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A B S T R A C T

Background: While low muscle mass is considered a risk factor for metabolic dysfunction-associated steatotic liver
disease (MASLD), whether the relationship is independent of fat mass remains unclear.
Objectives: This study aims to clarify the association between the sex-specific height-adjusted low skeletal muscle
mass index (LSMI) and MASLD.
Methods:Data from the 2008–2010 Korean National Health andNutrition Examination Surveywere analyzed. LSMI
was defined using the 2019AsianWorkingGroup for Sarcopenia. The non-alcoholic fatty liver disease-liver fat score
was used to assess MASLD. Gender-specific 1:1 propensity score matching (PSM) was performed to mitigate the
confounding effects of anthropometric variables and lifestyles. Conditional logistic analysis was used on the dataset
after PSM to estimate the odds ratio (OR) with a 95% confidence interval (CI).
Results: After PSM, the prevalence of MASLD was significantly higher in men with LSMI than in those without LSMI
(37.4% vs. 29.6%). No significant differencewas observed in the prevalence ofMASLD between groups after PSM in
women (20.4% vs. 20.3%). Conditional logistic analysis revealed that the odds of havingMASLDwere significantly
higher in men with LSMI compared to those without LSMI (OR=1.38, 95% CI: 1.09–1.75), while no significant
association was found in women with LSMI (OR=1.10, 95% CI: 0.87–1.40).
Conclusion:Height-adjusted LSMI is an independent factor associatedwithMASLD in the condition of the same level
of fat mass in men. Further prospective studies in diverse populations are needed to confirm our findings.
© 2024 The Authors. Published by Elsevier Masson SAS on behalf of SERDI Publisher. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), the
recently changed nomenclature for non-alcoholic fatty liver disease
(NAFLD) [1,2], has become the most common cause of chronic liver
disease worldwide and is leading to an increasing chronic liver disease
burden [3,4]. Recent studies have shown that MASLD is associated with
sarcopenia, a major risk factor for falls, functional impairment, frailty,
and mortality [5]. Sarcopenia is characterized by loss of strength and
skeletal muscle mass, but it is usually defined by declines in appendicular
muscle mass [6]. MASLD and sarcopenia share a common underlying
mechanism characterized by systemic inflammation, obesity, physical
inactivity, vitamin D deficiency, and adiponectin dysregulation [7].
Additionally, the loss of muscle mass can lead to insulin resistance, as
skeletal muscle is the primary organ responsible for glucose disposal [8].
Therefore, considerable attention has been paid to the relationship

between sarcopenia and MASLD [9–11]. Several epidemiologic studies
have revealed that the prevalence of sarcopenia is higher in individuals
with MASLD (�18–38%) and those with metabolic dysfunction-
associated steatohepatitis (MASH) (�35%–63%) compared to healthy
controls without MASLD (�8%–22%) [12–14].

Both low muscle mass and high fat mass are closely associated with
MASLD, however, and this complicates the determination of which factor
plays a more effective role in its development. Considering the current
evidence on the relationship between MASLD and low skeletal muscle
mass index (LSMI) with various definitions, it is expected that fat will
contribute more to MASLD than muscle. For example, studies have
consistently shown MASLD/MASH to be positively related to both body
mass index (BMI)-adjusted andweight-adjusted LSMI [12,15,16]. On the
other hand, other researchers have demonstrated an inverse relationship
between height-adjusted LSMI and MASLD unless adjusted for weight or
BMI [17–19]. These findings indicate that the effect of fat and/or bone,
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rather than muscle alone, may have a stronger correlation with MASLD.
Furthermore, height-adjusted LSMI may not be a reliable predictor of
MASLD given the uncertainty surrounding its actual association with the
disease. Accordingly, we consider it necessary to conduct a more
thorough investigation to determine whether muscle mass truly
contributes to MASLD.

Therefore, an in-depth examination is necessary to determinewhether
LSMI has an independent association with MASLD while controlling for
fat and bone mass. To this end, the current study aimed to examine the
association between height-adjusted LSMI and MASLD using propensity
score matching (PSM) to mitigate the confounding effects of fat and bone
mass and other factors affecting muscle mass.

2. Methods

2.1. Study population

The current study follows a cross-sectional study design, analyzing
data from the 2008–2010 Korean National Health and Nutrition
Examination Survey (KNHANES). The KNHANES is a nationwide
representative survey conducted by the Korea Disease Control and
Prevention Agency to assess the health and nutritional status of Korean
citizens.

Fig. 1 presents a flowchart of the study population. Among the 29,235
participants who participated in the KNHANES from 2008 to 2010, we
excluded participants with the following characteristics: (1) heavy
alcohol drinker (n=1691); (2) hepatitis B viral carrier (n=664); (3)
hepatitis C viral carrier (n=11); (4) insufficient data to calculateNAFLD-
liver fat score (n=16,251); and (5) missing information pertaining to
anthropometry, total energy intake, physical activity, or smoking status
(n=6169). From the remaining 7450 participants (men with LSMI
[n=698],menwithout LSMI [n=2092],womenwith LSMI [n=1326],
womenwithout LSMI [n=3334]), we finally selected 3,098 participants
(men with LSMI [n=497], men without LSMI [n=497], women with
LSMI [n=1052], women without LSMI [n=1052]) after a 1:1 PSM
analysis.

The study protocol conformed to the ethical guidelines of the 1964
Declaration of Helsinki and its later amendments. Informed consent was

waived by the institutional review board (IRB) because of the
retrospective study design. The study was approved by the IRB of Nowon
Eulji Medical Center (IRB No. 2021-09-025).

2.2. Assessment of body composition

Dual-energy X-ray absorptiometry was used to measure the body
composition of each participant (QDR 4500A; Hologic Inc., Bedford, MA,
USA). Bonemineral content (g), fat mass (g), and lean bodymass (g) were
obtained from pre-defined anatomical areas including the head, arms,
legs, trunk, pelvic region, and whole body. Skeletal muscle mass was
calculated by subtracting bone mineral content (g) from lean body mass
(g). Appendicular skeletal muscle mass was calculated as the summation
of the skeletal muscle mass of both the upper and lower extremities.
We defined the skeletal muscle mass index (SMI) as appendicular
skeletal muscle mass (kg) divided by height squared (m2). LSMI was
defined as SMI<7.0 in men and SMI< 5.4 in women using the cut-off
points for LSMI defined by [103_TD$DIFF]the 2019 AsianWorking Group for Sarcopenia
[20].

Height (cm) was measured to the nearest 0.001m using a stadiometer
on participants in a standing posture or supine position without shoes.
Body weight (kg) was measured to the nearest 0.1 kg using a digital scale
with participants in light clothing. BMI was calculated as body weight
(kg) divided by height squared (m2). Waist circumference (WC, cm) was
measured in the horizontal plane, midway between the lowest rib and the
iliac crest.

2.3. Assessment of MASLD

The NAFLD-liver fat score was used to assess MASLD [2]. The formula
for NAFLD-liver fat score is as follows [21]:

NAFLD-liver fat score=�2.89+1.18�metabolic syndrome (yes: 1,
no: 0) + 0.45 � type 2 diabetes mellitus (yes: 2, no: 0) + 0.15 � insulin
(mIU/mL) + 0.04�AST (U/L) � 0.94�AST/ALT

where AST=serum aspartate transaminase and ALT=alanine
transaminase. A person was considered to have MASLD if they had an
NAFLD-liver fat score higher than �0.640 [21].

Fig. 1. Flowchart of study population.
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2.4. Covariates

Systolic and diastolic blood pressureweremeasuredwith participants
in a sitting position after at least five minutes of resting, followed by
calculating the mean blood pressure (MBP). Smoking status was
categorized as “current smoker,” “intermittent smoker,” “former
smoker,” and “never smoker.” A heavy alcohol drinker was defined as
a personwho consumed�30 g of alcohol per day in case ofmen and�20 g
per day in case of women. Except for heavy alcohol drinkers, participants
were divided into categories of either “current drinker” or “non-drinker.”
A regular exerciser was defined as a person who engaged in 20min of
vigorous exercise at least three days per week or 30min of moderate
exercise at least five days per week. Total energy intake (kcal/day) was
calculated using a food frequency questionnaire. After at least eight hours
of fasting, concentrations of fasting plasma glucose as well as serum
aspartate transaminase, alanine transaminase, insulin, total cholesterol,
triglyceride, and high-density lipoprotein cholesterol were measured.

2.5. Statistical analysis

All statistical analyses were performed separately for men and
women. Data for clinical characteristics of the participants were
presented as mean� standard deviation for continuous variables and
number (percentage, %) for categorical variables. For data before PSM,
Student’s t-testwasperformed for continuous variables, anda chi-squared
test was performed for categorical variables.

We utilized PSM to estimate the average marginal effect of LSMI on
MASLD among those who received the intervention, adjusting for
confounding by including covariates. PSM, defined as the probability of
treatment assignment conditional on observed covariates [22], was
implemented using gender-specific 1:1 nearest neighbor matching to
mitigate confounding effects of anthropometric variables including
height-adjusted WC, total fat mass, and total bone mass as well as age,
total energy intake, physical activity, current drinking status, and
smoking status. This approach employed the R package “MatchIt” [23].
After adjusting the caliper to 0.1, we conducted a round of 1:1 matching
without replacement, which achieved adequate balance, as evidenced in
Fig. 2. All standardized mean differences for the covariates, as well as for
squares and two-way interactions between covariates, were below 0.1
and 0.15, respectively, confirming that an adequate balance was
successfully attained. The matched clinical characteristics of the
gender-specific groups with or without LSMI were compared using the
linear mixed model for the continuous variables and the generalized
estimating equations for categorical data.Weperformed both conditional
logistic analysis on the dataset after PSM and conventional logistic
analysis on the dataset before PSM to estimate the odds ratio (OR) with a

95% confidence interval (CI) for MASLD in a gender-specific group with
LSMI compared to a group without LSMI.

All statistical analyses were performed using SAS statistical software
(version 9.4; SAS Institute Inc., Cary, NC, USA) and R (version 4.0.3; R
Foundation for Statistical Computing, Vienna, Austria). The significance
level was set at p < 0.05.

3. Results

3.1. Clinical characteristics of participants before and after PSM

Table 1 presents the clinical characteristics of the gender-specific
groups with or without LSMI. Before PSM, men with LSMI had a higher
mean age and lower mean total energy intake, height-adjusted fat mass,
height-adjusted bone mass, and height-adjusted WC than men without
LSMI, and there was a lower proportion of regular exercisers, current
drinkers, and never-smokers. Women with LSMI had a lower mean age,
height-adjusted fatmass, height-adjusted bonemass, and height-adjusted
WC than women without LSMI, and there was a lower proportion of
regular exercisers and never-smokers. After PSM, no significant
difference was observed in the matched variables between the groups
with and without LSMI in both men and women. Regarding the
unmatched variables, the groups with LSMI had lower mean BMI and
MBP values than the groups without LSMI in both men and women. The
proportion of patients with type 2 diabetes mellitus was higher in men
with LSMI than in men without LSMI.

3.2. Relationship between gender-specific LSMI and MASLD before and after
PSM

Fig. 3A illustrates the prevalence of MASLD among gender-specific
groups, comparing individuals with and without LSMI prior to PSM. In
women, prior to PSM, the prevalence of MASLD was significantly higher
in those with LSMI compared to those without (19.2% vs. 7.6%,
p< 0.001). Conversely, in men, there was no significant difference in the
prevalence of MASLD between those with and without LSMI before PSM
(35.2% vs. 34.4%, p=0.691). Fig. 3B presents the data following the
PSM. After adjusting for confounding variables, the prevalence ofMASLD
inmenwith LSMI increased significantly compared to thosewithout LSMI
(37.4% vs. 29.6%, p=0.009). However, in women, the prevalence of
MASLD remained statistically similar between those with and without
LSMI after PSM (20.4% vs. 20.3%, p=0.957).

Table 2 shows the results of the logistic regression for MASLD of the
gender-specific groups with and without LSMI before and after PSM.
Before PSM, a simple logistic regression analysis revealed that the OR
(95% CI) for MASLD for women with LSMI compared to those without

Smoking status

Current drinker

Regular exercise

Ht-adjusted fat mass

Total energy intake

age

Ht-adjusted WC

Ht-adjusted bone mass

distance

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Standardized

Mean Difference

All
Matched Current drinker

Total energy intake

Smoking status

Regular exercise

age

Ht-adjusted bone mass

Ht-adjusted fat mass

Ht-adjusted WC

distance

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Standardized

Mean Difference

All
Matched

(A) Men (B) Women

Fig. 2. Love plot of balance following propensity-score matching.
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LSMI was 0.52 (0.45–0.61), while no significant association was found in
men. In adjusted models 1 and 2, the relationship became insignificant in
womenwhile it became significant inmen (Adjustedmodel 1: OR=1.30,

95% CI: 1.03–1.64, p=0.031; Adjusted model 2: OR=1.36, 95% CI:
1.02–1.82, p=0.036). After PSM, a simple conditional logistic regression
analysis showed that the odds of havingMASLDwere 1.49 times higher in
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Fig. 3. Prevalence of MASLD among the gender-specific groups with or without LSMI before and after propensity score matching.

Table 2
Logistic regression models for MASLD according to the gender-specific groups with LSMI and without LSMI.

Men Women

Without LSMI With LSMI p Without LSMI With LSMI p
OR OR (95% CI) OR OR (95% CI)

Before propensity score matching*
Crude model 1 (reference) 1.04 (0.87–1.24) 0.691 1 (reference) 0.52 (0.45–0.61) <0.001
Adjusted Model 1 1 (reference) 1.30 (1.03–1.64) 0.031 1 (reference) 0.98 (0.81–1.18) 0.804
Adjusted Model 2 1 (reference) 1.36 (1.02–1.82) 0.036 1 (reference) 1.10 (0.88–1.38) 0.404

After propensity score matching [102_TD$DIFF]**
Crude model 1 (reference) 1.49 (1.13�1.98) 0.005 1 (reference) 1.04 (0.84�1.30) 0.721
Adjusted modely 1 (reference) 1.38 (1.09�1.75) 0.008 1 (reference) 1.10 (0.87�1.40) 0.423

Abbreviations: LSMI, low skeletal muscle index;MASLD,metabolic dysfunction-associated steatotic liver disease; OR, odds ratio; CI, confidence interval; BMI, bodymass
index; MBP, mean blood pressure; DM, diabetes mellitus.

* OR and 95%CI were calculated using multiple logistic regression analysis; Model 1: adjusted for height-adjusted waist circumference, height-adjusted total fat mass,
height-adjusted total bone mass, age, total energy intake, physical activity, current drinking status, and smoking status; Model 2: adjusted for variables used in Model 1
plus BMI, MBP, and DM.
** OR and 95% CI were calculated using multiple conditional logistic regression analysis; yadjusted for BMI, MBP, and DM.
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men with LSMI than in those without LSMI (OR=1.49, 95% CI: 1.13–
1.98, p=0.005), while no significant association was found in women.
After adjusting for BMI, MBP, and type 2 diabetes mellitus, the adjusted
OR (95% CI) for MASLD of the group with LSMI compared to the group
without LSMI was 1.38 (1.09–1.75) in men (p=0.008). No significant
relationship was observed in the adjusted model in women.

4. Discussion

Numerous studies have demonstrated that low skeletal mass increases
the risk of MASLD. In a recent meta-analysis, the sarcopenia group
showed a 1.33-fold higher risk of MASLD and a 2.4-fold higher risk of
MASH compared to the control group [24]. Among the 19 articles
included in the meta-analysis, studies that utilized weight-adjusted or
BMI-adjusted LSMI consistently reported an increased risk of MASLD or
advanced fibrosis associated with sarcopenia. Conversely, the study by
Zhai et al., which compared the risk of MASLD using height-adjusted
LSMI, reported contrary results with an OR for MASLD of 0.47 (95% CI:
0.31–0.74) [25]. Similarly, in a study conducted with a Western
population, MASLD was found to be significantly and positively
associated with sarcopenia as defined by weight-adjusted LSMI but
inversely associated when using height-adjusted LSMI [19]. The
divergence in results across studies, depending on the definition of
LSMI, can potentially be attributed to the confounding influences of fat.
Additionally, findings froma longitudinal study [26],which reported that
fat mass at baseline exerts a higher influence on the development of
MASLD than muscle mass, further support this assumption.

To the best of our knowledge, this is the first study to examine the
relationship between height-adjusted LSMI and MASLD by setting the
same conditions for fat, bone mass, and other factors affecting muscle
mass. Our study findings indicated that, independent of fatmass, the odds
of having MASLD were 1.38 times higher in men with LSMI compared to
those without LSMI after PSM, while no significant association was found
inwomen. This suggests that a decrease in skeletal musclemass alone can
increase the risk ofMASLD inmen. The prevalence ofMASLD in LSMIwas
higher inmen thanwomen; however, itwas lower than that in theChinese
population (50% inmen and 39.6% inwomen) [27]. Considering that the
previous study on Chinese participants defined sarcopenia by measuring
not only muscle mass but also muscle strength, we can say that they
observed a more rigorous association between sarcopenia and MASLD
compared to our study. However, there are limitations due to the small
sample size (12 men with sarcopenia and 48 women with sarcopenia),
indicating the need for future large-scale studies applying a rigorous
definition of sarcopenia.

Skeletal muscle, a target organ for insulin, plays an essential role in
glucose metabolism and regulating fat accumulation in the liver [28].
Decreased skeletal muscle induces insulin resistance, which, in turn, can
exacerbate MASLD. Furthermore, dysregulated mTORC1 signaling in
skeletal muscle, driven by chronic hyperinsulinemia, leads to increased
protein breakdown and further muscle mass [29]. Myokines secreted
from skeletal muscle play important roles in the sarcopenia–MASLD
relationship by counteracting the pro-inflammatory andmetabolic effects
of adipocytes derived from fat tissue [30–32].

This study showed gender differences in the association between
MASLD and LSMI. These findings suggest that men may be more
susceptible to the negative effects ofmuscle loss onmetabolic health. One
possible explanation for this gender-based difference in the risk ofMASLD
according to the height-adjusted LSMI status is the hormonal differences
between men and women, as testosterone is an important hormone for
muscle growth [33]. Testosterone has important metabolic effects,
including increasing insulin sensitivity and reducing fat accumulation in
the liver [34,35]. Therefore, whenmen experience muscle loss, theymay
bemorevulnerable tometabolic dysfunction thanwomen.Additionally, a
prior study indicated that MASLD is more prevalent in men, potentially
due to a protection effect of estrogen against MASLD [36]. Menopause

and oophorectomy in young women with endometrial cancer elevate the
risk of MASLD and liver fibrosis due to prolonged periods of estrogen
deficiency.

Another reason could be the difference in body composition between
men and women. A recent cross-sectional analysis compared the
relationship between skeletal muscle mass and its distribution with the
risk of metabolic dysfunction-associated fatty liver disease (MAFLD) as
well as the influence of gender on this association [37]. In the study,
adequate appendicular skeletalmusclemass reduced the risk ofMAFLD in
both sexes, whereas adequate trunk skeletal muscle mass increased the
risk of fibrosis in women. A possible mechanism is that the trunk skeletal
muscle, being surrounded by visceral and subcutaneous adipose tissues, is
more susceptible to myosteatosis, which could contribute to the
progression of liver fibrosis [38]. Similarly, in another study evaluating
sex-specific differences in the impact of fat distribution on MASLD and
liver fibrosis, the effects of android fat deposition on fibrosis were
observed only in women [39]. In our study, prior to adjusting for fat mass
or performingPSM,weobserved ahigher prevalence ofMASLD inwomen
with LSMI. However, after adjusting for fat mass or conducting PSM, the
difference in MASLD risk disappeared. This aligns with previous studies
suggesting that fat mass and fat deposition may have a higher impact on
MASLD in women than in men.

In addition, LSMI, type 2 diabetes mellitus, and MASLD are
interconnected through a common pathophysiological pathway, primar-
ily insulin resistance. Insulin resistance in skeletal muscles impairs
glucose uptake, which, in turn, increases insulin levels and enhances
lipolysis. This leads to an increased flux of free fatty acids to the liver,
exacerbating hepatic fat accumulation and thus promoting the progres-
sion of MASLD. In the current study, men with LSMI exhibited a higher
prevalence of type 2 diabetes mellitus compared to those without LSMI,
suggesting that the effect of LSMI on insulin resistance may be more
pronounced in men than in women. Therefore, our findings highlight the
need for clinical strategies focusing on improving muscle mass and
function, which could potentially mitigate the risks associated with
diabetes mellitus and MASLD in men with LSMI.

Although the present study reveals important findings, it has several
limitations. First, because of the cross-sectional study design, we could
not establish a causal relationship between height-adjusted LSMI and
MASLD. Future prospective studies are necessary to determine this
longitudinal association. Second, the study participants were limited to
Korean adults, which may limit the generalizability of the findings to
other populations. Third, MASLD was defined using the NAFLD-liver fat
score rather than liver imaging or histological analysis, which could
potentially have affected the accuracy of our results. Fourth, we were
unable to examine the effect ofmuscle strength and physical performance
onMASLDowing to the lack of data in theKNHANES. Finally, PSMadjusts
solely for observed variables, whichmeans there is a possibility of hidden
bias. Despite these limitations, this study is significant in that it used PSM
to control for potential confounding variables and reduce the impact of
selection bias. In addition, through a gender-specific analysis, this study
explored thepotential gender-baseddifference in the association between
LSMI andMASLD. Finally, using a large sample, the study has established
the statistical power to detect ameaningful association between LSMI and
MASLD even after controlling for multiple potential confounding
variables.

5. Conclusions

In conclusion, height-adjusted LSMI appears to be associated with
MASLD in the condition of the same level of fat mass, only in men. This
finding suggests the potential value of targeting muscle mass to prevent
and manage MASLD, particularly in men. Our results also indicate that
body composition assessments in relation to MASLD risk might require
gender-specific approaches. However, further prospective studies
featuring diverse populations are needed to validate these preliminary
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findings. In addition, future research should also consider the potential
role of hormones in the relationship between muscle mass and MASLD [104_TD$DIFF].[97_TD$DIFF]
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