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Therapeutic application of engineered 
exosomes
Therapeutic application for CNS diseases
As mentioned above, exosomes preferentially target innate 
immune cells, such as monocytes or neutrophils. However, 
active targeting is required when the indicated diseases are 
not limited to immune cells, such as in neurodegenerative 
disorders. This was evident from the aforementioned in vivo 
biodistribution experiments using radioisotope Zr89.47 When 
mice and rats were monitored after a single intravenous ad-
ministration of Zr89- Exo-srIκB, only less than 0.1% of Zr89-
Exo-srIκB ended up reaching the brain, testes, and ovaries.47 
The negligible distribution of exosomes in the brain is mainly 
due to the BBB, which is a unique structure consisting of 
tightly sealed endothelial cells covered by pericytes and 
astrocytes.54 Owing to the unusual tight junctions in en-
dothelial cells, together with the multiple layers wrapping 
the vessels, drug delivery across the BBB is largely limited. 
Hence, active targeting via surface engineering is required for 
exosomal delivery across the BBB.

Currently, the most common strategy is to add targeting 
moieties (ie, antibodies, scFv, or peptides) to receptor proteins 

that are highly expressed in brain endothelial cells, such as 
the transferrin receptor, low-density lipoprotein receptor 
(LDLR), or LRP (LDLR-related protein). Thus, exosomes can 
cross the BBB via receptor-mediated transcytosis and deliver 
therapeutic cargo to targeted neurons.55-57 Light, particularly 
near-infrared (NIR) light, has long been studied as a stimulant 
for increasing BBB permeability. Recently, it was suggested 
that transcranial laser excitation along with gold nanoparticles 
could transiently open the BBB, allowing macromolecules to 
move across it.58 The reversible opening of the BBB, induced 
by light stimulation, has the advantage of modulating perme-
ability in a spatiotemporal manner. Therefore, the application 
of surface-engineered exosomes under light stimulation at the 
right time and place is expected to synergistically enhance the 
brain delivery of exosomes and would be helpful in treating 
neurodegenerative CNS diseases, such as Alzheimer’s disease, 
tauopathy, and multiple sclerosis (MS).

Alzheimer’s disease is the most common cause of dementia 
and is characterized by the accumulation of amyloid-beta (Aβ) 
plaques and hyperphosphorylated tau proteins in the brain.59 
Aβ plaques are precipitated in the extracellular space and 
form insoluble aggregates that disrupt neuronal function.60,61 

Figure 4. Beagle scRNA sequencing results show the non-classical monocytes prominently affected by the exosome. (A) A bar plot indicating cell type 
proportion. Hematopoietic stem cells (HSCs). (B) Monocyte clusters are further grouped with classic or non-classic monocyte marker genes. (C) A 
bar plot indicating cell type proportion. (D) Expression level heatmap for statistically signi�cant NF-κB signaling related factors of classical monocytes. 
(E) Expression level heatmap for statistically signi�cant NF-κB signaling related factors of non-classical monocytes. (F) Venn diagram showing DEGs 
in monocytes, neutrophils, or NF-κB gene set. The numbers in parentheses are the number of DEGs from each population. (G) The proportions and 
expression patterns of 82 differentially expressed NF-κB genes in classical or non-classical monocytes are depicted as the size and color of the circles, 
respectively.
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Tau pathology involves abnormal phosphorylation of the tau 
protein, leading to its aggregation into neurofibrillary tangles. 
Abnormal tau seed fragments can be transported to the 
neighboring neurons in the form of exosomes.62,63 The con-
tinuous failure of approaches to target Aβ plaques has raised 
doubt on the so-called amyloid-beta hypothesis.64,65 Although 
the recently FDA-approved monoclonal anti-Aβ antibodies 
lecanemab and aducanumab have provided a silver-lining, 
they are only recommended for early-stage patients to slow 
the disease progression. To date, there are no FDA-approved 
drugs that target tau. Targeting tau with the current approach 
is even more difficult than targeting Aβ because neurofibrillary 
tangles of tau accumulate inside the cells, which antibodies 
cannot penetrate. Therefore, antibody-loaded exosomes are 
an attractive alternative delivery system.

Multiple sclerosis (MS) is a chronic auto-immune dis-
ease that affects the central nervous system, where myelin, 
the protective layer of the nerve fibers, is damaged by the at-
tack from own immune system. This can lead to a range of 
symptoms, including problems with motor function, sensa-
tion, vision, and balance.66,67 Innate immune cells as well as 
adaptive immune cells (eg, T cells) contribute to the progres-
sion of MS.68,69 Approved drugs are mostly disease-modifying 
treatments with low efficacy and frequent side-effects. Since 
exosomes have natural tropism to innate immune cells, in-
fusion of anti-inflammatory exosomes will target activated 
microglia and astrocytes in the CNS and might reduce the 
severity of MS pathology by reducing inflammation.

Recently, there have been significant advances in targeted 
protein degradation (TPD), which degrades proteins of in-
terest via the ubiquitin-proteasome pathway (PROTACs), 
endolysosomal pathway (LYTACs), and autophagosome-
mediated degradation (AUTACs or AUTOTACs).2 To degrade 
aggregated proteins, such as Aβ or neurofibrillary tangles, ly-
sosomal or autophagosome-mediated TPD would be much 
more appropriate. LYTAC can be applied to Aβ removal as 
it is specialized in bringing extracellular or membrane-bound 
proteins into the lysosome, while AUTAC or AUTOTAC can 
be applied to degrade intracellular neurofibrillary tangles 
of tau. With these heterobifunctional degraders, we can ex-
pect treatment to not only prevent aggregate formation but 
also remove preexisting aggregates, making TPD technology 
a better option for treating Alzheimer’s disease. In case of 
MS, therapeutic exosomes loaded with PROTACs against 
JAK/STAT signaling (eg, STAT3) would be beneficial since it 
can induce targeted degradation of STAT3 in microglia- or 
astrocytes-specific manner, improving the efficacy of drugs 
while reducing side-effects.70

Most developed heterobifunctional degraders are 
chemical-based, consisting of a target-binding warhead, 
target-recruiting ligand, and linker. One of the disadvantages 
of chemical-based heterobifunctional degraders is their se-
lectivity and off-target effects.71,72 To ameliorate these 
side effects and increase on-target specificity, conversion 
to biologics is achieved by constructing the target rec-
ognition domain with antibodies, scFv, or VHH, and a 
proteolysis-inducing domain with E3 ligases or E3-ligase-
binding peptides fused with linkers in between.73,74 The 
delivery problem of biologic heterobifunctional degraders 
can be solved by loading them into exosomes; there-
fore, surface-engineered exosomes loaded with biologic 
heterobifunctional degraders will open a new era of 
exosome-based therapeutics for TPD.

Therapeutic application for cancers
The development of exosome therapeutics for cancers needs 
careful consideration of diverse issues including tumor-
specific targeting without non-specific uptake in the liver, 
administration route, and number of doses for different 
types of cancer. Since this is a huge topic and beyond the 
scope of this review, we will cover topics related to tumor-
associated inflammation. While many anticancer drugs can 
block hyperactivated signaling pathways (ie, AKT, JAK/
STAT, WNT, and Hippo signaling pathways) in tumor cells, 
including chemical inhibitors or antisense oligonucleotides 
(ASO), these pathways are also important in maintaining 
normal homeostasis. These findings support the importance 
of targeted drug delivery. While antibody drug conjugates 
confer specificity to a particular target, toxicity issues remain 
due to deconjugation and unwanted payload release after 
administration.75 In contrast, surface-engineered exosomes 
demonstrate improved tumor targeting by displaying tumor 
antigen-binding moieties on their surface.33,76-78 Additionally, 
when combined with pH-sensitive fusogens, they may enable 
cancer-specific cargo release.79 Because the tumor microen-
vironment is acidic, it may be possible to deliver exosomal 
therapeutics to cells that constitute the tumor microenviron-
ment, such as tumor-associated macrophages and stromal 
cells. For example, delivery of biological heterobifunctional 
degraders for STAT3 can shift the tumor microenvironment 
toward an anti-tumor state, either by redirecting tumor-
associated macrophages toward the inflammatory M1 type 
macrophages or by inducing stromal cells to produce inflam-
matory cytokines.80 This could also synergize with immune 
checkpoint therapies, such as anti-PD-1 or anti-PD-L1.

Conclusion
Exosomes have strong potential as DDSs, albeit with the 
challenges mentioned above. Continued efforts to charac-
terize exosomes and their subtypes using advanced techniques 
are required to demonstrate exosome delivery of drugs as suc-
cessful therapeutics. In this review, we summarized (1) various 
exosome engineering strategies for protein cargo loading and 
active targeting, (2) progress toward the clinical transition 
of engineered exosomes as anti-inflammatory therapeutics, 
and (3) the potential therapeutic applications of exosomes in 
treating other diseases, such as CNS diseases and cancer.

Notably, exosomes are highly heterogeneous; thus, the 
proteins abundant in exosomes may vary depending on the 
cell lines and purification methods. Exosome production effi-
ciency and target tropism also vary among cell lines. Therefore, 
for consistency in the therapeutic effects of exosomes, careful 
consideration should be paid to the selection of cell lines 
for exosome production and purification methods prior to 
mass production. Pharmacokinetic studies that monitor the 
biodistribution of exosomes are critical for determining dis-
ease indications. Monitoring biodistribution using lipophilic 
dyes or radiolabeled exosomes does not specify the major cell 
types targeted within the organs or tissues of interest. In this 
context, scRNA-seq enables the observation of the cellular 
dynamics of all cell types within a specific organ or tissue 
upon exosome treatment. Moreover, changes in gene expres-
sion in specific cell types can be easily analyzed under a va-
riety of conditions.

There are many efforts to develop engineered exosomes as 
therapeutics and a couple of pipelines are in clinical trials, 
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confirming their tolerability and safety. So far, most of the 
preclinical and clinical pipelines are related to inflammatory 
diseases because exosomes can target innate immune cells 
naturally even without additional surface modification. To 
expand the disease spectrum beyond inflammation, tissue- or 
cell-type-specific targeting moieties must be introduced along 
with nonspecific phagocytosis-avoidance strategies. The intro-
duction of biological degraders as exosome payloads might 
provide valuable treatment options to solve proteopathy-
associated degeneration. In the near future, next-generation 
exosome therapeutics are expected to overcome the limita-
tions of conventional therapies for cancer or degenerative 
diseases.
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