigger severe COVID-19 [101,102]. Zhang
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et al. reported that patients with inborn defects in TLR3- and IRF7-dependent type I IFN
immunity are prone to life-threatening COVID-19 pneumonia [102]. Bastard et al. reported
that the presence of autoantibodies against type I IFN-α2 and IFN-ω is associated with a
high risk of severe COVID-19 [101].

Accumulating evidence supports that both soluble and transmembrane mucins play
important roles in SARS-CoV-2 infection, but whether they are protective or pathogenic
still remains controversial. Mucus hypersecretion may exhibit a negative impact on disease
development or progression due to reduced mucocililary clearance. Indeed, the protein
levels of MUC1 and MUC5AC were elevated in airway mucus of patients with COVID-19
compared to control individuals [103], and a high production of MUC5AC was observed in
SARS-CoV-2-infected primary respiratory [104]. Other researchers also showed that SARS-
CoV-2 infection is associated with a high prevalence of MUC5B-dominated mucus plugging
in the distal lung, and MUC5B expression was increased in airway regions of COVID-19
autopsy lungs [105]. These data suggest that mucolytic agents may be therapeutics for
COVID-19. In contrast, a recent study reported in vitro evidence of protective functions of
the glycosylated extracellular domains of transmembrane mucins in different respiratory
cell types by preventing SARS-CoV-2 binding and entry [106]. A recent study conducting
genome-wide CRISPR screens showed that the overexpression of transmembrane mucins
MUC1, MUC4, or MUC21 reduced SARS-CoV-2 infection compared to cells with a non-
targeting guide [107]. Further in vivo studies need to address the precise role of each mucin
in the pathophysiology of COVID-19.

AMPs, such as defensins, may also play a role in protection against SARS-CoV-2
infection. A previous study showed that β-defensin transcripts were increased in the
nasopharyngeal swab samples from patients with SARS-CoV-2 infection compared to those
from control individuals [108]. Recent research also suggests that human defensins may
inhibit SARS-CoV-2 infection by blocking viral entry [109]. The precise role of AMPs needs
to be further elucidated.

Similar to other respiratory viruses, SARS-CoV-2 RNAs are mainly recognized by
TLRs and RLRs, including RIG-I and MDA5 [110–112]. TLRs activate the TRIF/MyD88
signaling pathway, and RLRs (RIG-I and MDA5) activate the MAVS pathway, leading to
the production of various cytokines, including pro-inflammatory cytokines such as TNF-α,
IL-1β, IL-6, and type I and III IFNs [113]. NLRs, such as NLRP3 inflammasome, and the
cGAS–STING signaling pathway, which is activated upon the detection of cytosolic DNA
from damaged host mitochondria, have also been reported to sense SARS-CoV-2 infection
and induce the production of type I IFNs and pro-inflammatory cytokines [96,114–116].
A decreased expression of PRRs implies a weaker innate antiviral response. Loske et al.
reported that adults, who exhibit higher rates of SARS-CoV-2 infection and an increased
risk of severe COVID-19 compared to children, demonstrated lower levels of PRRs, such as
MDA5 and RIG-I, in the upper airway epithelial cells and innate immune cells compared
to children [117].

SARS-CoV-2 infection is characterized by a significant lack of IFN production and
secretion [118,119]. A notable difference between SARS-CoV-2 and influenza A virus
infection is the poor induction of type I IFN response in COVID-19 [120,121]. Hadjadj et al.
reported that patients with severe COVID-19 demonstrated a low or no IFN-α response
and an absence of circulating IFN-β [121]. However, the mechanisms underlying these
delayed and inefficient type I IFN responses in SARS-CoV-2 infection remain unclear.
Several SARS-CoV-2 proteins have recently been reported as antagonists of the type 1 IFN
response. NSPs, structural proteins M and N, and accessory proteins (ORF3a, 3b, 6, 7a,
and 9b) interfere with type I IFN signaling directly or indirectly [122–125]. Some of them
also degrade factors related to the IFN pathway via autophagy. ORF9b antagonizes type
I and III IFN by targeting multiple signaling pathways, including RIG-I/MDA-5-MAVS,
TLR3-TRIF, and cGAS–STING [126]. NSP15 suppresses type I IFN production by inhibiting
phosphorylation and the nuclear translocation of IRF3 [127]. NSP13 inhibits type I IFN
production by degrading TBK1 via p62-dependent selective autophagy [128].
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pDCs act as the primary source of type I IFN upon detecting SARS-CoV-2-infected
cells in the nasal mucosa. The sensing mechanism of SARS-CoV-2-infected cells by pDCs
requires integrin-mediated cell adhesion (αLβ2 integrin and ICAM-1), allowing them to
efficiently inhibit viral replication through a local response at the contact site with infected
cells [129]. According to recent studies, the loss of pDC response was observed in severe
COVID-19 [129,130].

Following poor IFN I and III responses, patients with severe COVID-19 fail to suppress
viral replication in the early phase of the infection, leading to an exaggerated inflammatory
response in the late phase. The dysregulated release of pro-inflammatory cytokines may
contribute to life-threatening immune responses in COVID-19, such as a cytokine storm
mediated by inflammatory cell death (PANoptosis). PANoptosis is primarily induced by the
synergism of TNF-α and IFN-γ and is dependent on the activation of the JAK/STAT1/IRF1
axis and the subsequent activation of caspase-8 to drive cell death [131].

Analyses of human airway specimens have supported the essential role of the local
innate immune response. A single-cell RNA sequencing analysis of nasopharyngeal swab
samples from patients with COVID-19 showed that epithelial cells from severe cases exhib-
ited the blunted expression of IFN-responsive or antiviral genes, suggesting that impaired
antiviral immune responses in the nasal epithelium may underlie severe disease [132].
Additionally, IFN-α2 levels in endotracheal aspirate from patients with COVID-19 neg-
atively correlated with the duration of hospital stay [133]. In contrast, an exaggerated
innate immune response and the augmented recruitment of immune cells may contribute
to tissue injury in patients with severe COVID-19. Patients with critical COVID-19 have
been shown to exhibit stronger interactions between epithelial and immune cells and a
higher activation status of inflammatory macrophages expressing CCL2, CCL3, CCL20,
CXCL1, CXCL3, CXCL10, IL8, IL1B, and TNF than moderate cases [4].

Of note, the innate cellular response in the airways of pediatric patients differs from
that observed in adults. In the nasal airways, the local innate IFN response to SARS-CoV-2
is stronger in pediatric immune cells compared with adult immune cells. A previous
study reported that the airway epithelium showed a higher steady-state expression of IFN-
response genes in children [134]. Pre-stimulation with IFNs may restrict viral spread and
underlie mild diseases in children. Many types of innate immune cells also had elevated
IFN response signatures in children compared to adults, particularly CD56lo natural killer
cells, natural killer T cells, neutrophils, and CXCL10+ monocytes [134].

5. Adaptive Immunity to SARS-CoV-2 Infection in the Airway
5.1. T-Cell Responses against SARS-CoV-2 in the Airway

As with infections with other respiratory viruses, TRM cells have been suggested to
play a critical role in rapid protection against SARS-CoV-2 infection (Figure 1). After the
resolution of the natural infection, SARS-CoV-2-specific T cells have been found in various
tissues, including the bone marrow, spleen, lungs, and lymph nodes [135]. These SARS-
CoV-2-specific T cells persist for at least six months after infection, and their frequency
correlates with that of circulating T cells. In addition, a previous T-cell receptor sequencing
analysis showed that CD8+ T cells carrying SARS-CoV-2-specific T-cell receptors were
observed in nasal tissue after the resolution of SARS-CoV-2 infection [136]. However, the
longevity of SARS-CoV-2-specific airway TRM cells following natural infection remains
enigmatic.

Intriguingly, previous studies using stimulation-based functional assays have shown
that SARS-CoV-2-reactive T cells expressing canonical TRM markers, including CD69 and
CD103, are detected in the tonsils and BALF samples of individuals unexposed to SARS-
CoV-2 [137,138]. These SARS-CoV-2-reactive T cells were thought to be induced by previous
infection with other common cold coronaviruses. Although these tissue-resident cross-
reactive T cells were shown to recognize multiple SARS-CoV-2 epitopes present in structural
and nonstructural proteins, the protective role of these cells needs to be addressed.
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Figure 1. Importance of immune memory in the respiratory mucosa for protection against SARS-
CoV-2. When there are high titers of neutralizing antibodies (NAbs) and a substantial number of
tissue-resident memory T (TRM) and tissue-resident memory B (BRM) cells in the mucosa of the
respiratory tract, infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is
blocked, or it only results in mild disease. However, the progression to severe disease occurs when
there are low titers of NAbs and weak memory B/T cell responses in the respiratory mucosa.

Mucosal-associated invariant T (MAIT) cells are a subset of innate T cells that are
involved in mucosal immunity and protection against viral infections. Several studies
showed reduced frequencies and activated phenotypes of circulating MAIT cells in patients
with COVID-19. In contrast, a significant enrichment of MAIT cells with activated pheno-
types was observed in the airways, suggesting a potential contribution to the regulation
of local infection and inflammation in patients with COVID-19 [139]. Additionally, others
suggested that altered MAIT cell functions due to IFN-α–IL-18 imbalance may contribute
to the disease severity of COVID-19 [140]. Remarkably, the frequency of circulating MAIT
cells was restored in convalescent patients, indicating dynamic recruitment to the tissues
during the acute phase and subsequent release back into the circulation after the resolution
of the disease [141]. These findings collectively indicate that MAIT cells are involved
in the immune response against SARS-CoV-2 and suggest their possible contribution to
COVID-19 immuno-pathogenesis.

Since the administration of COVID-19 vaccines, whether intramuscular vaccination
induces SARS-CoV-2 S-specific TRM cells in the respiratory tract has been a topic of scientific
interest. Several studies have performed stimulation-based assays to investigate the pres-
ence of SARS-CoV-2-reactive T cells in airway samples of vaccinees. One study identified
S-specific T cells in nasopharyngeal swab samples from vaccinees [142], consistent with
recent findings that mRNA vaccination induces TRM cell generation in a mouse model [143].
Another study also reported that S-specific CD4+ T cells were detected in the lung tissue
of vaccinated patients, although polyfunctional CD107a+IFN-γ+ TRM cells were virtually
absent in vaccinated individuals [144]. These results indicate that mRNA vaccination
induces SARS-CoV-2 S-specific T cell responses in the lungs, although to a limited extent.
In contrast, a study analyzing paired PB and BALF samples from vaccinated individuals
without breakthrough infections showed that the frequency of S-reactive T cells was signifi-
cantly lower in BALF than in PB [145]. In another study, SARS-CoV-2-reactive T cells were
not detected in the nasal secretions of vaccinees without infection [146]. Furthermore, a
recent analysis of BALF samples reported that vaccination alone did not elicit S-specific T
cell responses that were significantly greater than those in pre-pandemic samples [147].
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Apart from the controversy surrounding whether intramuscular vaccination induces
SARS-CoV-2 S-specific TRM cells in the airways, a growing body of evidence from animal
models has demonstrated the superior ability of intranasal vaccination to induce airway
TRM cells [143,148–150]. Therefore, innovative vaccines with different routes of adminis-
tration are being developed, with a focus on inducing greater mucosal immunity that can
provide durable protection at the site of infection.

5.2. Humoral Immune Responses to SARS-CoV-2 in the Airway

Although circulating antibodies in PB contribute to viral clearance, the successful
generation of mucosal memory B cells allows for a rapid increase in the local antibody
titer, which could mediate efficient viral clearance and the prevention of viral spread
upon reinfection (Figure 1) [151]. As described above, memory B cells have been identi-
fied in multiple mucosal tissues, including the lungs of mice, following influenza virus
infection [76]. Similarly, a previous study showed that following a natural infection, SARS-
CoV-2-specific memory B cells were induced in multiple human tissues, including the bone
marrow, spleen, lungs, and lymph nodes [135]. Furthermore, IgA is a key component of the
mucosal immune response to SARS-CoV-2. Virus-specific IgA antibodies are produced by
antibody-secreting cells in the mucosal-associated lymphoid tissues, such as the palatine
tonsils, and are secreted into the respiratory tract, where they play several important roles
in mucosal defense, such as preventing the entry of the virus and reducing transmission.
SARS-CoV-2-specific IgA antibodies were detected in the saliva and BALF of patients
with COVID-19, and SARS-CoV-2 neutralization was more closely correlated with IgA
than with IgM or IgG in the first weeks after symptom onset [152]. Recent studies also
showed that wild-type SARS-CoV-2 spike-specific nasal IgA antibodies are associated with
protection against infections with SARS-CoV-2 variants, including Omicron BA.1, BA.2,
and BA.5 [153,154]. However, another study reported waning nasal SARS-CoV-2-specific
IgA antibodies nine months after COVID-19 [155], and these antibodies were not induced
by intramuscular COVID-19 vaccination [156]. These data raise the need to develop novel
vaccine strategies.

Interestingly, adults and children exhibit different IgA mucosal antibody responses
to SARS-CoV-2. Some studies, particularly in children, have reported that mild or low
antigen exposure might promote mucosal SARS-CoV-2-specific IgA responses, showing an
earlier IgA mucosal immune response to SARS-CoV-2 [157,158]. The levels of SARS-CoV-2
S protein-specific IgA in nasal fluid inversely correlated with age [157]. In addition, a
longitudinal study by Chan et al. reported that early and robust nasal S1-specific IgA
levels are linked to a rapid decline in viral load, as evidenced by analyses of SARS-CoV-2
S1-specific IgA levels and viral titers in nasal epithelial lining fluid [158]. In the study,
pediatric patients, especially those who were asymptomatic, exhibited a rapid induction of
IgA within the initial four days post diagnosis, while a noteworthy increase in IgA was
detected only between 12 and 16 days post diagnosis in adult patients [158]. These findings
may also support why children showed a lower risk of SARS-CoV-2 infection and milder
disease status.

The palatine tonsils and adenoids are secondary lymphoid structures that are located
at the nasopharynx and oropharynx, where antigen-specific T and B cell responses in the
upper respiratory tract can be generated. It was reported that tonsils and adenoids are
sites of the persistence of SARS-CoV-2 in children even without symptoms [159]. Therefore,
memory B cells in the palatine tonsils and adenoids may play a pivotal role in immune
defense against SARS-CoV-2. A recent study analyzing tonsil and adenoid tissues from
pediatric patients with COVID-19 showed that the majority of SARS-CoV-2 S1-specific B
cells from tonsils and adenoids exhibited distinct phenotypes, characterized by a higher
expression of CXCR3 and HOPX and a lower expression of several inhibitory receptors,
including FCGR2B, FCRL2, FCRL3, and TNFRSF13B [160]. In BCR sequencing analyses,
S1+ B cells were primarily IgG1 and IgA1 class-switched cells, with high frequencies
of somatic hypermutation (SHM) in VH genes and a low clonal diversity compared to
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S1− B cells, indicating their antigen-driven clonal expansion and GC origin [160]. In
that study, the frequencies of S1+RBD+ B cells in adenoids significantly correlated with
serum neutralization titers for B.1.351 (Beta), B.1.526 (Iota), B.1.617.2 (Delta), and B.1.1.529
(Omicron) variants [160], suggesting a critical role for adenoid B cells in generating immune
responses to SARS-CoV-2. Furthermore, GC B cells are expanded in adenoids after COVID-
19. These results provide evidence for persistent SARS-CoV-2-specific B cell responses in
pharyngeal lymphoid tissues following infection.

Tertiary lymphoid structures (TLSs) often develop at sites of inflammation and are key
sites in which memory B cells are reactivated, giving rise to antibodies that are capable of
mediating rapid viral clearance. However, it remains unclear whether virus-specific BRM
cells arise from germinal center responses in TLSs, such as inducible bronchus-associated
lymphoid tissue, located in mucosal tissues, or whether they migrate to the mucosal tissue
after development in the draining lymph node. Additional studies are required to elucidate
the presence and role of TLSs in the airways regarding humoral immune responses to
SARS-CoV-2 and other respiratory viruses.

Similar to mucosal cellular immunity, the development of novel vaccination ap-
proaches that induce mucosal memory B cell responses is required. Studies have shown that
an intranasal adenovirus-based COVID-19 vaccine induced mucosal B cells and antibodies
in mice [161] and rhesus macaques [162] and was protective against upper and lower air-
way infections. In a hamster model, the intranasal delivery of an adenovirus-based vaccine
generated a robust neutralizing antibody response and provided better protection than
intramuscular delivery [163]. Additionally, Diallo et al. demonstrated that an intranasally
delivered S protein trimer with adjuvant potently elicited S-specific IgG and IgA antibodies
in the nasal cavity and lungs [150]. Collectively, these results indicate that vaccines capable
of eliciting humoral responses in mucosal tissues may be effective strategies for inducing
protective immunity.

6. Alterations in Mucosal Immune Responses against SARS-CoV-2 in the Allergic
Airway Diseases
6.1. Differential Expression of Viral Entry-Related Receptors in the Allergic Airway

Factors involved in viral entry into respiratory epithelial cells can be influenced by
environmental stimuli within the airway. Distinct expression patterns of these entry-
related genes have been reported in allergic airway inflammation, primarily mediated by
type 2 cytokines such as IL-4, 5, and 13. Several studies of SARS-CoV-2 have indicated
a significant decrease in ACE2 expression and an increase in TMPRSS2 expression in
airway epithelial cells in response to type 2 inflammation [164–169]. Kimura et al. found
that IL-13 significantly reduced ACE2 expression and increased TMPRSS2 expression in
primary BECs. Similar expression patterns for ACE2 and TMPRSS2 were observed in
nasal epithelial cells and BECs in type 2 asthma and AR, which were mainly mediated by
type 2 inflammation [167]. Coden et al. also reported that ACE2 was downregulated and
TMPRSS2 was upregulated in BECs from patients with Th2-high asthma compared with
those with Th2-low asthma [168]. In addition, pre-stimulation with IL-13 before SARS-CoV-
2 infection led to a reduction in viral replication and ACE2 protein levels in BECs from
children with allergic asthma compared with those from control subjects [170]. This finding
suggests a protective effect of type 2 inflammation against SARS-CoV-2 entry. Consistent
with these results, a previous study analyzing 900 patients infected with SARS-CoV-2
showed that patients with type 2 inflammation had lower viral loads upon entry into the
study [171]. Conversely, several studies have reported that patients with COVID-19 have a
lower prevalence of asthma and AR than the general population [172–174].

In contrast, ACE2 expression in airway epithelial cells increases in the presence of
type 1 inflammation or a low Th2 profile. Saheb et al. found that an increase in IL-17, a
cytokine associated with type 2-low asthma, was significantly associated with a higher
ACE2 expression in BECs [175]. In an in vitro study using airway epithelial cells, Ziegler
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et al. discovered that ACE2 is a human IFN-stimulated gene (ISG), demonstrating that it
was elevated in response to type I IFNs and, to a lesser extent, type II IFNs [166].

Collectively, these results show that the expression of SARS-CoV-2 entry-related
receptors may undergo distinctive changes in the allergic airway.

6.2. Innate and Adaptive Immune Responses

In allergic airways, impaired innate immune responses to viral infections have been
reported; these are associated with a biased immune response towards Th2 polarity and
are primarily mediated by type 2 inflammation [176]. Type 2 inflammation is character-
ized by elevated eosinophils in the airways or PB and an abundance of type 2 cytokines.
Gilles et al. reported that the type 2 cytokines IL-4 and IL-13 could impair the immune
response to rhinovirus 16 infection by inhibiting TLR3 expression and IRF3 signaling [177].
Additionally, allergic inflammation and eosinophilia induced by IL-5 suppresses TLR7
expression in the lungs [178]. Eosinophils may suppress TLR7 responses and weaken
antiviral responses; however, further investigations are required to understand the impact
of TLR7 downregulation on SARS-CoV-2 infection.

The innate immune response can be modulated by allergens such as pollen and HDM.
Akbarshahi et al. reported that in human BECs and a mouse model of asthma, exposure
to HDM before viral infection decreased the IFN-β and IFN-λ response by affecting the
TLR3 signaling pathway [179]. Pollen exposure can also affect the immune responses to
viral infections. Hajighasemi et al. proposed that pollen exposure directly affects antiviral
defense within the airway and enhances susceptibility to SARS-CoV-2 infection [180]. An-
other study reported that exposure to pollen during viral infections reduced the production
of proinflammatory chemokines and type I/III IFNs, and increased viral replication [177].
Additionally, several proteases within the pollen may disrupt epithelial barrier integrity
and function, similar to HDM, resulting in the increased permeability of the subepithelial
layers by respiratory viruses [181].

Contrary to the previously described impaired immune response in allergic airways,
some studies have suggested a protective role of allergic airway inflammation in antiviral
defense. One study investigated the potential influence of AR on the immune response
following vaccination with a two-dose inactivated SARS-CoV-2 vaccine. The results in-
dicated that patients with pre-existing AR demonstrated a Tfh2 cell-associated enhanced
humoral immune response to the inactivated SARS-CoV-2 vaccine compared with the
control subjects. Furthermore, elevated levels of neutralizing antibodies were observed at
10–12 months post infection in the AR group compared to those in the control group [182].
Consistent with these results, Chen et al. investigated the levels of SARS-CoV-2-specific
humoral and cellular immunity in patients with and without asthma, and found that the
level of SARS-CoV-2-specific neutralizing antibodies was higher in COVID-19 survivors
with asthma than in those without asthma at the eight-month follow-up, whereas no signif-
icant differences were noted in the cellular immunity levels between the two groups. This
implies that patients with asthma may benefit from augmented humoral immunity during
the recovery period from COVID-19 [183]. Additionally, a positive correlation between the
levels of SARS-CoV-2-specific T cell memory responses and the blood eosinophil and regu-
latory T cell percentages was observed, suggesting a potential protective role of eosinophils
in antiviral host defense [183]. Ferastraoaru et al. found that patients with SARS-CoV-2
infection and pre-existing eosinophilia (absolute eosinophil count ≥ 150 cells/µL) also
showed a decreased likelihood of hospitalization and mortality [184]. Similarly, a retro-
spective cohort study on patients with SARS-CoV-2 infection reported that patients with a
blood eosinophil count greater than or equal to 200 cells/µL demonstrated lower mortality
regardless of the presence of asthma [185].

6.3. Susceptibility to Infection and Clinical Outcomes of COVID-19

The effect of allergic airway inflammation on susceptibility to SARS-CoV-2 infection
and clinical outcomes is complicated and controversial. A study of 70,557 patients who



Pathogens 2024, 13, 113 13 of 22

underwent SARS-CoV-2 testing found that AR was associated with a lower risk of SARS-
CoV-2 infection. Asthma exhibited a similar protective effect against SARS-CoV-2 infection
in patients aged under 65 years, despite its higher risk of hospitalization than that in
healthy controls [186]. Furthermore, a large retrospective cohort study of patients with
SARS-CoV-2-induced pneumonia found a significant association between atopic status
and mild COVID-19 [187]. In contrast, in a nationwide Korean cohort, asthma and AR
were associated with an increased likelihood of SARS-CoV-2 infection and worse clinical
outcomes; however, patients with non-allergic asthma had a greater risk of SARS-CoV-2
test positivity and more severe clinical outcomes than those with allergic asthma [188].
Similarly, in a propensity-score-matched nationwide cohort study, patients with AR had a
higher risk of developing SARS-CoV-2 infection [189]. Certainly, it is necessary to consider
the severity of comorbid diseases. A national cohort study in the UK reported an increased
risk of hospitalization owing to COVID-19 among patients with severe or poorly controlled
asthma compared to those without asthma. However, patients with mild or well-controlled
asthma did not show a significantly increased risk of hospitalization and mortality from
COVID-19 compared with those without asthma [190].

7. Concluding Remarks and Perspectives

An extensive body of research conducted during the COVID-19 pandemic has sub-
stantially advanced our understanding of immune responses against SARS-CoV-2 and
respiratory viruses. However, most studies have relied on easily accessible PB. Currently,
there is a growing need for more detailed investigations of the features and protective
roles of mucosal immune responses. Mounting evidence from animal studies has shown
that the establishment of neutralizing antibodies and immune memory in the respiratory
tract leads to superior protection against invading respiratory viruses. Table 1 summarizes
the key components of mucosal immune responses against SARS-CoV-2. However, the
regulatory mechanisms governing the generation and maintenance of immune memory in
the respiratory tract are not fully understood. In addition, the exact impact of respiratory
diseases, such as allergic airway inflammation, on mucosal antiviral defense needs to be
further addressed. Further mechanistic investigations coupled with data from human
cohort studies will provide novel insights into the development of effective vaccines that
induce greater mucosal immunity.

Table 1. A summary of the key components of mucosal immune responses against SARS-CoV-2.

Immunity Component Roles and/or Findings Refs.

Innate immunity

Mucins (soluble and
transmembrane mucins)

Controversial roles: elevated levels of MUC1 and
MUC5AC (soluble mucins) may impact disease

progression, while transmembrane mucins show
in vitro evidence of protective functions by
preventing SARS-CoV-2 binding and entry.

[103–107]

Antimicrobial peptides
(AMPs)

Increased β-defensin transcripts are observed in
SARS-CoV-2 patients; potential role in inhibiting

viral entry.
[108,109]

Type I IFN response

Delayed and inefficient induction in COVID-19
contributes to severe disease.

Inborn defects or autoantibodies against type I IFNs;
higher risk of severe COVID-19.

[96,101,102,113–128]

Plasmacytoid DCs (pDCs) Primary source of type I IFNs; loss of response
observed in severe COVID-19. [129,130]

Cytokine storm
(PANoptosis)

Life-threatening immune response mediated by
inflammatory cell death; the synergism of TNF-α

and IFN-γ.
[131]
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Table 1. Cont.

Immunity Component Roles and/or Findings Refs.

Adaptive
immunity

Tissue-resident memory
(TRM) cells

Critical role in rapid protection; longevity remains
unclear.

Increasing in vivo evidence supporting superior
ability of intranasal vaccination to induce airway

TRM cells.

[135,136,146]

Mucosal-associated invariant
T (MAIT) cells

Enrichment of MAIT cells and activated phenotypes
in the airway of patients with COVID-19; potential

role in local immune response.
[139–141]

Mucosal memory B cells

Rapid increase in local antibody titer for efficient
viral clearance.

SARS-CoV-2-specific B cells in tonsils and adenoids
exhibit distinct phenotypes and play potential
pivotal role in immune defense, especially in

pediatric patients.

[135,151,159,160]

IgA

Key component of mucosal immune response; more
closely correlated with SARS-CoV-2 neutralization

than IgM or IgG.
Children exhibited earlier and more robust mucosal

IgA response to SARS-CoV-2; linked to a rapid
decline in viral load.

[152–154,157,158]
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