#### **Brief communication**

# Four genotypes of carbapenem-resistant Acinetobacter baumannii strains lacking OXA-23 production in Korea

Young Ah Kim<sup>1</sup>, Seok Hoon Jeong<sup>2,3</sup>, Jong Hee Shin<sup>4</sup>, Kyeong Seob Shin<sup>5</sup>, Jeong Hwan Shin<sup>6</sup>, Young Ree Kim<sup>7</sup>, Hyun Soo Kim<sup>8</sup>, Young Uh<sup>9</sup>, Nam Hee Ryoo<sup>10</sup>

<sup>1</sup>Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, <sup>2</sup>Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, <sup>3</sup>Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, <sup>4</sup>Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, <sup>5</sup>Department of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, <sup>6</sup>Department of Laboratory Medicine and Paik Institute for Clinical Research, Inje University College of Medicine, Busan, <sup>7</sup>Department of Laboratory Medicine, Jeju National University, College of Medicine, Jeju, <sup>8</sup>Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, <sup>9</sup>Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, <sup>10</sup>Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Korea

## **Abstract**

During nationwide Fantimicrobial surveillance (Korea Global Antimicrobial Resistance Surveillance System [Kor-GLASS]), the recent emergence of non-oxacillinase (OXA)-23 production by carbapenem-resistant *Acinetobacter baumannii* (CRAB) isolates was noted. In this study, we evaluated resistance mechanisms other than OXA-23 production to elucidate the shift in considerable CRAB clones. The presence of OXA carbapenemase genes, such as  $bla_{OXA-23}$ ,  $bla_{OXA-24}$ ,  $bla_{OXA-58}$ , and  $bla_{OXA-51}$ -ISAba1, was determined by PCR. Other carbapenemase genes, such as  $bla_{IMP}$ ,  $bla_{VIM}$ ,  $bla_{NDM}$ ,  $bla_{KPC}$ ,  $bla_{GES}$ , and  $bla_{OXA-48}$ , were determined using sequencing. Strains lacking carbapenemase genes were subjected to whole genome sequencing, and resistance genes were analyzed using ResFinder. Four CRAB strains were collected through a Kor-GLASS study in 2022, in which OXA-23 production was not identified. The carbapenemase genotypes of the four CRAB strains lacking  $bla_{OXA-23}$  were  $bla_{OXA-51}$ -ISAba1,  $bla_{OXA-66/ACD25}$ ,  $bla_{OXA-182}$ , and  $bla_{NDM-1}$ . To the best of our knowledge, this is the first study to identify CRAB producing New Delhi metallo- $\beta$ -lactamase (NDM)-1 in Korea. In conclusion, domestic CRAB resistance mechanisms may undergo subtle changes. Continuous observations are required to monitor the emergence of new clones.

Keywords: Carbapenem, Resistance, Acinetobacter baumannii, NDM-1, OXA-23

Acinetobacter baumannii is an important pathogen that causes healthcare-associated infections, such as ventilator-associated pneumonia, line-associated bloodstream infections, and catheter-associated urinary tract infections [1]. Carbapenem is usually considered a treatment option for extended-spectrum β-lactamase producers. The rapid increase in carbapenem-resistant *A. baumannii* (CRAB) isolation has been correlated with an increased nationwide prescription rate of carbapenems [2]. The carbapenem resistance rate is very





pISSN: 2288-0585 eISSN: 2288-6850

Ann Clin Microbiol 2024 June, 27(2): 143-147 https://doi.org/10.5145/ACM.2024.27.2.8

Corresponding author Young Ah Kim

E-mail: yakim@nhimc.or.kr

Received: April 16, 2024 Revised: May 31, 2024 Accepted: June 12, 2024

© 2024 Korean Society of Clinical Microbiology.



Annals of Clinical
Microbiology (Ann Clin

Microbiol, ISSN 2288-0585,eISSN 2288-6850) is an open-access journal and all published content is freely available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/)

high in strains isolated in Korea, and multidrug resistance is common, hindering the selection of therapeutic options [3]. According to Kor-GLASS (Korea Global Antimicrobial Resistance Surveillance System) data, the imipenem-resistance rate of *A. baumannii* blood isolates was > 90% [3].

There are three classes of carbapenemase: Ambler class A (serine carbapenemases), class B (metallo-β-lactamase), and class D (oxacillinase carbapenemases) [4]. *Klebsiella pneumoniae* carbapenemase (class A), New Delhi metallo-β-lactamase (NDM, class B), and oxacillinase-48 (class D) are common in carbapenem-resistant Enterobacteriaceae [5]. Metallo-β-lactamases, such as Guiana extended-spectrum β-lactamase, imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), and NDM, are frequently found in carbapenem-resistant *Pseudomonas aeruginosa* [6].

Carbapenemase types in carbapenem-resistant organisms other than *A. baumannii* vary. However, CRAB isolates uniformly carry  $bla_{OXA-23}$  in Korea because of the notorious multidrug resistance clone, *A. baumannii* global clone 2 with sequencing type 191, which has become predominant in clinical settings worldwide, including Korea [7]. OXA-type  $\beta$ -lactamases are the primary resistance mechanism for CRAB, and a drastic increase in *A. baumannii* isolates with  $bla_{OXA-23}$  has been observed since the mid-2000s [7]. ISAba1-associated  $bla_{OXA-51}$ , another contributor to CRAB, has decreased since the mid-2000s [7].

The recent emergence of non-OXA-23 production of CRAB isolates was noted in a Kor-GLASS study. Therefore, in the present study, resistance mechanisms other than OXA-23 production were evaluated to elucidate the shift in significant CRAB clones.

In total, 366 *A. baumannii* isolates were collected according to the Kor-GLASS protocol in 2022 [8]. *A. baumannii* strains were identified using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (Bruker Biotyper; Bruker Daltonics GmbH), and positive OXA-51 polymerase chain reaction (PCR) results confirmed the species identification. PCR methods determined the existence of OXA carbapenemase genes, such as *bla*<sub>OXA-23</sub>, *bla*<sub>OXA-24</sub>, *bla*<sub>OXA-58</sub>, and *bla*<sub>OXA-51</sub>-IS*Aba1* [8]. PCR sequencing methods also determined the presence of other carbapenemase genes, such as *bla*<sub>IMP</sub>, *bla*<sub>VIM</sub>, *bla*<sub>NDM</sub>, *bla*<sub>KPC</sub>, *bla*<sub>GES</sub>, and *bla*<sub>OXA-48</sub> [8]. Strains without determination of carbapenemase genes using the aforementioned methods were subjected to whole genome sequencing, as previously described [9]. Using the NextSeq 550 instrument (Illumina), the entire genome was sequenced with 8 μg of input genomic DNA. Sequences were assembled using Spades (version 3.11.1) and annotated using Prokka (version 1.13.7). Resistance genes were determined using ResFinder 4.5 [10].

The resistance rate to imipenem was 85.2% in *A. baumannii* isolates in 2022, and 98.7% in OXA-24 producers. The carbapenemase genotypes of the four CRAB strains lacking  $bla_{OXA-23}$  were  $bla_{OXA-66/ACD-25}$ ,  $bla_{OXA-51}$ -ISAba1,  $bla_{OXA-182}$ , and  $bla_{NDM-1}$  (Table 1).

**Table 1.** Distribution of imipenem resistance in 366 A. baumannii isolates (2022)

| Imipenem susceptibility | Genotypes                    | No. (%)    |
|-------------------------|------------------------------|------------|
| Resistant               |                              | 312 (85.2) |
|                         | OXA-23                       | 308 (98.7) |
|                         | Non-OXA-23                   | 4(1.3)     |
|                         | $bla_{ m OXA-66/ACD-25}$     | 1 (0.3)    |
|                         | $bla_{ m OXA-51}$ -ISA $ba1$ | 1 (0.3)    |
|                         | $bla_{ m OXA-182}$           | 1 (0.3)    |
|                         | $bla_{	ext{NDM-1}}$          | 1 (0.3)    |
| Susceptible             |                              | 54 (14.8)  |
| Total                   |                              | 366 (100)  |

ISAba1-mediated intrinsic  $bla_{ADC-25}$  and  $bla_{OXA-66}$  overexpression has been reported in South Korea [11,12]. The carbapenem resistance mechanism of  $bla_{OXA-182}$  has also been reported in Korea [13]. In this report, when 178 imipenem-non-susceptible A. baumannii isolates were collected from 12 Korean hospitals in 2007, 12 isolates from a Jeju Island hospital produced OXA-182 carbapenemase, which showed 93% identity with OXA-143 and 89% with OXA-40 [13].

To our knowledge, this is the first report of NDM-1 producing *A. baumannii* being detected. NDM-1 is one of the metallo-β-lactamases (MBL), which originated in India and spread worldwide, especially in Enterobacteriaceae [5]. However, MBL production is sporadic in CRAB in Korea, and the few reports on MBL types include VIM-2, SIM-1, and IMP-1 [14,15]. Recently, the dissemination of NDM-1 in *A. baumannii* strains has been reported in China [16,17]; however, to the best of our knowledge, this is the first report of NDM-1-producing *A. baumannii*.

In conclusion, the mechanism of resistance via OXA-23 in CRAB may have subtly changed with the emergence of NDM-1-producing *A. baumannii* in Korea. Continuous observation is required to monitor the emergence of new clones.

### **Ethics statement**

This study was approved by the Institutional Review Board of the National Health Insurance Ilsan Hospital (No. 2024-05-016), and the requirement for informed consent was waived.

## **Conflicts of interest**

Jeong Hwan Shin is an associate editor and Young Uh and Nam Hee Ryoo are editorial board members of the *Annals of Clinical Microbiology*. However, they were not involved in the review process of this article. No other potential conflict of interest relevant to this article was reported.

## **Funding**

This study was funded by a grant from the Korean Society of Clinical Microbiology (2023).

The research was supported by a fund (2020E540600) from the Research Program of Korean Disease Control and Prevention Agency.

#### References

- Kim YJ, Kim SI, Kim YR, Hong KW, Wie SH, Park YJ, et al. Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanisms and risk factors for infection. Epidemiol Infect 2012;140:137-45.
- Kim YA, Park YS, Youk T, Lee H, Lee K. Abrupt increase in rate of imipenem resistance in *Acinetobacter baumannii* complex strains isolated from general hospitals in Korea and correlation with carbapenem administration during 2002-2013. Ann Lab Med 2018;38:179-81.
- 3. Kim D, Yoon EJ, Hong JS, Choi MH, Kim HS, Kim YR, et al. Major bloodstream infection-causing bacterial pathogens and their antimicrobial resistance in South Korea, 2017-2019: phase I report from Kor-GLASS. Front Microbiol 2022;12:799084.
- 4. Kim YA and Park YS. Epidemiology and treatment of antimicrobial resistant gram-negative bacteria in Korea. Korean J Intern Med 2018;33:247-55.
- 5. Jeong H, Hyun J, Lee Y. Characteristics of carbapenem-resistant *Enterobacteriaceae* (CRE) in the Republic of Korea, 2021. Public Health Wkly Rep 2022;15:2354-63.
- Choi YJ, Kim YA, Kim J, Jeong SH, Shin JH, Shin KS, et al. Emergence of NDM-1-producing
   *Pseudomonas aeruginosa* sequence type 773 clone: shift of carbapenemase molecular
   epidemiology and spread of 16S rRNA methylase genes in Korea. Ann Lab Med 2023;43:196 9.
- 7. Lee Y, D'Souza R, Yong D, Lee K. Prediction of putative resistance islands in a carbapenem-resistant *Acinetobacter baumannii* global clone 2 clinical isolate. Ann Lab Med 2016;36:320-4.
- Lee H, Yoon EJ, Kim D, Jeong SH, Shin JH, Shin JH, et al. Establishment of the South Korean national antimicrobial resistance surveillance system, Kor-GLASS, in 2016. Euro Surveill 2018;23:1700734.
- Heo J, Choi YJ, Kim YA, Jeong SH, Shin JH, Shin KS, et al. Current prevalence of the *crpP* gene in carbapenemase-producing *Pseudomonas aeruginosa* blood isolates in Korea. Ann Clin Microbiol 2022;25:53-9.
- 10. Center for Genomic Epidemiology. https://www.genomicepidemiology.org/ [Online] (last visited on 2 April 2024).
- 11. Kim S, Park YJ, Kim J. Inverse PCR for subtyping of *Acinetobacter baumannii* carrying IS*Aba1*. J Microbiol 2016;54:376-80.
- Yoon EJ, Kim HS, Woo H, Choi YJ, Won D, Choi JR, et al. Trajectory of genetic alterations associated with colistin resistance in *Acinetobacter baumannii* during an in-hospital outbreak of infection. J Antimicrob Chemother 2021;77:69-73.
- 13. Kim CK, Lee Y, Lee H, Woo GJ, Song W, Kim MN, et al. Prevalence and diversity of carbapenemases among imipenem-nonsusceptible *Acinetobacter isolates* in Korea: emergence of a novel OXA-182. Diagn Microbiol Infect Dis 2010;68:432-8.

- 14. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, et al. Novel acquired metallo-betalactamase gene, bla<sub>SIM-1</sub>, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2005;49:4485-91.
- 15. Sung JY, Kwon KC, Park JW, Kim YS, Kim JM, Shin KS, et al. Dissemination of IMP-1 and OXA type beta-lactamase in carbapenem-resistant *Acinetobacter baumannii*. Korean J Lab Med 2008;28:16-23.
- 16. Liu N, Zheng X, Zhu Q, He Z, Hu S. The dissemination of NDM-1 in *Acinetobacter baumannii* strains. Curr Microbiol 2022;79:117.
- 17. Liu H, Moran RA, Chen Y, Doughty EL, Hua X, Jiang Y, et al. Transferable *Acinetobacter baumannii* plasmid pDETAB2 encodes OXA-58 and NDM-1 and represents a new class of antibiotic resistance plasmids. J Antimicrob Chemother 2021;76:1130-4.