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Abstract 

Genome-le v el clonal decomposition of a single specimen has been widely studied; ho w e v er, it is mostly limited to cancer research. In this study, 
w e de v eloped a ne w algorithm CLEMENT, which conducts accurate decomposition and reconstruction of multiple subclones in genome se- 
quencing of non-tumor (normal) samples. CLEMENT emplo y s the Expectation-Maximization (EM) algorithm with optimization strategies specific 
to non-tumor subclones, including false variant call identification, non-disparate clone fuzzy clustering, and clonal allele fraction confinement. In 
the simulation and in vitro cell line mixture data, CLEMENT outperformed current cancer decomposition algorithms in estimating the number of 
clones (root-mean-square-error = 0.58–0.78 versus 1.43–3.34) and in the variant-clone membership agreement ( ∼85.5% versus 70.1 –7 6.7%). 
Additional testing on human multi-clonal normal tissue sequencing confirmed the accurate identification of subclones that originated from dif- 
ferent cell types. Clone-le v el analy sis, including mutational burden and signatures, provided a new understanding of normal-tissue composition. 
We expect that CLEMENT will serve as a crucial tool in the currently emerging field of non-tumor genome analysis. 
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oly-clonality within a single specimen and its accurate decomposition have been important concerns in genomic analysis.
ost research efforts to address this issue have focused on cancer, in which multiple subclones give rise to genetically distinct

opulations of a single tumor, resulting in intratumoral heterogeneity (ITH) that is responsible for drug resistance, tumor relapse,
nd poor clinical outcomes ( 1 ). Several methods, such as PyClone ( 2 ), SciClone ( 3 ), PyClone-VI ( 4 ) and QuantumClone ( 5 ), have
een developed for the accurate decomposition and reconstruction of the cancer subclones. Although different statistical models
nd optimization strategies have been employed, the conceptual assumption is largely limited to the use of clonally expanded
omatic mutations, which are clearly identifiable in conventional genome sequencing. 

Recent advances in genomic analysis of non-tumor (i.e. normal) tissues pose a new challenge in genomic decomposition.
ccurate clonal decomposition in normal tissue is necessary as it provides an understanding of the molecular-level land-

cape of the developmental process ( 6 ) or patterns of mosaicism ( 7 ). Additionally, clone-level analysis is applicable to vari-
us of non-cancer disease, such as early developmental disorders or borderline premalignancies ( 8 ,9 ). While both tumor and
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Figure 1. Ov ervie w of the CLEMENT w orkflo w and core algorithms. T hree steps (initialization, EM iteration and finalization) are depicted with defined 
input (variant information including total-, alternate read depth and base quality) and output (clone numbers, compositions, and variant membership). 
VAF: variant allele frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

non-tumor tissues in a single specimen have genetically distinct populations, fundamental differences in genomic characteristics 
and variant detectability lead to suboptimal results when applying existing methods to non-tumor decomposition. First, detection 

of somatic mutations in normal tissues is fraught with the low variant allele frequency (VAF) ( < 1–5%) ( 10 ), which causes numer-
ous false calls. A series of brain mosaicism studies reported false positives ranging from 9.9 to 32.9% of total variants ( 11 ,12 ).
As clone-specific mutations are the key evidence for decomposition, the erroneous variants should be considered and properly
handled. Second, the genomic similarity among clones is higher in normal tissues due to the lower mutation rate and limited
observable clone-specific mutations, making a deterministic assignment of clones difficult and negatively affects the estimation 

of clone numbers. Lastly, the absence of copy number alterations (CNA), important evidence of tumor decomposition, limits
the information for clone identification and makes the entire algorithm rely solely on SNVs in normal tissues. Additionally, the
lack of CNA alleviates the model complexity in relating VAF to cellular prevalence and warrants more efficient decomposition.
These differences emphasize the need for a specialized method for the genomic decomposition of non-tumor samples. 

In this study, we present a new method CLEMENT (CLonal decomposition using Expectation-Maximization algorithm Es- 
tablished in Non-Tumor diploid samples), for accurate decomposition and reconstruction of subclones in non-tumor tissues. We
employed the following three core strategies to resolve the aforementioned problems: ( 1 ) measuring and parameterizing false
positivity in the input variants to reduce noise in clone identification, ( 2 ) using fuzzy clustering to enable more flexible discrim-
ination of genetically similar clones, and ( 3 ) setting restrictions on clonal fractions in the determination of clonal compositions
(i.e. total clone fraction = 1, see Materials and methods for details) due to the absence CNAs. We observed the improved accu-
racy of CLEMENT in three independent, high-quality datasets: in silico simulations, in vitro cell-line mixture ( 13 ), and human
datasets derived from multiple normal tissues using laser capture microdissection (LCM) ( 14 ). We anticipate that CLEMENT
will provide a deeper understanding of genomic and tissue-level heterogeneity, mosaicisms, and the functional relatedness of
somatic mutations in normal tissues. 

Materials and methods 

Overview of the CLEMENT algorithm 

CLEMENT consists of three major steps, as follows: (i) the initialization step that determines the initial number of clones
using K-means clustering, (ii) the iteration step that searches for the optimal compositions of clones based on the Expectation-
Maximization (EM) algorithm in a given number of clones and (iii) the finalization step to determine the optimal number of
individual and ancestral clones (undifferentiated clones that harbor two or more individual clones) and their hierarchical clone
structures (Figure 1 ). CLEMENT uses a list (or lists, if two or more samples are provided) of established somatic variants
and their total read counts and alternate read counts as input, and outputs a list of individual and ancestral clones, and the
membership of somatic variants with a visual representation. Detailed methods are formulated in the following sections. 
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efinitions of subclone and superclone 
he term ‘clone’ refers to a set of cells that harbor unique characteristics in terms of mutation ( 5 ). In CLEMENT, we used
ariants as a genomic feature to define clones. Among the clones, we defined ‘ subclones ’ or individual clones, as clones that are
enetically mutually exclusive ( Supplementary Figure S1 ). The total cellular prevalence of subclones is 1.0 by definition. With
he lack of CNAs and homozygosity of somatic mutations in normal tissue, the sum of VAFs is 0.5. In contrast, ancestral clones,
r ‘ superclones’ , possess a clonal mutation that has been dispersed among their own subclones, where the proportions of clonal
utations are the sum of the proportions of subclones ( 15 ). 

asic mathematical definitions 
et S = { s 1 , . . . , s m 

} and V = { v 1 , . . . , v n } be the set of m samples and n somatic variants given to CLEMENT, respectively. User
nput 

N 

t ot al = 

{ 

n 

t ot al 
i, j : n 

t ot al 
i, j = t ot al read count 

(
s i , v j 

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n 

} 

N 

alt = 

{ 

n 

alt 
i, j : n 

alt 
i, j = alt ernat e allele count 

(
s i , v j 

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n 

} 

re multisets of the total read count (i.e. read depth) and alternate allele count of each sample and genomic position of variants.
 

t ot al 
i, j is doubled when s i is male and v j located at sex chromosome, to calibrate from the haploid to diploid data. 

From them, we define F = { f i, j : f i, j = VAF ( s i , v j ) = 

n alt 
i, j 

n t ot al 
i, j 

, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ f i, j ≤ 1 } as a multiset of VAF values of

he variant set V , allowing for duplication. During the algorithm, k + 1 clusters composed of k true biologic clones and a cluster
f false variant (FV) C = { c 1 , . . . , c k , c F V } are assumed, where each cluster occupies a subset of variants. 
λi and � are defined as a posterior probability matrix with elements denoted as λi ( v j , c y ) and �( v j , c y ) ( 1 ≤ j ≤ n, y =

 1 , . . . , k, F V } ) with regard to single sample s i ( 1 ≤ i ≤ m ) and whole sample respectively, satisfying 

k ∑ 

y =1 

λi (v j , c y ) + λi (v j , c F V ) = 1 

nd 

�
(
v j , c y 

) = 

∏ m 

i =1 λ
i (v j , c y )∑ 

z = { 1 , ... ,k,F V } 
∏ m 

i =1 λ
i (v j , c z )

Subsequently, we defined the membership function � = V × C → { ρ : 0 ≤ ρ ≤ 1 } by satisfying for each v ∈ V , 
k ∑ 

y =1 
�( v, c y ) +

( v, c F V ) = 1 , which is gathered from �. For hard clustering, �( v, c ) is either 0 or 1 ; �( v, c ) = 1 if v ∈ V is a member of c ∈ C,
nd �( v, c ) = 0 if v ∈ V is not a member of c ∈ C (see below). For fuzzy clustering, we set � = � to allow partial membership
y assigning a posterior probability between 0 and 1 in E step (see below). 
Lastly, let μi ( c y ) ( y = { 1 , . . . , k, F V } ) be the centroid of a cluster c y in sample i , and M ( c y ) ( y = { 1 , . . . , k, F V } ) be the centroid

n m-dimensional vector, comprised of ( μ1 ( c y ) , . . . , μm ( c y ) ), which is recalibrated in M step. 

tep 1: Initialization 

n the Initialization step, CLEMENT selects k initial centroids, k is iterated within range of [2, 10] (user adjustable), on the given
ata S , V , and F , to provide a rough estimate of the clone structure for the next EM-iteration step. 
First, CLEMENT performs the K -means clustering using the scikit-learn (version 1.0.2) package ( 16 ) to partition somatic

ariants ∀ v j ∈ V (1 ≤ j ≤ n ) , an m -dimensional VAF vector ( f 1 , j , . . . , f m, j ) , into T (user adjustable; default = 10) clusters.
hen, CLEMENT randomly selects k ( k ≤ T ) initial TP clusters out of T given centroids, which implies a provisional clone
et C 

0 = { c 0 1 , . . . , c 
0 
k , c 

0 
F V } . This random selection step is repeated for 10 times (user adjustable) for each k to ensure extensive

xploration. 

tep 2: EM Iteration 

his EM-iteration step takes the initial clone set C 

0 = { c 0 1 , . . . , c 
0 
k , c 

0 
F V } from the aforementioned step, together with S , V , and F ,

nd outputs a clone set C 

Max = { c Max 
1 , . . . , c Max 

k , c Max 
F V } of the Maximum a Posteriori (MAP) probability. In this step, an alternative

M process is iterated 20 times (user adjustable) until it satisfies the stopping conditions (see the end of the section). The whole
M iteration step is conducted in two ways, as follows: first, in a hard clustering, and then in followed a fuzzy clustering (Figure
 , top middle). The final output of the EM iteration can be either from the initial hard clustering or the fuzzy clustering, which
s determined later in Step 3 (Figure 1 , bottom right). 

 step 

n the E step, CLEMENT assigns each data point to the k clones, given the centroids of clusters as a latent variable. CLEMENT
lso considers the probability that a given variant is a sequencing artifact, or falsely called, aiming to exclude its assignment to
rue clones. To achieve this, we created an additional cluster with a fixed centroid ( c F V ) at the origin (0 , . . . , 0 ), consisting of
alse variants. This cluster is distinguishable from other clones ( c 1 , . . . , c k ) because it does not represent a true biologic clone. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
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For ∀ i, j, and y = { 1 , . . . , k, F V } , posterior probability of data point belonging to clone j in sample i are calculated based on
Bayesian theorem. 

P 
(
c y | v j 

) = λi 
(
v j , c y 

) = 

P ( v j | c y ) P ( c y ) ∑ 

z P ( v j | c z ) P ( c z ) 
(1) 

where P ( v j | c y ) , P ( c y ) denotes likelihood and prior probability , respectively . 
Meanwhile, a variant v j in sample i can be categorized as true positive (TP), false positive (FP), true negative (TN) or false

negative (FN). 
If n 

alt 
i , j � = 0 , v j is regarded either TP or FP. For subclone c y ( y = { 1 , . . . , k, F V } ) that satisfies μi ( c y ) � = 0 in sample i (TP), the

likelihood of v j in subclone c y ( = P( v j | c y ) ) follows beta-binomial distribution, represented as L BetaBin ( n 

alt 
i, j | n 

t ot al 
i, j , αi , y , βi , y ) =

P( X = n 

alt 
i, j ) , X ∼ BetaBin ( n 

t ot al 
i, j , αi , y , βi , y ) , where parameters are set as αi , y = μi ( c y ) · n 

total 
i , j and βi , y = (1 − μi ( c y )) · n 

total 
i , j to max-

imize the likelihood if v j is located in the centroid. Because setting ˆ α, ˆ β where 0 = 

∂ L BetaBin 
∂α

| ˆ α, ̂  β and 0 = 

∂ L BetaBin 
∂β

| ˆ α, ̂  β requires a
another computational load represented as Newton-Raphson method, we simply approximated to mean of the beta-binomial 
model coincides the mean of the observed data, μi ( c y ) ( 17 ). Users can set the multiplication constant c to αi , y and βi , y through
the user input if input data is significantly condensed or dispersed. Meanwhile, for subclone c y ( y = { 1 , . . . , k, F V } ) that sat-
isfies μi ( c y ) = 0 in sample i (FP), the likelihood follows binomial distribution, B ( n 

t ot al 
i, j , p SE ) , where p SE stands for sequencing

error probability of v j in sample i , inferred from base quality (BQ) score provided by the user input. If the users do not pro-
vide any input, it is set to 0.01 by default ( 18 ). So, likelihood of v j in cluster c y ( = P( v j | c y ) ) in sample i is represented as
L B ( n 

alt 
i, j | n 

t ot al 
i, j , p SE ) = P( X = n 

alt 
i, j ) , X ∼ B ( n 

t ot al 
i, j , p SE ) . Eq. 1 is rewritten in eq. 2–1 and eq. 2–2. 

For c y that satisfies μi ( c y ) � = 0 (TP), 

λi (v j , c y ) = 

L BetaBin 

(
n 

alt 
i , j | n 

t ot al 
i j , αi , y , βi , y 

)
· P 

(
c y 

)
∑ 

μi ( c z ) � =0 L BetaBin 

(
n 

alt 
i , j | n 

t ot al 
i, j , αi , z , βi , z 

)
· P ( c z ) + 

∑ 

μi ( c z ′ ) =0 L B 

(
n 

alt 
i, j | n 

t ot al 
i, j , p SE 

)
· P ( c z ′ ) 

(2-1) 

and for c y that satisfies μi ( c y ) = 0 (FP), 

λi (v j , c y ) = 

L B 

(
n 

alt 
i, j | n 

t ot al 
i, j , p SE 

)
· P 

(
c y 

)
∑ 

μi ( c z ) � =0 L BetaBin 

(
n 

alt 
i , j | n 

t ot al 
i, j , αi , z , βi , z 

)
· P ( c z ) + 

∑ 

μi ( c z ′ ) =0 L B 

(
n 

alt 
i, j | n 

t ot al 
i, j , p SE 

)
· P ( c z ′ ) 

(2-2) 

The prior probability P( c z ′ ) for each c z ′ satisfying μi ( c z ′ ) = 0 is set 0.01 by default ( 19 ), but the user can adjust this parameter
by tuning the option. P( c z ) that satisfies μi ( c z ) � = 0 is set to 

1 −∑ 

P( c z ′ ) 
n(z) to satisfy the sum of prior to be 1. 

If n 

alt 
i , j = 0 , v j is either FN or TN for sample i . In case of FN, likelihood of v j in subclone c y ( = P( v j | c y ) ) in sample i is

L BetaBin ( 0 | n 

t ot al 
i, j , αi , y , βi , y ) of beta-binomial distribution as forementioned. Likewise, likelihood of v j being TN is derived from 

binomial distribution mentioned in FP, calculated as L B ( 0 | n 

t ot al 
i, j , p SE ) . 

For c y that satisfies μi ( c y ) � = 0 (FN), 

λi (v j , c y ) = 

L BetaBin 

(
0 | n 

t ot al 
i, j , αi , y , βi , y 

)
· P 

(
c y 

)
∑ 

μi ( c z ) � =0 L BetaBin 

(
0 | n 

t ot al 
i, j , αi , z , βi , z 

)
· P ( c z ) + 

∑ 

μi ( c z ′ ) =0 L B 

(
0 | n 

t ot al 
i, j , p SE 

)
· P ( c z ′ ) 

(2-3) 

and for c y that satisfies μi ( c y ) = 0 (TN), 

λi (v j , c y ) = 

L B 

(
0 | n 

t ot al 
i, j , p SE 

)
· P 

(
c y 

)
∑ 

μi ( c z ) � =0 L BetaBin 

(
0 | n 

t ot al 
i, j , αi , z , βi , z 

)
· P ( c z ) + 

∑ 

μi ( c z ′ ) =0 L B 

(
0 | n 

t ot al 
i, j , p SE 

)
· P ( c z ′ ) 

(2-4) 

Regarding the prior probability, sum of P( c z ′ ) where μi ( c z ′ ) = 0 (TN) is basically set 0.99 with an identical value for each

clone (user adjustable), and P( c z ) where μi ( c z ) � = 0 (FN) is set to 

1 −∑ 

μi ( c z ′ )=0 P( c z ′ ) 

n (z ) to reflect the real-world knowledge ( 19 ). 
Finally, v j is assigned to clone c ˆ y . 

ˆ y = argmax 

y 

m ∏ 

i =1 
λi (v j , c y ) = argmax 

y 
�

(
v j , c y 

)
(3) 

In hard clustering, 

�
(
v j , c y 

) = 

[
1 , y = 

ˆ y 
0 , y � = 

ˆ y 

]
for ∀ j, y (4) 

In fuzzy clustering, ( ) ( )

� v j , c y = � v j , c y for ∀ j, y (5) 
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 step 

n the M step, CLEMENT updates the centroid of each clone using the membership calculated in the E step as below: 

μi 
(
c y 

) = 

∑ n 
j=1 f i, j �( v j , c y ) ∑ n 

j=1 �( v j , c y ) for ∀ i, y (6)

istinguishing the individual clone and ancestral clone 
fter updating the centroids, CLEMENT classifies all the clones into either (i) an individual clone C 

ind ( C 

ind ⊆ C , n ( C 

ind ) =
 

′ ), which is an independent clone that is separated from the other clones, or (ii) an ancestral clone C 

anc ( C 

anc ⊆ C , n ( C 

anc ∩
 

ind ) = 0 , n ( C 

anc ) = k − k 

′ , Supplementary Figure S2 ), which is an undifferentiated clone that is composed of two or more
ndividual clones. As mentioned earlier (see Basic mathematical definitions), CLEMENT chooses a set of clones from all possible
ombinations, the sum of whose centroids is 0.5. These set of clones are regarded as individual clones, or subclones ( subclone
ule , Eq. (7- 1 )). 

k ′ ∑ 

y = 1 
μi 

(
c y 

) = 0 . 5 for c y ∈ C 

ind , ∀ i (7-1)

CLEMENT employs multisample t -test with null hypothesis 
k ′ ∑ 

y = 1 
μi ( c y ) – 0.5 = 0, with significance level = 0.01 and degree

f freedom = 

k ′ ∑ 

y =1 
n ( c y ) − k 

′ . If variance of each cluster is not identical, an alternative degree of freedom is used ( 20 ). t values

re derived from difference of group averages by dividing standard error of difference. If the statistics do not reject the null
ypothesis, it ensures the sum of centroids is regarded as 0.5. When more than one combination of clusters satisfies the condition,
LEMENT selects the set with the highest P value on the multisample t-test, which supports the null hypothesis most strongly.
Ancestral clone c z is cluster of clonal mutations, whose proportion is sum of its subclones c u . CLEMENT establishes

uperclone–subclone structure (phylogeny inference) by (eq. 7–2), in other words, sum rule ( 15 ). 

M (c z ) = 

∑ 

c u ∈ C ′ ind 

M (c u ) for c z ∈ C 

anc , C 

′ ind ⊂ C 

ind (7-2)

CLEMENT also employs another multisample t -test, assuming a null hypothesis that the mean value of the superclone is
qual to the sum of mean values of the subclones, as previously described. 

If any of (Eq. (7-1)) or (Eq. (7-2)) is unsatisfied, the iteration stops and restarts with Step 1 using another provisional clone
et C 

0 = { c 0 1 , . . . , c 
0 
k , c 

0 
F V } . Otherwise, the E–M process continues until convergence. 

etermination of convergence 

he EM iteration stops if the following conditions are satisfied: 

• A. The number of EM iterations is > 10 times (user adjustable), AND: 
• B-1. The gap between the Maximum a Posteriori probability of two successive steps is < 1%, OR 

• B-2. The gaps between all centroids of two successive steps are < 0.01, OR 

• B-3. The membership matrix � retains same for two successive steps. 

tep 3: Finalization 

fter two rounds of the EM iteration, CLEMENT determines whether the clustering results from the initial hard clustering or the
econdary fuzzy clustering will be used as output (Figure 1 , bottom right). Among the hard clustering results, CLEMENT uses
ap* Statistics ( 21 ) to choose optimal k , where the intra-cluster variation is minimized and inter-cluster variation is maximized.

f Jaccard similarity between �( v, c y 1 ) and �( v, c y 2 ) exceeds 0.2 for ∃ y 1 , y 2 ( 1 ≤ y 1 , y 2 ≤ k ) , CLEMENT selects the result from
uzzy clustering; otherwise, the hard clustering results are retained. Finally, variants in c F V are designated as false variants (FV),
n the other words, sequencing artifacts. The remaining variants are treated as true variants (TV). 

est set preparation 

est set preparation 

e used three independent test sets to measure the performance of CLEMENT and other tools, as follows: (i) a simulated dataset
SimData), (ii) an in vitro cell line mixture dataset (CellData) and (iii) real human multi-clone microdissected tissues (BioData).

imulated dataset (SimData) 
he SimData was made up of hypothetical clones and computationally introduced clone-specific somatic mutations thereof,
ased on two assumptions for non-tumor conditions: (a) absence of CNAs, and (b) absence of homozygote variants. Test sets
ere constructed with a random choice of (i) the number of clones ( k : 2 ≤ k ≤ 7 ) and (ii) the number of samples ( i : 1 ≤ i ≤ 3 )
nder the discrete uniform distribution. The number of clones and samples is limited arbitrarily for the economic computational
urden of parallel benchmarking. The total number of variants and the mean read-depth for the benchmark were chosen as 500
nd 125, to reflect the 125 × DNA sequencing that is commonly used in real datasets. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
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Two types of datasets, SimData-decoy and SimData-lump, were generated computationally. First, for the SimData-decoy 
dataset, the proportional distribution of k clones in sample i was randomly drawn from the Dirichlet distribution with shape
parameter α = ( α1 , . . . , αk ) , where αy ( 1 ≤ y ≤ k ) was randomly selected from a binomial distribution B ( 10 y, 0 . 5 ) . For each
clone of a proportion ρ, somatic heterozygote mutations were generated at random genomic loci, with the total read-depth
( N 

t ot al ) randomly chosen from normal distribution N ( 125 , 8 ) and alternate allele count ( N 

alt ) following binomial distribu-
tion B ( N 

t ot al × ρ/ 2 , 0 . 5 ) , making sure that VAF follows distribution with mean VAF as ρ/ 2 . Then, false somatic variants were
generated, the VAF of which were based on the reverse sigmoid function (eq. 8 ) to mimic the nature of real-world dataset. 

P 
(
X = f i. j | v i. j ∈ c A F V 

) = 

(
1 − 1 

1+ e ( 100 f i. j −5 ) 

)
× Constant (8) 

where c A F V refers FV cluster of answer sets, and Constant is a constant to make the sum of probability density function 1. Mean
and median VAF of the model were 0.029 and 0.027, respectively (see Supplementary Figure S3 ). Five different datasets, including
a different number of false variants (0%, 2.5%, 5%, 7.5% or 10% of the total 500 variants), were evaluated accordingly. 

Similarly, the SimData-lump dataset was generated by changing the shape parameter of the Dirichilet distribution α′ =
( α

′ 
1 , . . . , α

′ 
k ) , where α

′ 
y ( 1 ≤ y ≤ k ) is randomly selected from a binomial distribution B ( 10 k, 0 . 5 ) ; this makes the clones more

agglomerated. Likewise, five datasets with false variants added (0%, 2.5%, 5%, 7.5% or 10% of the total 500 variants) were
prepared to evaluate the influence of false variants. 

Here, 500 − n( c A F V ) somatic mutations were distributed to k clones, so the number of mutations per clone followed a multino-
mial distribution ( n = 500 − n ( c A F V ) , p i = 

1 
k for i = ( 1 , 2 , . . . , k ) ). The VAF and number of mutations of each clone are depicted

in Supplementary Figure S4 . Base quality (BQ) of each variant was set to 20 (99% confidence). 
Then, we expanded our benchmark by selecting the combination of total variants and mean read-depth among 

Tot al variant s = { 100 , 500 , 1000 } and Read _ depth = { 30 , 125 , 250 } , to verify the performance of CLEMENT according
to the number of total variants and read-depths. In each dataset, we repeated the random sampling 30 times and evaluated the
mean value. 

Cell line mixture dataset (CellData) 
CellData was constructed based on our previous study that provided 39 physical mixtures of six completely genotyped human
cell lines (MRC5, RPE, CCD-18co, HBEC30-KT, THLE-2 and FHC) in various compositions (three or four cell lines out of the
six) and cellular proportions (0.5–56%) ( 11 ). CellData consisted of fully diploid genomes by excluding sex chromosomes to
ensure copy number neutrality. 

In a mixture, cell line-specific variants form an individual clone. Also, variants that are shared between the cell lines form
hypothetical ancestral clones. We downloaded the 1,100x whole-exome sequencing (WES) data of the 39 mixtures (M1-1 to M1-
9, M2-1 to M2-12 and M3-1 to M3-18) from the Sequence Read Archive (SRA) repository database (SRP334852). Among the
39 mixtures, we used eight to construct the test sets. The exclusion criteria were as follows: (i) the presence of two uneven clones
(clone size difference > 5 times) at inseparable frequencies (VAF difference ≤ 0 . 03 ) (excluded M1-1,3,5,7 and M2-10,12), (ii)
the presence of extremely small clones (clone size ≤ 30 variants; mean clone size = 1629) (excluded M1-9, M2-1,3,5,7,9,11) and
(iii) redundancy of the clone composition (all 18 M3 mixtures). As a result, eight test sets with 3–4 individual and 0–1 ancestral
clone were prepared. A multi-sample dataset was generated by combining 2 or 3 samples, irrespective of mixture category (M1
or M2). Accordingly, 28 ( = 8 C 2 ) two-sample and 56 ( = 8 C 3 ) three-sample test sets were prepared. The characteristics of CellData,
including clonal proportion, variants counts, and false variants compositions are listed in Supplementary Table S1 . 

For each WES dataset of the selected mixtures, somatic single nucleotide variants (SNVs) were selected using GATK MuTect2
(version 4.2.3.0) and filtered by FilterMutectCalls (ver. 4.2.3.0) with default parameters ( 22 ). SNVs that did not match any of
the cell line genotypes were marked as false variants. Similar to SimData, we chose the total number of variants and the mean
read-depth for the benchmark as 500 and 125, by downsampling the initially downloaded 1,100x datasets using picard (v2.26.4,
http:// broadinstitute.github.io/ picard ). 

We extended our test datasets by applying 0 (0%), 13 (2.5%), 25 (5%), 38 (7.5%) and 50 (10%) false variants. Then, we gener-
ated the datasets without the ancestral clone and with one ancestral clone added. The number of mutations and mean read-depths
for simulations were extended to a combination of Tot al variant s = { 100 , 500 , 1000 } and Read _ depth = { 30 , 125 , 250 } to
assess the performance of CLEMENT in various conditions. We conducted repetitive randomized trials (30 times) and compar-
isons for each dataset. In each trial, we selected variants through random sampling while maintaining the overall proportions
of each clone. The test datasets for CellData are available on https:// github.com/ Yonsei-TGIL/ CLEMENT . 

Human normal tissue dataset (BioData) 
BioData was prepared using a recent study that conducted whole-genome sequencing of 561 laser capture microdissected patches
from 29 microscopic histological structures from three individuals ( 14 ). The number of clones from the 29 tissues was estimated
by the genomic VAF and histological assessment in the original study and used in the test. We downloaded 524 732 somatic
SNVs and VAFs from the 29 tissues (5 mono-clonal, 4 bi-clonal and 20 poly-clonal; according to the author’s estimation) from
the Supplementary Information of the study ( 14 ) and used them as inputs for testing. We discarded samples that did not pass the
following conditions: (i) average read depth ≥ 20 and (ii) total number of mutations ≥ 100 . Finally, we obtained 224 samples
from 24 tissues to perform single-sample decomposition. 

In the evaluation, mono- and bi-clonal samples from the original datasets were marked as k (the number of clusters) = 1 and 2 ,
respectively. For poly-clonal samples, a prediction of k ≥ 3 was considered correct. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
http://broadinstitute.github.io/picard
https://github.com/Yonsei-TGIL/CLEMENT
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erformance measurement 

coring index 

he test performance was measured in two terms, as follows: (i) the accuracy of the clone number estimation and (ii) the accuracy
f variant membership. For (i), the deviation of the estimated clone number from the true number was scored in the root mean
quare error (RMSE) of all the trials (30 times). For (ii), the Adjusted Rand Index (ARI) ( 23 ) and membership score ( S M 

) were
sed to performance measurement. 
Let C A = { c A 1 , . . . , c A κA 

} and C P = { c P 1 , . . . , c P κP 
} be a set of clusters in answer and predicted output, and their indices as I A =

{ 1 , 2 , . . . , κA 

} and I P = { 1 , 2 , . . . , κP } . Then, we define u i, j ( 1 ≤ i ≤ κA 

, 1 ≤ j ≤ κP ) as the number of common variants in c A i ∈
 A and c P j ∈ C P . Also, let a i and p j be the number of variants in c A i and c P j , respectively. ARI is defined as below: 

ARI = 

∑ 

i j 

⎛ ⎝ 

u i, j 

2 

⎞ ⎠ −
⎡ ⎣ ∑ 

i 

⎛ ⎝ 

a i 

2 

⎞ ⎠ 

∑ 

j 

⎛ ⎝ 

p j 
2 

⎞ ⎠ 

⎤ ⎦ / 
⎛ ⎝ 

n 

2 

⎞ ⎠ 

1 
2 

⎡ ⎣ ∑ 

i 

⎛ ⎝ 

a i 

2 

⎞ ⎠ + 

∑ 

j 

⎛ ⎝ 

p j 
2 

⎞ ⎠ 

⎤ ⎦ −
⎡ ⎣ ∑ 

i 

⎛ ⎝ 

a i 

2 

⎞ ⎠ 

∑ 

j 

⎛ ⎝ 

p j 
2 

⎞ ⎠ 

⎤ ⎦ / 
⎛ ⎝ 

n 

2 

⎞ ⎠ 

(9)

here n is the number of variants as forementioned. 
However, for the test sets with false variants, ARI is not applicable due to its inability to discriminate the set of false variants

rom true clones. Symmetricity of ARI provides an advantage in not needing precise labeling of clusters, but there is also a
imitation in its applicability when exact discrimination of FV is required. Therefore, we defined an additional score S M 

that
easures the maximum matches of variant membership from all possible injection functions (between the answer and the
redicted clusters) in answer set C A and the predicted set C P . 

S M 

= max 

R ∈R 

{ ∑ 

( i, j ) ∈ R 
u i, j 

} 

× 100 
n (10)

here R is a set of relations R ⊂ I A × I P satisfying that, if κA 

≤ κP , then R is an injective function ( R : I A → I P with ( x, y ) ∈ R
nd ( z, y ) ∈ R implies x = z ), and if κP ≤ κA 

, then R 

T is an injective function, where R 

T = { ( y, x ) : ( x, y ) ∈ R } . To normalize it,
e recalibrated by the number of variants, n . An example of the determination of S M 

is described in Supplementary Figure S5 . 

esting of cancer decomposition tools 
hree cancer decomposition tools were prepared for the test. PyClone-VI (version 0.1.1) was downloaded from the GitHub
epository ( https:// github.com/ Roth-Lab/ pyclone-vi ) and installed using Conda. SciClone (version 1.1.0) was downloaded
nd installed on R (version 4.2.0) following the installation instructions in ( https:// github.com/ genome/ sciclone ). Quantum-
lone (version 1.0.0.9) was downloaded and installed on R (ver. 4.2.0) using CRAN ( https:// CRAN.R-project.org/ package=
uantumClone ). For SciClone and PyClone-VI, parameters for the copy number (‘major_cn’ and ‘minor_cn’) and tumor con-

ent (‘tumour_content’) were set to 1 for optimization. For QuantumClone, the ‘Genotype’ parameter was set to ‘AB’. Default
alues were used for all other parameters. 

nalysis in the real-world datasets 

utational burden and signature analysis in bi- or poly-clonal samples 
ut of a total 224 samples, CLEMENT identified 136 samples as monoclonal. For the remaining 88 bi- or poly-clonal samples,
e measured the mutational burden in each clone. In cases where CLEMENT chose fuzzy clustering which does not provide
inary membership, we assigned the membership of v j as y where �( v j , c y ) is maximized. We used standard deviation as a metric
or dissimilarity of mutational burden. To determine the threshold where clones are not genetically identical, we employed a
ootstrap approach with 100 times of iteration. The null hypothesis assumed that the mutational burden for each clone is the
ame. If the standard deviation of the proportions of each clone within the sample is beyond the 95% confidence interval (CI)
f the distribution obtained through bootstrapping, we considered that sample to be highly dissimilar. 
We analyzed the spectrum of mutational signatures in BioData following clonal decomposition using CLEMENT.

or signature extraction and matrix formation, we utilized SigProfilerMatrixGenerator ( https:// github.com/ AlexandrovLab/
igProfilerMatrixGenerator ). Signature extraction, assignment to the COSMIC database, and visualization were performed using
igProfilerAssignment (version 0.0.29, https:// github.com/ AlexandrovLab/ SigProfilerAssignment ) ( 24 ). We specifically focused
n SBS1, 2, 4, 5 / 40, 7a, 7b, 13, 16, 18, 32, 35, 88 and 91, as outlined in Moore et al.’s paper ( 14 ), to maintain the pattern
f signatures from the original paper. Notably, we combined SBS5 and SBS40 into SBS5 / 40, following the previous work. We
xplored the percentage of SBS1 and SBS5 / 40 in each clone, as discrepancies among tissues were noted in the previous study. 

lonality analysis in adrenal glands 
e obtained three layered tissues (Zona Glomerulosa (ZG), Zona Fasciculata (ZF) and Zona Reticularis (ZR)) from one donor

PD28690) at five different regions (L1–L5), resulting in a total of 15 samples. One-sample and two-sample clonal decomposi-
ions were performed using CLEMENT, PyClone-VI, SciClone and QuantumClone. 

We performed unsupervised hierarchical clustering and visualization between the samples using scipy (ver. 1.10. https://docs.
cipy.org/ doc/ scipy/ reference/ generated/ scipy.cluster.hierarchy.dendrogram.html ) based on Jaccard similarity. By comparing the
utation sets and decomposed clones using CLEMENT, we analyzed the clonality in two adjacent tissues (ZG – ZF). We used
ioRender ( http:// app.biorender.com/ ) to create the illustration. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://github.com/Roth-Lab/pyclone-vi
https://github.com/genome/sciclone
https://CRAN.R-project.org/package=QuantumClone
https://github.com/AlexandrovLab/SigProfilerMatrixGenerator
https://github.com/AlexandrovLab/SigProfilerAssignment
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html
http://app.biorender.com/
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Figure 2. Test on simulated data. ( A ) Establishment of an in silico mixed non-tumor diploid model using Dirichlet’s random sampling. (B, C) Performance 
comparison for estimated number of clones (left), RMSE (middle) for number of clones, and membership score ( S M 

, right) with 50 0 mut ations and mean 
depth 125 in ( B ) SimData-decoy without false variants, ( C ) SimData-lump without false variants. Extended benchmark of SimData-decoy without false 
v ariants b y ( D ) f alse v ariant ratio, ( E ) read-depth and ( F ) the number of mutations. Each point represents the mean v alue of 30 times of iteration, and 
95% confidence interval (CI) is depicted as a shadow. ( G ) Examples of one-sample (left), two-sample (middle), and three-sample (right) decomposition 
that show the superiority of CLEMENT. False variants are depicted as black dots. FV: false variants, VAF: variant allele frequency, RMSE: root mean 
square error. 

 

 

 

 

 

 

 

 

 

 

 

Results 

Clonal decomposition in simulated data 

We tested CLEMENT on simulated data sets (SimData-decoy and SimData-lump) over various conditions (Figure 2 a). The
primary SimData is a collection of 18 simulated samples consisting six different numbers of clones ( k = 2, 3, 4, 5, 6, and 7),
and three different numbers of samples ( m = 1, 2, and 3) containing 500 variants ( n = 500) whose mean read-depths are 125,
without the embedment of false mutations (see Materials and metthods). The mean VAFs of each cluster exhibited divergence
in SimData-decoy and agglomerated in SimData-lump, although the difference was narrowed as the number of clones increased
( Supplementary Figure S4 ). Three cancer decomposition tools (PyClone-VI, SciClone and QuantumClone) were also tested on
the datasets and compared with CLEMENT. 

Firstly, in the SimData-decoy dataset, we observed a nearly perfect correlation between the estimated number of clones and
answers in CLEMENT (Figure 2 b, left). Specifically, we observed a remarkable improvement in terms of RMSE (0.06–0.55 ver-
sus 0.96–2.09, 0.58–2.27 and 0.48–2.03 in CLEMENT versus PyClone-VI, SciClone, and QuantumClone, respectively; ranges 
within one-, two-, and three-sample datasets, Figure 2 b, middle) and the membership agreement metrics (27.0–58.3% and 28.8–
40.0% increase in membership score S M 

and ARI, respectively; ranges within one, two, and three-sample datasets, Figure 2 b,
right). The improved accuracy was intensified with the increase in sample and clone numbers. In particular, CLEMENT main-
tained its performance, while all the cancer decomposition tools showed severe underestimation of clone numbers in k ≥ 4
(Figure 2 B, right). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
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We also observed the superiority of CLEMENT compared to the other tools in the SimData-lump dataset, in which the
AF values of mutations were more condensed, making clustering more challenging. CLEMENT demonstrated superior per-

ormance in estimating the number of clones, achieving nearly perfect matches for each clone (Figure 2 C, left). In terms of
MSE, CLEMENT exhibited better results ranging 0.05–0.49, compared to 1.33–2.37, 1.12–2.36 and 1.01–2.31 in PyClone-
I, SciClone and QuantumClone, respectively (Figure 2 C, middle). Additionally, membership agreement to clones was higher in
imData-lump (40.2–60.2% higher in S M 

and 43.1–53.3% higher in ARI, Figure 2 C, right, Supplementary Table S2 ). Similar
o that in SimData-decoy, the superiority of CLEMENT over other tools was remarkable as the number of clones increased
11.3–33.9% higher in k = 2 and 38.5–60.2% higher in k = 7 regarding S M 

). Additionally, the accuracy of CLEMENT was
ven more significant as more samples were included. Especially in m = 3 , the performances were sustained even when more
lones were introduced where accurate decomposition was harsher. 

We extended our evaluations of the SimData-decoy and SimData-lump datasets under various conditions, including changing
he ratio of inserted false variants, read-depths, and the number of mutations (Figure 2 D–F, Supplementary Figure S6 a–c).
LEMENT consistently outperformed the other tools across all conditions, showing particularly reliable outputs in estimating

he number of clones. The superiority of CLEMENT became more pronounced with an increase in the higher read-depths
11.8–35.4% higher in S M 

and 1.10–2.14 in 
RMSE), greater number of mutations (11.6–13.6% higher in S M 

and 1.17–1.44
n 
RMSE), and more embedded false variants (11.8–12.0% higher in S M 

and 1.24–1.70 in 
RMSE). CLEMENT successfully
solated false variant cluster in 65.2% of whole simulations, whereas the other tools erroneously allocated the false variants
nto clusters or considered them as true biologic clone. Identification of false variant clusters became more feasible when more
amples were provided (see Supplementary Table S3 ). 

A more detailed inspection of the predicted cluster compositions provides a better understanding of the underlying character-
stics of CLEMENT and cancer decomposition algorithms (Figure 2 G). In the presence of multiple clones with overlapping VAF
anges, cancer decomposition tools are more inclined to predict a larger, merged cluster instead of smaller individual clones,
esulting in an underestimation of clone numbers. The strong feature of the CLEMENT is its superior performance in more
gglomerated datasets that reflect real-world biology, via fuzzy clustering. 

est on in vitro cell line data 

e tested CLEMENT on another test set (CellData) constructed from mixtures of pre-genotyped cell lines in various proportions
Figure 3 A, see Materials and methods for details). Unlike the simulation datasets, CellData contains a series of false negatives
hen performing two-sample or more decomposition because low VAF mutations are easily missed in single-sample calling

 Supplementary Figure S7 ). Additionally, several samples in CellData consists of different type of mixtures (e.g. M1-2 of M1
nd M2-4 of M2, see Supplementary Table S1 ), resulting in a series of sample-restricted clones that reflect real-world biology.
herefore, direct sequencing of physical clones and conventional variant calling offers a most realistic scenario for non-tumor
ecomposition. Like the SimData dataset test, CLEMENT showed superior performance. 
In the absence of false variant and ancestral clones, CLEMENT exhibited better performance in both RMSE and S M 

.
LEMENT demonstrated the highest accuracy in estimating clone numbers, particularly in three-sample decomposition

RMSE = 0.58–0.78) (Figure 3 b, left). Conversely, cancer decomposition tools either under- or over-estimated clone numbers, re-
ulting in significantly higher RMSE values (0.85–1.79, 1.18–1.43 and 1.11–3.34 in PyClone-VI, SciClone and QuantumClone,
espectively; ranges within one-, two- and three-sample datasets). Additionally, when one superclone was added, CLEMENT
emonstrated the best performance, except for one-sample decomposition (Figure 3 B, middle). We speculate that this is because
ost of the clones in CellData have extremely low prevalence, making their superclone challenging to discern in one-sample
ecomposition. Generally, the accuracy of CLEMENT improved as more samples were provided, whereas the other tools ex-
ibited inconsistency. CLEMENT also showed the superiority in terms of S M 

regardless of the presence of a superclone, al-
hough the differences among the tools were not as significantly pronounced as those in SimData ( ∼7.4%, ∼9.1% and ∼21.2%
igher for one-, two- and three-sample decomposition, Figure 3 b, right). The same phenomenon was observed in terms of ARI
 Supplementary Table S4 ) 

In the presence of false variant data, ranging from 2.5% to 10% of the entire datasets, CLEMENT outperformed other cancer
ecomposition tools significantly. When 10% false variants were added, CLEMENT showed the best RMSE and S M 

for all sample
umbers (Figure 3 C). Its superiority over the other cancer decomposition tools was more pronounced than that in the absence
f false variants ( ∼7.9%, ∼14.2% and ∼26.7% higher for one-, two- and three-sample decomposition). All the tools tended to
e less accurate when more false variants were included, whereas CLEMENT maintained relative overall performance (Figure
 D). CLEMENT successfully identified false variant data in two- and three- sample test sets ( ∼29.5 and ∼49.1% detection rate,
espectively, Supplementary Table S5 ). In one-sample data, discrimination of false variants was challenging because the mean
AF of false variants (0.029, see Supplementary Figure S3 ) made identification alongside other low VAF clones (0.01–0.04)
xtremely unrealistic. 

In the extended test sets that include various combinations of read-depths and the number of mutations, CLEMENT generally
utperformed the other tools (Figure 3 E, F, Supplementary Figure S8 a, b). In 30 × downsample and 100 mutations datasets, the
uperiority of CLEMENT was not as remarkable as that in other conditions, because the densely populated clones in low VAF of
ellData are easily influenced by the harsh condition, making decomposition much more challenging. Especially, among the 30 ×
ata, variants of low VAF were filtered in the variant calling step, distorting the input information and resulting in right-shifting
f the clusters. However, CLEMENT still maintained competitiveness compared to the others and outperformed them in all the

ther tests. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
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Figure 3. Test on pre-genotyped mixed cell line data. ( A ) Illustrative diagram of analysis utilizing mixed cell line data. ( B , C ) Comparison of RMSE (left and 
middle) for the number of clones and mean membership score ( S M 

, right) with 95% confidence interval (CI, shadow) in one-sample ( n = 8), two-sample 
( n = 28), and three-sample ( n = 56) cell line datasets with (B) no false variant or (C) 10% false variants. Extended benchmark by ( D ) FV ratio, ( E ) 
read-depth and ( F ) the number of mutations are also described. ( G–I ) Ph ylogen y reconstruction of superclone-added cell line data in one-sample input 
(G, M1-6), two-sample input (H, M1-8 + M2-4) and three-sample input (I, M1-4 + M1-6 + M1-8). False variants are depicted as black dots. FV: false 
variants, VAF: variant allele frequency, RMSE: root mean square error. 

 

 

 

 

 

 

 

 

 

 

 

 

When a superclone was added to CellData, CLEMENT appropriately reconstructed superclone-subclone structures. The 
examples of reconstructed clone structures confirmed the accurate discrimination of ancestral clones from individual ones in
various conditions, which was consistent with the answer datasets (Figure 3 G: one-, 3H: two-, 3I: three-samples). 

Test on human multi-clonal normal tissues 

Finally, we applied CLEMENT to the sequencing of 24 microdissected human normal tissues that showed mono- to poly-
clonal microstructures in Moore et al. ( 12 ) (BioData) (Figure 4 A). The number of clones identified in the original study based
on genomic profiling and histological assessment served as the gold standard. Clonality analysis was performed based on a
sample level that evaluated the predicted number of clones. Only CLEMENT provided the fuzzy clustering that reflected the
agglomerated nature of human data (Figure 4 B). In total, CLEMENT estimated the exact clone numbers in 204 samples (91.1%)
out of 224, with an RMSE of 0.30, outperforming the other tools (# exact match = 44 (19.6%), 57 (25.4%), and 66 (29.4%);
RMSE = 1.12 (0.84–1.51), 1.45 (0.91–1.86) and 0.85 (0.0–1.03) in PyClone-VI, SciClone, and QuantumClone, respectively) 
(Figure 4 C, D). W e found a high correlation (Pearson’ s r = 0.94) between the predicted numbers and the gold standard in
CLEMENT, whereas almost no correlation (r = -0.45—0.20) was observed in the three cancer decomposition tools (Figure
4 E). Notably, QuantumClone converged to bi-clonality in nearly all samples, which clearly demonstrated the weakness of the
Bayesian Information Criterion (BIC) method when determining the number of clones (Figure 4 F). Conversely, SciClone tended
to produce a large number of clones in nearly all cases, indicating that the RMSE of SciClone in poly-clonal ( k ≥ 3) tissues were
erroneously overestimated. 
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Figure 4. Test on human microdissected tissue data. ( A ) Schematic figure for obtaining clonal data in normal tissue, which shows high genomic 
similarity. ( B ) Confirmation of successful separation of CLEMENT through one-sample decomposition example (PD43850-pancreas duct-D7). ( C ) RMSE 
in each clonality (mono-clonal, bi-clonal, and poly-clonal) for four decomposition methods (left). Barplot (right) describes the RMSE for all samples. ( D ) 
Heatmap depicting the relationship between Moore et al. ’s conjecture and other tools. Red indicates an overestimation of the number of clones 
compared with Moore’s, and green refers to underestimation. ( E ) Correlation matrix and coefficients of estimated number of clones between the tools, 
including Moore et al. ’s conjecture. ( F ) Alluvial plots for the number of estimated clones between Moore’s conjecture and decomposition tools. ( G ) 
Stacked bar plot depicting the proportions of subclones for 88 bi- or poly-clonal samples. Circle indicates the dissimilarity of number of mutations 
calculated by standard deviation. ( H ) Composition of mutational signatures in two bronchus epithelium tissues. ( I ) Correlation was noted between clonal 
proportion in sample and proportions of SBS1 in each subclone. Linear regression was plotted as blue line ( r = 0.49). VAF: variant allele frequency. 
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Figure 5. Clonality analysis of adrenal gland cortex. ( A ) Further adrenal gland analysis in 15 tissues. The blue figures show the distribution of variant allele 
frequency (VAF). ( B ) Unsupervised hierarchical clustering based on Jaccard similarity in ZG and ZF. ( C ) Tw o-sample decomposition re v ealing the presence 
of superclone, indicating the adult stem cell in adrenal gland cortex. ( D ) Proposed concepts of clonal migration in the adrenal gland. Large blue cell 
implies an adult stem cell in ZG. ZG: Zona Glomerulosa, ZF: Zona Fasciculata, ZR: Zona Reticularis Adapted from ‘Organs, multiple systems’, ‘Pipette 
(symbol)’ and ‘Adrenal Gland Str uct ure and Hormones Production’, by BioRender.com (2024). Retrieved from 

https:// app.biorender.com/ biorender-templates . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For bi- or poly-clonal samples ( n = 88, Supplementary Figure S9 ), we investigated the genomic profile for each clone and found
dissimilar features within the clones. First, we examined the evenness of the number of mutations among the clones by calculating
the standard deviation. We observed discrepancies in clonal mutational burden distribution among the samples (Figure 4 G). The
dissimilarity was well observed in samples with multiple peaks. For example, in adrenal gland zona glomerulosa (ZG) L1,
the green clone included most of the mutations, whereas two condensed clones (light green and beige) had fewer mutations.
Clones in normal samples have long been thought to be homogenous, but we witnessed that some populations (18%) exhibited
distinguished discrepancies beyond the threshold, necessitating precise clonal decomposition. Additionally, we found that the 
dissimilarity varied even within the same tissue, such as ZG and bronchus epithelium. Clonal inference (proportions and number
of clones) in normal tissue bulk datasets has been made based on the assumption that all clones are homogeneous, but we suggest
clonal inference after exact clonal decomposition. 

Next, we investigated the pattern of mutational signatures at the clone-level. The average number of mutations per clone
was 415, which is sufficient to decompose the mutational signatures according to the genomic context. SBS5 / 40 was the dom-
inant mutational pattern in most tissues, except for the small bowel crypt where SBS1 was the major mutational pattern. The
discrepancy among the tissues was mentioned in a previous publication ( 14 ), and we reaffirmed the same phenomenon at the
clone-level. Interestingly, we found that bronchus epithelium showed a different pattern of mutational signatures between the 
clones. For example, bronchus epithelium H7 and D9, which showed a clear bimodal peak and were decomposed by CLEMENT
as bi-clonal, were divided as a major clone with SBS1 and a minor clone consisting only SBS5 / 40 (Figure 4 h). We expanded
our inspection for all clones of all samples. We noted the positive relationship between the clonal prevalence and the proportion
of SBS1 (correlation coefficient r = 0.49, Figure 4 I). As clones with higher VAFs indicate mutations occurred earlier ( 25 ), we
hypothesized that the pattern of mutational signatures differs by the timing of mutations acquisition. A single-cell genome se-
quencing of the forebrain revealed the C > T mutations are enriched in early mutations ( 26 ), supporting our finding in that SBS1
signature mostly represents C > T mutations. Although direct evidence of high allelic fraction clones possessing high stemness
is limited, we offer a glimpse of the relationship between mutational contexts and developmental dynamics at the clone level. 

Analysis on microscopic tissue of adrenal gland cortex 

Further analysis of 15 adrenal gland tissues revealed the heterogeneous nature of clonal compositions (Figure 5 a). Cortex of
adrenal glands consists of three layers—Zona Glomerulosa (ZG), Zona Fasciculata (ZF) and Zona Reticularis (ZR)—from the 
outer to the inner layer, each producing different steroid hormones. Since 1883, the presence of adult stem cells in the periphery
of the adrenal gland cortex and formation of the ZG–ZF axis have been hypothesized (‘centripetal migration model’) ( 27 ), which
was validated through BrdU staining ( 28 ). 

https://app.biorender.com/biorender-templates
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
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In BioData, we observed that the outermost layer, ZG of L1 and L2 had definite dual peaks, implying more than bi-clonality.
onversely, ZF of L1 and L2 had a single peak, suggesting highly agglomerated poly-clonal tissues. Jaccard similarity within ZG
nd ZF revealed that L1 and L2 were genetically equivalent, as well as L3 and L4 (Figure 5 B, Supplementary Figure S10 ). We
oted substantial shared mutations between ZG-L1 and ZF-L1 (Jaccard similarity = 0.38), whereas there was no shared mutation
etween ZG-L3 and ZF-L3 (Jaccard similarity = 0.0, Supplementary Figure S11 ). Interestingly, VAFs of shared mutations were
imilar to the dominant peak in ZG (0.38) and one of the homogenous clones in ZF (0.17), indicating the clonality between
he ZG-L1 and ZF-L1. In a two-sample decomposition (Figure 5 c), CLEMENT revealed the presence of a superclone that
as the major clone of ZG-L1 and one of the homogenous poly-clonal backgrounds in ZF-L1 as its subclones. From these
bservations, we confirmed the presence of clonality in ZG-L1 and ZF-L1, indicating superclone-subclone structures. In normal
issue, a superclone in localized tissue is equivalent to the adult stem cell. Therefore, we concluded that the adult stem cell
lone resides in the adrenal gland, migrates to ZG and ZF and proliferates. This clone is clearly distinguished from the poly-
lonal background in ZF-L1, which seems to be multifurcated from the developmental period. Conversely, in L3, there was no
lonality between ZG and ZF, indicating the absence of an adult stem cell clone. The absence of clonality in ZG-L3 and ZF-L3
upports independent clear zonation in the developmental stage ( 27 ). These findings are in accordance with previous findings
hat postmeiotic stem cells are found in localized areas of ZG ( 29 ) (Figure 5 D). Throughout the entire process, we took advantage
f CLEMENT, which provided (i) clonal reconstruction and (ii) homogenous poly-clonality in most samples, unlike the other
ools. Clonality analysis in ZG-L5 or ZR were unavailable due to the limited number of mutations and extremely low cellular
ractions ( Supplementary Figure S12 ). 

iscussion 

n this study, we pioneered a novel method of genomic decomposition in non-tumor samples. The EM-based algorithm with
dditional strategies for the proper handling of non-tumor sequencing data led to a substantial improvement in estimating the
lone composition and structures and was validated in three independent test sets. In-depth analysis under various conditions,
ncluding the presence of false variants and different inter-clone similarities confirmed the effectiveness of the strategies, as well
s the limitation of current cancer decomposition tools in normal clone analysis. 

Recent efforts in identifying clonal heterogeneity ( 9 , 30 , 31 ) and developmental lineage ( 6 ,32 ) in normal tissues identified
ssential characteristics of non-tumor subclones in multiple aspects, especially against traditional cancer-derived samples. While
he post-embryonic somatic and mosaic mutations are the major sources for both subclones, the differences in mutation rates
1–100 per Mb in cancer versus < 1 per MB in normal tissues), mutation types (frequent CNAs and chromosomal instability
n cancer), VAFs (very low in normal tissues), and the colonization path (fast clonal expansion in cancer versus slow to no
lonal expansion in normal tissues) confer the intrinsic differences between their subclones, which set the basis for our study.
n addition to the genomic properties that are already formulated in CLEMENT (false variants, clone similarity, and absence of
NAs), more sophisticated features can also be employed for further improvement, such as the distribution of VAFs within a

lone and the mutation signatures. 
As in the tumor decomposition, there is a growing interest in the use of non-tumor clonal analysis to understand disease

athogenesis. For example, the existence of the stem cell niche and the regeneration of the cells in situ has been widely studied
o assume pathogenic clones in normal tissues, as shown in the colonic crypt, esophagus epithelium, and the subventricular
nd subgranular zone of the brain ( 33 ,34 ). In addition, recent studies adopt a new perspective on genomic regeneration and
lonal evolution in investigating neurodegenerative diseases, including Alzheimer’s disease ( 35 ), hippocampal sclerosis ( 36 ), and
chizophrenia ( 37 ). As we discovered the localized stem cell in the adrenal gland cortex, understanding the clonal structure
sing appropriate clonal decomposition may be greatly helpful in expanding the knowledge of normal or non-tumor tissue. We
xpect that CLEMENT will provide a better assessment of the compositions and microscopic structures, as well as the number,
ispersion, and phylogeny of these clones. 
Despite the substantial achievements of CLEMENT, there are a few remaining technical issues to be resolved. First, the

obust mathematical background for the modified E-M algorithm applied in CLEMENT has not been well discussed. Unlike
he orthogonal E-M algorithm, CLEMENT interrupts the iteration if the subclone rule or sum rule is unsatisfied. Additionally,
LEMENT employs multiple probabilistic models in the E step considering FP and FN, to reflect real-world biology. However, we
bserved the convergence of E–M iteration and the achievement of optimal results by simulating more than thousands of datasets
 Supplementary Figure S13 ). Second, proper discrimination of false variants from true low-allele frequency mutation is still a
hallenging problem. We noted that significant portions of false variants were not properly identified, especially in a single-sample
ase. We expect that the incorporation of recent technical advances, such as duplex sequencing ( 38 ) or a bioinformatics approach
 39 ), could address the problem. Third, performance is limited when low read-depth is provided because of a lack of read
nformation to be classified as multiple clones, and uncalled or filtered low VAF mutations distorting the clonal structure, resulting
n the right-shifting of low prevalent clones. We hope that further advance in biotechnology and computational algorithms will
mprove the forementioned problems. 

ata availability 

LEMENT with all the code and data used in this manuscript is available at the FigShare repository ( https:// figshare.com/ s/
2f35ff0785ad5c27921 ) and GitHub repository ( https:// github.com/ Yonsei-TGIL/ CLEMENT ). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae527#supplementary-data
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