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Automated analysis of knee joint 
alignment using detailed angular 
values in long leg radiographs 
based on deep learning
Hong Seon Lee 1,4, Sangchul Hwang 2,4, Sung‑Hwan Kim 3, Nam Bum Joon 3, Hyeongmin Kim 1, 
Yeong Sang Hong 1 & Sungjun Kim 1*

Malalignment in the lower limb structure occurs due to various causes. Accurately evaluating limb 
alignment in situations where malalignment needs correction is necessary. To create an automated 
support system to evaluate lower limb alignment by quantifying mechanical tibiofemoral angle 
(mTFA), mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), 
and joint line convergence angle (JLCA) on full-length weight-bearing radiographs of both lower 
extremities. In this retrospective study, we analysed 404 radiographs from one hospital for algorithm 
development and testing and 30 radiographs from another hospital for external validation. The 
performance of segmentation algorithm was compared to that of manual segmentation using the 
dice similarity coefficient (DSC). The agreement of alignment parameters was assessed using the 
intraclass correlation coefficient (ICC) for internal and external validation. The time taken to load 
the data and measure the four alignment parameters was recorded. The segmentation algorithm 
demonstrated excellent agreement with human-annotated segmentation for all anatomical regions 
(average similarity: 89–97%). Internal validation yielded good to very good agreement for all the 
alignment parameters (ICC ranges: 0.7213–0.9865). Interobserver correlations between manual and 
automatic measurements in external validation were good to very good (ICC scores: 0.7126–0.9695). 
The computer-aided measurement was 3.44 times faster than was the manual measurement. Our 
deep learning-based automated measurement algorithm accurately quantified lower limb alignment 
from radiographs and was faster than manual measurement.
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Malalignment of lower limb structure occurs due to congenital, developmental, or post-traumatic causes, lead-
ing to knee joint malalignment, causing joint degeneration, abnormal gait, pain, and asymmetric overloading 
of articular compartments1. Tibiofemoral malalignment is considered a risk factor for osteoarthritis (OA), with 
genu varum and genu valgum increasing the risk of medial and lateral OA progression, respectively. The severity 
of malalignment is directly related to knee joint function deterioration2,3.

Accurate evaluation of limb alignment is necessary for situations where malalignment needs correction, such 
as limb realignment surgery or joint replacement surgery4. Full-length weight-bearing radiographs of the lower 
extremities in an upright posture are commonly used in clinical settings to evaluate lower limb alignment, joint 
orientation, and leg length discrepancy5. During imaging, the patient stands upright with bare feet together, fully 
extended knees, and forward-facing patellae to prevent rotation of the lower limbs.

Whole limb alignment is evaluated based on the mechanical tibiofemoral angle (mTFA), mechanical lateral 
distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), and joint line convergence angle (JLCA). 
Accurately measuring these parameters is crucial to identify the main source of deformity. Micicoi et al. reported 
a physiologic value of 85.8° for mLDFA and 85.6° for MPTA, indicating a 4° valgus and 4° varus of femoral and 
tibial bone morphology, respectively6. In patients with OA, varus deformity (hip-knee-ankle angle < 177°) is 
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caused by distal femoral wear (mLDFA = 89°), tibial varus obliquity (MPTA = 87°), and lateral joint line opening 
(JLCA = 3°)7. However, compensating for any measurement abnormalities can achieve a balanced limb position. 
Therefore, measuring each parameter is vital for comprehending alignment abnormalities and identifying their 
primary cause7. However, this may be a laborious and time-consuming task for radiologists.

Therefore, there is a clinical need for a standardised and reproducible automatic analysis tool that measures 
lower limb alignment using full-length weight-bearing radiographs8,9. Moreover, developing a technical frame-
work based on artificial intelligence applicable in clinical settings is potentially feasible9. Our objective was to 
create, train, and validate an automated support system to evaluate lower limb alignment by quantifying mTFA, 
mLDFA, MPTA, and JLCA on full-length weight-bearing radiographs of both lower extremities (Fig. 1).

Materials and methods
Study participants and radiograph data
This retrospective study received approval from the institutional review boards of a tertiary hospital (A) (Yonsei 
University Gangnam Severance Hospital, Institutional Review Board, No 3-2020-0127) and a military hospital 
(B) (Armed Forces Capital Hospital, Institutional Review Board, 2023-02-002), and informed consent was waived 
because the data used in this retrospective study were fully de-identified to protect patient confidentiality. All 
methods were performed in accordance with the ethical standards of Helsinki Declaration. A total of 404 full-
length weight-bearing radiographs of both lower extremities from 404 patients (mean age: 44.3 years, 188 men, 
186 women) from hospital A were used to develop and test the algorithm. An external test set of 30 consecu-
tive radiographs from 30 men (mean age: 30.2 years) from hospital B was included. The patients underwent 
long-leg radiography at the two institutions between March 2015 to January 2019 and between August 2022 
and September 2022, respectively. Patients from hospital A with K-L grade 4, intra-articular fracture, deform-
ity due to previous trauma, and knee arthroplasty, and those < 19 years were excluded (n = 426) (Fig. 2). The 
long-leg radiographs were obtained using two imaging acquisition systems and covered the whole lower limbs 
from the hips to the ankles under single anteroposterior exposure. Philips DigitalDiagnost (Philips, Best, The 
Netherlands) and Carestream DRX-Evolution (Carestream Health, Rochester, NY, USA) were used in hospitals 
A and B, respectively.

Next, 30 radiographs out of the 404 were used for clinical verification of the algorithm’s anatomical feature 
points, chosen through stratified random splitting based on the K-L grade. The remaining 374 radiographs were 
used to develop and validate the automatic segmentation algorithm. Cases with overlapping bones (n = 12), 
bones containing metal (n = 33), and unclear bone outline (n = 32) were excluded to ensure methodological 
consistency10. For the algorithm’s development, 342 radiographs for the femoral head, 352 for the distal femur, 
341 for the proximal tibia, 362 for the distal tibia, and 367 for the talus were used. The collected radiographs were 
divided into the training set (80%), validation set (10%), and test set (10%) (Fig. 2).

Manual segmentation
The femoral heads, knee joints, and ankle joints were manually segmented using Adobe Photoshop CC 2018 
(Adobe Systems Inc., San Jose, CA, USA) to create masks, which served as the reference for comparison. A 
radiology technician, supervised by an experienced radiologist, labeled the masks.

Manual reference measurements
Lower limb alignment was evaluated based on the following anatomic feature points (Fig. 3): (1) the centre of 
the femoral head, (2) the centre of the femoral intercondylar notch, (3) centres of the medial and lateral tibial 

Figure 1.   Overview of patient enrollment, algorithm development, and analysis.
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Figure 2.   Patient flowchart for algorithm development and clinical verification.

Figure 3.   Alignment parameter measurement tool by manually selecting 8 feature points and 4 lines: (a) 
Femoral head centre, (b) centre of femoral intercondylar notch, centre of the tibial spines, two most distal points 
of medial and lateral femoral condyles, and two most proximal points of medial and lateral tibial plateaus and 
(c) mid-malleolar point.
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spines, (4) two most distal points of the medial and lateral femoral condyles, (5) two most proximal points of 
the medial and lateral tibial plateaus, and (6) mid-malleolar point (centre of the ankle).

The mechanical axis of the femur was defined as a line drawn from the centre of the femoral head to the 
centre of the femoral intercondylar notch. The mechanical and anatomical axes of the tibia were defined as the 
line connecting the centre of the tibial spines and the centre of the ankle. The distal femoral articular axis was 
defined by the line connecting the most distal points of the medial and lateral femoral condyles. The proximal 
tibial articular axis was defined as the line connecting the two most proximal points of the tibial plateaus. Four 
alignment parameters (mTFA, mLDFA, MPTA, and JLCA) were measured using the aforementioned eight feature 
points and four lines.

We developed a tool for measuring alignment parameters using MATLAB’s Graphical User Interface Devel-
opment Environment (GUIDE) to create a Graphical User Interface (GUI) in MATLAB. This tool allows the 
designation of landmarks for angle measurement and calculates the angles using these points (Fig. 3). To assess 
the intraobserver and interobserver agreement of the measured values between the readers and algorithm, an 
orthopedic fellow measured the angles of the clinical verification data set (n = 30) twice, with a 2-week interval 
between the measurement sessions. Another radiology fellow measured the angles once. Regarding the test from 
the external institution, a fellowship-trained radiologist measured the angles twice. The time taken to load the 
data and measure the four alignment parameters using the tool was recorded.

Automated segmentation algorithm
Representative models of Semantic Segmentation include FCN (Fully Convolutional networks), U-Net, and 
SegNet. FCN needs to learn deconvolution when upsampling, so it needs weight parameters for learning, but 
in SegNet, this process is omitted, so the learning parameters are reduced. U-Net skip combines during the 
decoding process, but U-Net transfers the entire feature map information of the same layer from the encoder 
to the decoder and concats it. Therefore, it is heavier than SegNet, which only selects and uses some features of 
Max pooling indices.

For this reason, in this study, the outline of each bone was automatically segmented using SegNet. The SegNet 
architecture consists of a down sampling (encoding) path and a corresponding upsampling (decoding) path, fol-
lowed by a final pixel-wise classification layer. In the encoder path, there are 13 convolutional layers that match 
the first 13 convolutional layers in the VGG16 network. Each encoder layer has a corresponding decoder layer; 
therefore, the decoder network also has 13 convolutional layers. The output of the final decoder layer is fed into 
a multi-class softmax classifier to produce class probabilities for each pixel independently11.

To automatically segment the contours of each bone, we implemented a two-step segmentation algorithm 
(Fig. 4). In the initial step, we identified the region of interest containing the target bone, and subsequently, in 
the second step, we delineated the boundaries of the target bones within the identified image region. During the 
first step, the images were resized to 311 × 932 pixels, and the intensities were scaled to the range [0,1]. In the 
subsequent step, the images were resized to different pixel dimensions based on the size of each bone (Femoral 
head: 470 × 470, Distal femur: 740 × 540, Proximal tibia: 720 × 470, Distal tibia: 470 × 430, Talus: 370 × 220), and 
intensities were scaled to the range [0,1]. We used SGD (Stochastic Gradient Descent) Momentum as the solver 
to train the deep learning network. The maximum number of Epochs to train the SegNet model was set to 120, 
and a mini-batch with 4 observations was used for each iteration. And the momentum value was set to 0.9 and 

Figure 4.   Flowchart of the automatic segmentation algorithm. The first step was performed on raw images. The 
second step was performed based on the region of interest (ROI) image created by cropping the raw image.
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the learning rate to 1 × e−2. The SegNet model was trained using the training and validation data and implemented 
with MATLAB R2018b on a GeForce GTX 1080Ti graphics processing unit.

Automatic determination of anatomic feature points
The mechanical axes for lower limb alignment were automatically determined based on the segmentation masks 
(Fig. 5). The computer-aided automatic measurement times from image data loading to determining the four 
alignment parameters were recorded.

The femoral head anatomic feature point
A circle was fit to the segmentation outline of the femoral head to determine its centre.

The distal femur anatomic feature point and the distal femur surface line
The region comprising the distal femur surface line and the centroid of the segmentation outline was identified 
as the distal femur anatomic feature point. The distal femur surface line was determined by minimisig the dis-
tance between the bottom line of the bounding box and the segmentation outline, resulting in two points. The 
highest point within the defined area, encompassing the outline, was designated as the distal femur anatomic 
feature point.

The proximal tibia anatomic feature points
Two peaks were detected from the segmentation outline, and the midpoint between these two points was 
extracted to determine the proximal tibia anatomic feature points. Next, an orthogonal line was created by 
connecting the two points and the midpoint, and the position along the segmented outline where the distance 
between the orthogonal line and the outline was minimised was defined as the proximal tibia anatomic feature 
point.

The proximal tibia surface line
The convex hull12,13 and bounding box of the segmentation outline were calculated. To determine the feature 
points, candidate points were identified by selecting points above the centroid of the segmentation outline within 
the region defined by the convex hull. Next, the proximal tibia surface line was defined by identifying the two 
points closest to the upper corner points of the bounding box from the candidate points.

Distal tibia anatomic feature points
Two talus feature points were defined by applying the same method of defining the proximal tibia surface line. 
Next, an orthogonal line was constructed by connecting the midpoint of the two talus feature points, and the 
position where the distance between the orthogonal line and the segmented outline of the distal tibia was mini-
mum was defined as the distal tibia anatomic feature point.

Statistical analysis
We implemented global accuracy, mean accuracy, mean intersection over union (IoU), weighted IoU, and the 
dice similarity coefficient (DSC) to evaluate the segmentation algorithm’s performance, which compares the 

Figure 5.   Flowchart of automatic determination algorithm of anatomic feature points. (a) Segmented images. 
(b) Anatomic feature points automatically determined based on segmented images. (c) The mechanical axes for 
the lower limb alignment.
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similarity of the automated segmentation mask with the human-annotated segmentation mask. As a repre-
sentative measurement, we considered a DSC ≥ 0.7 as indicative of excellent agreement between two segmented 
regions, following previous studies14,15.

We confirmed normality in each group for mTFA, mLDFA, MPTA, and JLCA using the Shapiro–Wilk test 
and performed group-wise comparisons of their means and standard deviations (SDs) using repeated measures 
analysis of variance (ANOVA) between three groups or paired t-tests between two groups.

We evaluated the intraobserver and interobserver agreement of mTFA, mLDFA, MPTA, and JLCA between 
the readers and algorithm using the intraclass correlation coefficient (ICC) to assess measurement reproduc-
ibility. Altman considered an ICC of 0.81–1 as very good, 0.61–0.8 as good, and 0.41–0.6 as moderate (13). In the 
interobserver agreement test, we used the result of the second session for comparison when a reader performed 
two measurements.

Statistical significance was set at p < 0.05. We performed all statistical analyses using Medcalc software (ver-
sion 20.114; MedCalc Software Ltd., Ostend, Belgium).

Results
Segmentation performance
As indicated in Table 1, we assessed the segmentation performance using metrics including global accuracy, 
mean accuracy, mean IoU, weighted IoU, and DSC to thoroughly analyze the results obtained in segmentation 
problems. The segmentation algorithm demonstrated excellent agreement with the human-annotated segmenta-
tion for all the anatomical regions, with an average DSC of 93% for the femoral head, 95% for the distal femur, 
95% for the proximal tibia, 89% for the distal tibia, and 97% for the talus. Other values ranged from 96 to 98% 
for the femoral head, 95% to 96% for the distal femur, 96% to 98% for the proximal tibia, 93% to 96% for the 
distal tibia, and 94% to 98% for the talus.

Assessment of measurement comparisons to algorithms
Measurements of the lower limb alignment did not significantly differ between the readers and algorithm in 
the internal institution test set, as shown in Table 2 (mTFA: Reader 1, 181.82° ± 3.39; Reader 2, 181.78° ± 3.33; 
Algorithm, 181.79° ± 3.48; mLDFA: Reader 1, 87.51° ± 1.96; Reader 2, 87.71° ± 1.8; Algorithm, 87.73° ± 1.86; 
MPTA: Reader 1, 86.76° ± 3.19; Reader 2, 86.41° ± 3.08; Algorithm, 86.99° ± 3.29; JLCA: Reader 1, 1.79° ± 1.43; 
Reader 2, 1.73° ± 1.07; Algorithm, 1.67° ± 1.41) (all p > 0.05). The average angle differences between the read-
ers and algorithm in the internal and external institutions are shown in Fig. 6. The mean differences in mTFA, 
mLDFA, MPTA, and JLCA between the two readers were 0.04° ± 0.30, 0.20° ± 0.88, 0.35° ± 1.10, and 0.36° ± 1.08, 

Table 1.   Segmentation accuracy measured using various evaluation metrics. IoU intersection over union, DSC 
dice similarity coefficients.

Global accuracy Mean accuracy Mean IoU Weighted IoU Mean DSC

Femoral head 0.98 0.98 0.96 0.96 0.93

Distal femur 0.98 0.98 0.95 0.96 0.95

Proximal tibia 0.98 0.98 0.96 0.96 0.95

Distal tibia 0.98 0.98 0.93 0.96 0.89

Talus 0.98 0.98 0.94 0.96 0.97

Table 2.   Details of manual and automatic measurements of lower limb alignment. SD standard deviation, 
mTFA mechanical tibiofemoral angle, mLDFA mechanical lateral distal femoral articular angle, MPTA medial 
proximal tibial angle, JLCA joint line convergence angle.

Group Mean SD P-value

mTFA

Reader1 181.82 3.39

0.998Reader 2 181.78 3.33

Algorithm 181.79 3.48

mLDFA

Reader1 87.51 1.96

0.765Reader 2 87.71 1.8

Algorithm 87.73 1.86

MPTA

Reader1 86.76 3.19

0.598Reader 2 86.41 3.08

Algorithm 86.99 3.29

JLCA

Reader1 1.79 1.43

0.315Reader 2 1.43 1.07

Algorithm 1.67 1.41
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respectively. The mean differences between Reader 1 and the algorithm and Reader 2 and the algorithm were 
0.03° ± 0.79 and 0.01° ± 0.83 for mTFA, 0.23° ± 0.60 and 0.03° ± 0.84 for mLFDA, 0.23° ± 1.27 and 0.59° ± 1.66 for 
MPTA, and 0.12° ± 0.68 and 0.24° ± 1.17 for JLCA, respectively. based on a mechanical tibiofemoral angle. The 
intraobserver correlations (ICC range, 0.9836–0.9991) between sessions 1 and 2 for Reader 1 and the interob-
server correlations (ICC range, 0.7751–0.9981) between Readers 1 and 2 were good to very good, as shown in 
Table 3. The ICC scores of angles measured by Reader 1, Reader 2, and the algorithm indicated good to very good 
agreement, as shown in Table 4 (ICC ranges: 0.9848–0.9865 for mTFA, 0.9443–0.9746 for mLDFA, 0.9273–0.9604 
for MPTA, and 0.7213–0.9393 for JLCA).

Measurement times
The time taken for the manual measurements of lower limb alignment from the internal institution test set 
(n = 30) by the two readers averaged 86 min (average of 172 s/patient). In contrast, the time taken for computer-
aided automatic measurements was 25 min, including the loading time for training data (average of 50 s/patient), 

Figure 6.   Comparative evaluation of reader and algorithm based on mechanical tibiofemoral angle (mTFA), 
mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), and joint line 
convergence angle (JLCA).

Table 3.   Details of intraobserver and interobserver agreement of lower limb alignment between readers. ICC 
in-class correlation coefficient, CI confidence interval, R1 reader 1, R2 reader 2, mTFA mechanical tibiofemoral 
angle, mLDFA mechanical lateral distal femoral articular angle, MPTA medial proximal tibial angle, JLCA joint 
line convergence angle.

ICC 95% CI P-value

R1 vs R1 (intraobserver) R1 vs R2 (interobserver) R1 vs R1 (intraobserver) R1 vs R2 (interobserver) R1 vs R1 (intraobserver) R1 vs R2 (interobserver)

mTFA 0.9991 0.9981 0.9984–0.9995 0.9968–0.9988  < 0.0001  < 0.0001

mLDFA 0.9900 0.9420 0.9831–0.9940 0.9030–0.9654  < 0.0001  < 0.0001

MPTA 0.9949 0.9683 0.9914–0.9970 0.9470–0.9811  < 0.0001  < 0.0001

JLCA 0.9836 0.7751 0.9725–0.9902 0.6234–0.8656  < 0.0001  < 0.0001
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which was 3.44 times faster than that for manual measurement. The processing time taken after data loading 
averaged 20 s/patient.

External validation of the algorithm
External validation included 30 long-leg radiographs from consecutive patients at an external hospital. Intrao-
bserver correlations (ICC ranges: 0.9393–0.9979) between sessions 1 and 2 for Reader 3 and the interobserver 
correlations (ICC ranges, 0.7126–0.9695) between the manual and automatic measurements were good to very 
good, as shown in Table 5. There was no statistically significant difference between the measurements of the 
lower limb alignment by the reader and algorithm in the external validation, as shown in Table 6 (mTFA: Reader 
3, 181.37° ± 2.26; Algorithm, 181.26° ± 2.56; mLDFA: Reader 3, 86.92° ± 2.03; Algorithm, 86.80° ± 2.01; MPTA: 
Reader, 86.20° ± 1.65; Algorithm, 86.55° ± 1.66; JLCA: Reader 3, 0.40° ± 1.74; Algorithm 0.49° ± 1.58) (all p > 0.05). 
The average angle differences between the reader and algorithm are shown in Fig. 6.

Discussion
The variability of conventional alignment measurement causes controversy. Surgeons have reported incon-
sistencies and discordance between conventional radiographic measurements and intraoperative navigation 
measurements16,17. Wright et al. reported three sources of measurement inconsistency: physiological variations, 
procedure variability (inconsistent positioning), and intra- and interobserver variability18. The mean interob-
server difference was 1.4° (SD = 1.1), and the mean intra-observer difference was 0.7° (SD = 0.9). Laskin et al. 
reported up to 7° variability in tibiofemoral angle measurements among 50 surgeons19. Automated measurement 
reduces these errors by minimising subjectivity.

Table 4.   Details of intraobserver and interobserver agreement of lower limb alignment between the readers 
and algorithm. ICC in-class correlation coefficient, CI confidence interval, R1 reader 1, R2 reader 2, mTFA 
mechanical tibiofemoral angle, mLDFA mechanical lateral distal femoral articular angle, MPTA medial 
proximal tibial angle, JLCA joint line convergence angle, R1 reader 1, R2 reader 2, AI artificial intelligence.

ICC 95% CI P-value

R1 vs Al R2 vs Al R1 vs Al R2 vs Al R1 vs Al R2 vs Al

mTFA 0.9865 0.9848 0.9773–0.9919 0.9745–0.9909  < 0.0001  < 0.0001

mLDFA 0.9746 0.9443 0.9574–0.9848 0.9068–0.9668  < 0.0001  < 0.0001

MPTA 0.9604 0.9273 0.9336–0.9763 0.8782–0.9566  < 0.0001  < 0.0001

JLCA 0.9393 0.7213 0.8984–0.9638 0.5333–0.8335  < 0.0001  < 0.0001

Table 5.   Details of intraobserver and interobserver agreement of lower limb alignment between the manual 
and automatic measurement on external validation. ICC in-class correlation coefficient, CI confidence interval, 
R3 reader 3, mTFA mechanical tibiofemoral angle, mLDFA mechanical lateral distal femoral articular angle, 
MPTA medial proximal tibial angle, JLCA joint line convergence angle, AI artificial intelligence.

ICC 95% CI P-value

R3 vs R3 (intraobserver) R3 vs AI (interobserver) R3 vs R3 (intraobserver) R3 vs AI (interobserver) R3 vs R3 (intraobserver) R3 vs AI (interobserver)

mTFA 0.9979 0.9695 0.9965–0.9988 0.9489–0.9818  < 0.0001  < 0.0001

mLDFA 0.9830 0.9218 0.9716–0.9899 0.8692–0.9533  < 0.0001  < 0.0001

MPTA 0.9748 0.9199 0.9579–0.9850 0.8658–0.9521  < 0.0001  < 0.0001

JLCA 0.9353 0.7126 0.8916–0.9613 0.5189–0.8283  < 0.0001  < 0.0001

Table 6.   Details of manual and automatic measurement of lower limb alignment on external validation. SD 
standard deviation, mTFA mechanical tibiofemoral angle, mLDFA mechanical lateral distal femoral articular 
angle, MPTA medial proximal tibial angle, JLCA joint line convergence angle.

Group Mean SD P-value

mTFA
Reader 3 181.37 2.26

0.3218
Algorithm 181.26 2.56

mLDFA
Reader 3 86.92 2.03

0.3975
Algorithm 86.80 2.01

MPTA
Reader 3 86.20 1.65

0.2492
Algorithm 86.55 1.66

JLCA
Reader 3 1.32 1.20

0.5024
Algorithm 1.26 1.06
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We proposed a time-efficient system that automatically measures mTFA, mLDFA, MPTA, and JLCA from 
full-length leg weight-bearing radiographs. The system strongly correlated with the manual measurements in 
the internal and external institution tests.

Accurate segmentation is required for the automatic measurement of lower limb alignment. Previous studies 
performed femoral and tibial segmentation using a traditional spectral clustering and active shape model20 or 
unsupervised or atlas-guided approaches21–23. Deep-learning methods have been applied in image segmentation, 
with UNet being popular in the medical field. However, UNet may not be the most efficient option for relatively 
simple data (images with fewer large objects) as it may require more resources. In this study, a SegNet model 
was used for image segmentation.

There have been studies utilizing long leg radiographs to investigate detailed angular values related to coronal 
alignment24–28. However, these papers commonly employ a method where landmarks are directly annotated 
by humans, and algorithms are subsequently trained based on this annotated data. This approach inherently 
introduces a potential bias to the reference values, as the ground truth is produced by humans marking points 
manually. In contrast, our approach involves segmentation followed by the identification of landmarks using a 
predetermined rule-based system. This method has the potential to reduce interobserver agreement on ground 
truth, as it eliminates the reliance on manual point annotation by humans. Moreover, the segmentation mask 
generated by the algorithm can be used to identify new geometric landmarks.

Zheng et al. proposed a method for automatically measuring leg length discrepancy in a pediatric popula-
tion using deep learning29. The method demonstrated a high concordance rate between manual and automatic 
segmentation of the pediatric leg, with a Dice value of 0.94. However, their study employed a wide exclusion 
criteria. In contrast, Schock et al. achieved a high level of concordance rate across a wide range of clinical and 
pathologic indications, with an average Sørensen–Dice coefficient of 0.97 for the femur and 0.96 for the tibia10.

In our internal validation, the readers and algorithm demonstrated a high concordance rate. The algorithm 
required 1 min/patient, in contrast to the manual measurement time of up to 3 min. In the external validation, 
the algorithm results significantly correlated with the manual measurements. However, the validation popula-
tion consisted of young soldiers aged 20–30 years from a military hospital and may not represent the general 
population. JLCA values tended to be lower in military hospital patients than in those from the other included 
hospital. Nevertheless, these findings suggest that our algorithm may be useful in other populations.

Our study had several limitations. First, the training data did not include images from patients with skeletal 
dysplasia or hardware, limiting the clinical variability of the images. Second, several cases showed a large abso-
lute error (> 5°) between manual and automated measurement results. Future studies should include a wider 
variety and number of training data to reduce these errors. Third, our study included a total of 374 images from 
374 patients for algorithm development, which may be considered too few compared to those in larger studies. 
However, studies by Zheng et al. and Schock et al. enrolled 179 and 255 patients, respectively, and showed con-
vincing results in their analyses, indicating that the number of cases analysed in our study (n = 374) was sufficient 
to demonstrate excellent performance10,29.

In conclusion, our deep-learning-based automated measurement algorithm accurately quantified the clinical 
values of lower limb alignment from long-leg radiographs and was faster than manual measurement was. The 
algorithm may be applied in clinical settings since it was validated for various patient images and clinical and 
pathological situations.

Data availability
As per Yonsei University Medical Center’s data policy, which governs this research’s location, authorization 
from both the "Data Asset Review Committee" and the "Data Review Board" is mandatory prior to exporting 
or revealing data. Consequently, adherence to Yonsei Medical Center’s administrative protocols is essential to 
furnish data to an external researcher or institution. It’s worth noting that this approval protocol is waived for 
internal researchers’ studies, hence not being a requirement for the ongoing research. Currently, we are unable to 
provide the data; nevertheless, upon request, we can supply it once the aforementioned procedures are finalized. 
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