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Simple Summary: Hepatocellular carcinoma (HCC) is among the most common cancers and causes
about 830,000 deaths annually in the world. Metabolic reprogramming is a critical hallmark of HCC,
enabling HCC cells to adapt to the high energy demands necessary for fast growth. However, the
clinical relevance of metabolic alteration in HCC has not been systematically assessed. By performing
cross-species comparison of genomic data from mouse and human tissues, we identified three distinct
metabolic subtypes of HCC and uncovered clinical and molecular characteristics associated with
three subtypes. Importantly, we showed that the high metabolic subtype is less susceptible to
immunotherapy and uncovered a potential mechanism associated with resistance to immunotherapy.

Abstract: High metabolic activity is a hallmark of cancers, including hepatocellular carcinoma
(HCC). However, the molecular features of HCC with high metabolic activity contributing to clinical
outcomes and the therapeutic implications of these characteristics are poorly understood. We aimed
to define the features of HCC with high metabolic activity and uncover its association with response
to current therapies. By integrating gene expression data from mouse liver tissues and tumor tissues
from HCC patients (n = 1038), we uncovered three metabolically distinct HCC subtypes that differ in
clinical outcomes and underlying molecular biology. The high metabolic subtype is characterized
by poor survival, the strongest stem cell signature, high genomic instability, activation of EPCAM
and SALL4, and low potential for benefitting from immunotherapy. Interestingly, immune cell
analysis showed that regulatory T cells (Tregs) are highly enriched in high metabolic HCC tumors,
suggesting that high metabolic activity of cancer cells may trigger activation or infiltration of Tregs,
leading to cancer cells’ evasion of anti-cancer immune cells. In summary, we identified clinically and
metabolically distinct subtypes of HCC, potential biomarkers associated with these subtypes, and a
potential mechanism of metabolism-mediated immune evasion by HCC cells.

Keywords: liver cancer; hepatocellular carcinoma; cancer metabolism; glycolysis; transcriptome;
survival; stem cells; immunotherapy; Tregs

1. Introduction

Hepatocellular carcinoma (HCC) is among the most common cancers worldwide
and causes about 830,000 deaths annually [1]. The incidence of HCC in the United States
has increased over the past 25 years, to an estimated 41,260 new cases in 2022 [2]. Less
than one-third of HCC patients are eligible for potentially curative treatments [3–7]; the
vast majority of HCC patients present with advanced disease not amenable to curative
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treatments. Current standard first-line treatments for advanced HCC include targeted
therapy with kinase inhibitors such as sorafenib and lenvatinib, which have antiangiogenic
and antiproliferative effects, and immunotherapy with atezolizumab combined with be-
vacizumab [8–11]. However, kinase inhibitors appear to prolong HCC patients’ survival
by only a few months, and immunotherapy only benefits patients who have HCC with
viral etiologies [12]. Thus, there is a clear need to enhance our insight into the molecular
development of HCC, which could lead to the discovery of new targeted therapies for HCC
and/or effective strategies to extend the survival of HCC patients.

Metabolic reprogramming is a critical hallmark of cancer [13,14], that enables cancer
cells to adapt to the high energy demands necessary for fast growth. Indeed, many cancer
cells acquire deregulated high metabolic activity that enables them to prosper even in
a resource-limited microenvironment [15]. The best example is the surge in consuming
glucose through anaerobic glycolysis, even in the presence of oxygen [16]. Considering
that the liver is the primary site of metabolism in the body, it is not surprising to see highly
dysregulated metabolism in HCC cells compared to that of normal hepatocytes [17,18].
However, the clinical relevance of metabolic alteration, particularly in glycolytic pathway,
in HCC tumors has not been systematically assessed and clearly demonstrated.

In a previous study [19], we showed that genomic signatures from mouse models are
similar to those from human tumors and developed the approach known as “comparative
systems genomics” that performs cross-species comparison of genomic data from mouse
and human tissues to classify patients according to defined conditions from preclinical
mouse models. In the current study, we adopted this method to uncover the clinical
significance of metabolic alteration in HCC.

2. Materials and Methods
2.1. Gene Expression Profile Data from Mouse Liver Tissues

Gene expression profile data from mouse liver tissues were generated as described
previously [20]. Eight week-old C57B/l6 male mice were fed a regular diet (ad libitum)
with or without 20% glucose or fructose for 24 h in drinking tap water (n = 6 per group and
18 in total). Mice were euthanized for collection of RNA at 14 h after the start of light period
in the animal housing unit. Total RNA was extracted from liver tissues of mice and used to
generate gene expression data via the Agilent microarray platform (SurePrint G3 Mouse
GE v2 8x60K Microarray). Data are available in the National Center for Biotechnology
Information’s Gene Expression Omnibus (GEO) database (GSE92502).

2.2. Gene Expression and Clinical Data from Human HCC

Gene expression data and clinical data were described in earlier studies [21–26]. Briefly,
gene expression data from the Fudan cohort were obtained from the GEO database (acces-
sion number GSE14520) [21]. Gene expression data from the Korean cohort were generated
using the Illumina microarray platform human-6 v2 and v4 (accession numbers GSE16757,
GSE43619) [22,23]. Gene expression data from the Modena cohort were obtained from
GEO databases (accession number GSE54236) [24]. Gene expression data from Zhongshan
hospital cohort were obtained from National Omics Data Encyclopedia (NODE, accession
number OEP000321) [25]. We also included gene expression data from The Cancer Genome
Atlas (TCGA) HCC project in this analysis [26]. Table S1 shows the summary of data sets in
all five cohorts. All patients had undergone surgical resection as their primary treatment
for HCC.

2.3. Identification of Hepatic Glycolytic Gene Expression Signature from Mouse Liver

To identify genes reflecting high glycolytic activity in mouse liver tissue, we first
selected genes whose expression is significantly induced by fructose-feeding or glucose-
feeding in mouse livers, yielding 1960 genes for fructose-specific induction and 2022 genes
for glucose-specific induction. By comparing the two gene lists, 416 overlapping genes
were identified as glycolytic genes, and their expression patterns were considered to be
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the hepatic glycolytic gene expression signature (Figure 1). Later, identified gene sets were
subjected to ingenuity pathway analysis (September release 2022), which revealed a myriad
of affected signaling pathways and functional categories.
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Figure 1. Hepatic glycolytic gene expression signature from mouse liver. (A) Venn diagram of genes
selected by a two-sample t test. The red circle (gene list X) represents genes differentially expressed
between liver tissues from mice fed with tap water and those fed with fructose water. The blue circle
(gene list Y) represents genes differentially expressed between liver tissues of mice fed with tap water
and those fed with glucose water. We applied a cut-off p-value of less than 0.01 to retain genes whose
expression is significantly different between the two groups of tissues. (B) Expression patterns of
selected genes in the Venn diagram. Gene expression data from livers of mice fed with fructose,
glucose or control tap water were selected from 416 overlapping genes.

2.4. Data Analysis

Collected gene expression data were transformed and normalized as described pre-
viously [20]. BRB-ArrayTools, v4.6, a freeware program from the National Cancer In-
stitute (https://brb.nci.nih.gov/BRB-ArrayTools/ accessed on 11 June 2022), was used
for analyzing the data and building a predictive model [27]. Cluster (v 3.0) and Tree-
View (v 1.6) were used to generate a heatmap of gene expression data [28]. R language
(http://www.r-project.org, v 4.1.1 accessed on 15 September 2021) was used for statistical
analysis. Somatic copy number alterations in TCGA data were determined by profiling
HCC on Affymetrix SNP 6.0 arrays and analysis by GISTIC 2.0 [29].

Before pooling mouse and human gene expression data for performing cross-species
analysis, expression data of orthologous genes in both data sets were independently con-
verted to z-scores (z = (x − mean)/standard deviation) [19]. A Bayesian compound co-
variate prediction (BCCP) algorithm was used to estimate the probability that a particular
human HCC sample would have a given gene expression pattern from mouse tissue [19,30].
Gene expression data from mouse tissue (training sets) were combined to form a predictor
according to a BCCP model. The robustness of the predictor was estimated by a misclassifi-
cation rate determined using leave-one-out cross-validation during training. Sensitivity
and specificity of predicting sugar-fed liver tissue in the mouse training set were 1.0 and 1.0,
respectively. The BCCP model estimated the probability that an individual human HCC
sample would have high or low glycolytic activity and trichotomized tumors according to
Bayesian probability (cutoff of 0.8 and 0.2).

https://brb.nci.nih.gov/BRB-ArrayTools/
http://www.r-project.org
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To generate the hepatic stem cell (HSC) probability of HCC tumors, we applied
a previously established HSC signature to gene expression data from HCC tumors as
described previously [31,32].

2.5. Gene Expression Data from HCC PDX Models

HCC PDX tumors were established by Crown Bioscience as described earlier [33,34].
mRNA expression data from PDX tumors were generated by Illumina HiSeq2500 platform.
For bioinformatics analysis of transcriptome sequencing data, RNAseq raw data were first
cleaned up by removing contamination mouse mRNA reads that preferentially mapped to
mouse genome (UCSC MM10). Clean reads were mapped to reference genes (ENSEMBL
GRCh37.66) by Bowtie (v 1.2.3), and gene expression was calculated by MMSEQ (v 1.0.10).
The hepatic glycolytic gene expression signature was applied to gene expression data from
PDX model to stratify them to 3 subtypes.

3. Results
3.1. Gene Expression Signature Reflecting Glycolytic Activity from Mouse Liver Tissue

We examined the glycolytic activity of HCC tumors by using a comparative cross-
species genomic approach that integrates genomic data from the well-defined experimental
conditions of animal models into those from human HCC. To do this, genes whose expres-
sion is significantly correlated with glycolytic activity in mouse liver were identified by
applying a Student’s t-test to gene expression profile data from liver tissues of mice fed
with fructose or glucose versus control tap water. Overlapping expression of 416 genes was
identified as a hepatic glycolytic signature (p < 0.01, Figure 1, and Table S2). As expected,
the upregulated genes included metabolic genes such as Psat1, Fut1, Gpi1, Rpia, Acaca, and
Pklr, suggesting that the signature well reflect high metabolism in the liver. Hereafter, we
refer to the defined signature as the glycolysis metabolic (GM) signature.

To further reveal the underlying biological activity of the GM signature in the liver,
we next performed gene network analysis of the GM signature by applying Ingenuity
Pathway Analysis. Not surprisingly, it revealed the glycolysis pathway as one of the most
activated pathways in the GM signature (Table S3). Other activated pathways included
the mTOR pathway, reflecting high energy consumption, and the cell growth pathway,
suggesting that highly glycolytic activity leads to high cellular energy production and
cell growth. Interestingly, the ferroptosis signaling pathway was also activated by high
glycolysis, suggesting that high metabolic activity may increase oxidative stress, which is
the foundation of ferroptotic cell death [35,36]. In agreement with this, the NRF2-mediated
oxidative stress response pathway was also activated by high glycolysis.

3.2. Association of Hepatic Metabolic Activity with Prognosis of Patients with HCC

Having generated a gene expression signature reflecting high metabolic activity in
liver, we next tested the clinical relevance of hepatic glycolytic activity in primary HCC
tumors from patients by extracting the expression of GM signature genes from patients’
tumors and comparing them with the GM signature from mouse liver tissues. To validate
clinical association of GM signature in HCC, we built a stratifying prediction model with
the mouse GM signature and directly applied it to the genomic data from HCC tumors.
Expression data from the mouse GM signature (training set) were used to generate a BCCP
that estimated the probability of high metabolic activity in each HCC tumor (Figure 2A).
Patients in the Fudan HCC cohort (n = 242) were trichotomized according to Bayesian
probability (<0.2, 0.2 to 0.8, >0.8), which classified 69, 108, and 65 patients into high, middle,
and low metabolic activity subgroups, respectively (Figure 2B). Kaplan–Meier plots for
overall survival (OS) of patients in the Fudan cohort showed significant differences in OS
after treatment (p = 1.6 × 10−6 by log-rank test) among the three subgroups (Figure 2C),
strongly indicating that high glycolytic activity in HCC significantly contributes to patients’
clinical outcome after treatment.
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Figure 2. Clinical association of metabolic activity in hepatocellular carcinoma (HCC). (A) Schematic
diagram of the prediction model. (B) Heatmap of glycolysis metabolic (GM) gene expression signature
in patients from the Fudan cohort. (C) Kaplan–Meier plots of overall survival (OS) of HCC patients
in the Fudan cohort stratified by GM subtype. TCGA, The Cancer Genome Atlas.

We next examined the correlation of glycolytic activity with patients’ prognosis in four
additional HCC cohorts (ZhongShan cohort, n = 159; TCGA cohort, n = 371; Korean cohort,
n = 188; and Modena cohort, n = 78, Figure 2A and Table S1). When the BCCP used in the
Fudan cohort was applied to the four additional cohorts, Kaplan–Meier plots of all cohorts
showed significant differences in OS among the three GM subtypes (p = 1.0 × 10−5 for
ZhongShan, p = 0.005 for TCGA, p = 0.02 for Korean, and p = 0.002 for Modena by log-rank
test, Figure 3). Together, the results from all five cohorts (n = 1038) clearly demonstrated a
strong association between the high glycolytic activity and poor OS rates in HCC.
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Figure 3. Validation of clinical association of low, middle, and high glycolysis metabolic subtypes in
hepatocellular carcinoma. Kaplan–Meier plots of overall survival (OS) in patients in the validation
cohorts. Zhongshan cohort (n = 159), Korea cohort (n = 188), The Cancer Genome Atlas (TCGA)
cohort (n = 371), Modena cohort (n = 78), and pool of five cohorts (n = 1038).

3.3. Prognostic Significance of GM Subtypes

To quantify the prognostic weight of glycolytic activity in combination with other
critical clinical features, we performed univariate Cox proportional analyses with clinical
features from the Zhongshan cohort, which had the most complete set of clinical data.
In addition to tumor size and Barcelona Clinics Liver Cancer (BCLC) stage, which are
well-known variables associated with OS, the GM signature was a statistically significant
predictor of OS (Table 1). In multivariate analysis with analyzed variables together, the high
GM subtype was independent prognostic predictor for OS as evidenced by high hazard
ratio of 2.97 (95% confidence interval, 1.72−5.12 and p = 8.5 × 10−5).
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Table 1. Univariate and multivariate Cox regression analyses of overall survival in Zhongshan cohort.

Characteristic

Univariate Multivariate

Hazard Ratio
(95% CI) p Value Hazard Ratio

(95% CI) p Value

Patient sex (M or F) 0.75 (0.4–1.41) 0.381
Age (>60 years or not) 0.8 (0.44–1.45) 0.47

AFP (>300 ng/mL or not) 3.12 (1.83–5.34) <0.001 2.75 (1.53–4.91) <0.001
Cirrhosis (yes or no) 1.28 (0.69–2.35) 0.42

Tumor size (>6 cm or not) 3.53 (1.97–6.32) <0.001 5.26 (1.86–14.8) 0.001
BCLC stage (B/C/D or 0/A) 2.77 (1.51–5.09) 0.001 0.57 (0.23–1.4) 0.23

GM signature (high or mid/low) 2.97 (1.72–5.12) <0.001 1.84 (1.04–3.25) 0.033
CI, confidence interval; AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; GM, glycolytic metabolism.

We next estimated how GM subtypes are independent across the standard clinical
stages. When the GM signature was applied to patients with BCLC stage A, which is con-
sidered early stage HCC [37], patients with the high GM subtype had worse OS outcomes
than patients with the middle and low GM subtypes (Figure S1). Taken together with Cox
analysis, this observation suggests that GM signature retains its prognostic significance
even after the classic clinicopathological variables have been taken into account.

3.4. Mutations and Genomic Alterations Associated with GM Subtypes

We next assessed the association of genomic characteristics with GM subtypes in
the TCGA cohort, for which genomic data were available. to gain additional insight into
each subtype’s biology. We found no differences in mutation burden among the three GM
subtypes (Figure 4A). However, alterations of genomic copy number differed significantly
among the subtypes, with the high GM subtype having the most (Figure 4B). We next
sought to identify somatic mutations significantly associated with the subtypes (Figure S2).
TP53 mutations were associated with the high and middle GM subtypes (Figure 4C).
FAM47A mutations were associated with the high GM subtype, and CTNNB1 (encoding
β-catenin) mutations were associated with the low GM subtype. ALB (coding albumin)
mutations were significantly less frequent in the high GM subtype, suggesting a potential
connection of loss of albumin activity in regulation of the glycolytic pathway.

3.5. Potential Sensitivity to Immunotherapy among GM Subtypes

The combination of bevacizumab, which targets VEGF, and atezolizumab, an immune
checkpoint inhibitor that selectively targets PD-L1, has yielded encouraging results in
HCC patients [11]. Therefore, we estimated each GM subtype’s potential response to
immunotherapy using tumor immune dysfunction and exclusion (TIDE) scores, which
reflect resistance to immune checkpoint inhibitors [38]. Interestingly, most tumors (86.8%) in
the high GM subtype showed high TIDE scores (Figure 5A), suggesting that HCC patients
with high metabolic activity would not have substantial benefit from immunotherapy.
Moreover, the GM probability was positively correlated with TIDE score (r = 0.3381,
p = 1.98 × 10−11) (Figure 5B), further supporting the association of the high GM subtype
with resistance to immunotherapy.

To uncover the biology underlying the low response of high metabolic HCC tumors
to immunotherapy, we explored the percentage of immune cells in tumors by analyzing
their gene expression data using the previously established CIBERSORT algorithm [39]
(Figure 5C). Interestingly, the fraction of immunosuppressive regulatory T cells (Tregs) was
significantly higher in the high GM subtype (Figure 5D), suggesting that high metabolic
activity in the tumor microenvironment may trigger activation of Tregs, leading to the low
response to immunotherapy in high GM HCC tumors. Furthermore, the fraction of naïve
M0 macrophages was also higher in high GM HCC tumors (Figure 5E), suggesting that
that absence of active anti-cancer macrophages may contribute to the poor response of high
GM tumors to immunotherapy. In agreement with these observations, the estimated level
of myeloid-derived suppressor cells from the TIDE analysis was significantly higher in
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high GM subtype than in the other subtypes (Figure S3A). Similarly, expression of major
inhibitors of immune checkpoints CTLA-4 and PD-1 were significantly higher in the high
GM subtype (Figure S3B), further supporting the notion that high metabolic activity may
suppress immune activity.
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for number of nonsynonymous mutations in GM subtypes (n = 367). No significant difference is
observed among the GM subtypes. In the box plots, the boundary of the box indicates the 25th to
75th percentile, and the black line within the box marks the mean. Whiskers above and below the
box indicate the 10th and 90th percentiles. Circles represent the number of mutations in each tumor.
(B) The fraction of the genome altered by copy number gain and loss was estimated by GISTIC2
analysis in each tumor (n = 367). The high GM subtype has significantly higher alterations than
the other two subtypes (all p < 0.05 by Student t test). (C) Somatic mutations associated with GM
subtypes in TCGA cohort. Mutation rates of each gene are presented as fraction within subtypes.
Red, light blue, and dark blue represent the high, middle, and low GM subtypes, respectively.
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the response rates to immunotherapy predicted by the tumor immune dysfunction and exclusion
(TIDE) algorithm in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort
(n = 371). Numbers below waterfall plots represent the fraction of responders in the patients with
each GM subtype. (B) Scatter plot for the correlation between TIDE score and GM probability in the
TCGA cohort (n = 371). Blue line indicates locally weighted scatterplot smoothing (lowess) regression.
(C) The pattern of infiltrations of 22 immune subsets according to GM subtype from fetal liver
signatures predicted by the CIBERSORT algorithm in the TCGA cohort. (D,E) Box and scatter plots of
fraction of regulatory T cells (Tregs) (D) and M0 macrophages (E) in GM subtypes. Relative fraction
of each immune-subset was normalized by mean and standard deviation across the samples. In the
scatter plots, blue line indicates locally weighted scatterplot smoothing (lowess) regression. In the
box plots, the boundary of the box indicates the 25th to 75th percentile, and the black line within the
box marks the mean. Whiskers above and below the box indicate the 10th and 90th percentiles. Each
circle represents the fraction of indicated immune cells in each tumor. * p < 0.001 by Student t test.
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3.6. Stem Cell Characteristics in GM Subtypes

We next sought to correlate the GM subtypes with stem cell characteristics by applying
a previously established HSC signature to gene expression data from HCC tumors [31].
The high GM subtype showed significantly higher HSC probability than the middle and
low GM subtypes (p < 0.001 by t test, Figure 6A), suggesting that high metabolic activity
in HCC might be driven by genetic or genomic switches activated in HSCs. Consis-
tently, HSC probability showed significant correlation with GM probability (r = 0.6269,
p = 4.9 × 10−49, Figure 6B), further supporting a close relationship between high metabolic
activity and HSC features in HCC. We next examined the expression of cancer stem cell
markers. Not surprisingly, expression of many stem cell markers were significantly higher
in the GM high subtype than in the other GM subtypes (Figure 6C). In particular, expression
of well-known hepatic stem markers such as AFP, KRT19, and EPCAM was significantly
higher in high GM subtypes (Figure 6D), and SALL4 was the most significantly correlated
transcription regulator with the high GM subtype.
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Figure 6. Stem cell characteristics of glycolysis metabolic (GM) subtypes. (A) Hepatic stem cell
probability of hepatocellular carcinoma tumors in GM subtypes in The Cancer Genome Atlas (TCGA)
cohort. In the box plots, the boundary of the box indicates the 25th to 75th percentile, and the black
line within the box marks the mean. Whiskers above and below the box indicate the 10th and 90th
percentiles. Each circle represents the fraction of the indicated immune cells in each tumor. Student
t test. (B) Scatter plot for the correlation between hepatic stem cell probability and GM probability
in the TCGA cohort (n = 371). (C) Heatmap for expression of major stem-cell markers according
GM subtype in the TCGA cohort. (D) Box plots of expression of stem cell markers according to GM
subtype in the TCGA cohort. * p < 0.001 by Student t test.
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3.7. GM Subtypes in Preclinical Models

We next examined whether the GM subtypes’ metabolic characteristics are preserved
in preclinical models of HCC. We applied the BCCP GM predictor to the genomic data from
77 HCC patient-derived xenograft (PDX) tumors. GM gene expression patterns were well
conserved in these tumors (Figure S4A), indicating that metabolic characteristics are well
preserved in PDX tumors. Established PDX models appeared to be stable, as illustrated
by the fact that there was no significant difference in number of passages in PDX models
among subtypes (Figure S4B), suggesting that metabolic features in primary tumors do not
fade out over passages.

4. Discussion

In the current study, by integrating gene expression profile data from human HCC
tumors with those from mouse models, we identified three metabolically distinct HCC
subtypes that are significantly different in prognosis and potential response to standard
treatment with immunotherapy. Analysis of genomic data from multiple sources uncovered
connections between high metabolic activity and several pathways that might account for
poor prognosis in HCC patients and identified potential prognostic markers. Our results
may lead to new opportunities in advancing molecular classification of HCC patients and
providing potential treatment guidance.

To develop the gene expression signature reflecting hepatic metabolic activity and
prognosis, we used a supervised approach combined with validation in multiple cohorts
of HCC patients. This approach yielded several lines of evidence that support significant
association of metabolic activity with prognosis in HCC. First, its strong association with
prognosis was tested and validated in five independent HCC cohorts. Second, the GM
signature could identify patients at high risk of shorter OS among those with early stage
HCC (BCLC A stage). Last, in multivariable Cox regression analysis, the GM signature was
one of the most significant predictors of OS.

In our study, HCC tumors with high metabolic activity were characterized by high
genomic instability, as reflected in their numerous copy number alterations and high
frequency of TP53 mutation. This is in agreement with previous reports showing poor
prognostic features of HCC with TP53 mutations [40]. Interestingly, the TIDE score, which
reflects potential response to immunotherapy, showed that the high GM subtype would be
the least responsive to immunotherapy. The strong connection of high genome instability
with poor response to immunotherapy in the high GM subtype is consistent with previ-
ous studies showing that chromosome instability is significantly associated with immune
evasion and with poor response to immunotherapy [41,42]. The predicted poor response
to immunotherapy of the high GM subtype is further supported by a high expression of
immune checkpoint regulatory genes, such as those encoding CTLA-4 and PD-1, in that
subtype. Our observation of poor response of high metabolic tumors to immunotherapy
is further supported by clinical analysis of 18F-FDG PET/CT imaging data to assess the
response of patients with metastatic melanoma to immunotherapy [43]. A meta-analysis
of 24 published reports showed that tumors’ high metabolic activity, reflected in baseline
metabolic tumor volume, maximum standardized uptake value, and total lesion glycolysis,
was significantly associated with poorer OS of patients after immunotherapy. More inter-
estingly, we found that the estimated Treg cell fraction in the tumor microenvironment was
highest in high GM subtype, indicating that poor response of high metabolic HCC tumors to
immunotherapy might result from the activation of Tregs that suppress anti-cancer immune
activity [44]. High glycolytic activity of HCC tumors eventually leads to accumulation of
the glycolysis by-product lactic acid in the tumor microenvironment [45]. A recent study
showed that Tregs can effectively use lactic acid as metabolic fuel for proliferation [46],
suggesting that lactic acid might account for the aggregation of Tregs in HCC tumors’ high
metabolic microenvironment.

The high GM subtype is also characterized by strong stem cell features, as reflected
in their high stemness scores and high expression of HSC markers such as AFP, KRT19,
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EPCAM, and SALL4. While the gene expression patterns of high GM HCC tumors were
substantially similar to fetal HSCs, it is currently unknown whether this high similarity
reflects the origin of cancer cells or the high fraction of cancer stem cells in the tumor mass.
Invasion is a common event in poor-prognosis tumors with stem cell features [47]. Since
zinc-finger transcription factor SALL4 is a stem cell factor triggering invasion and migration
of cancer cells [48], it might contribute to a metastatic phenotype in high metabolic HCC
tumors. Interestingly, recent studies showed that SALL4 is a neosubstrate of the molecular
glue thalidomide and its derivatives that degrade its target proteins via the E3 ligase
complex system [49,50], suggesting that thalidomide and its derivatives could be used for
treatment of high metabolic HCC tumors in the future.

The current study was a genomic analysis with limited exploration of the biology
of high metabolic activity in association with poor prognosis and poor response to im-
munotherapy. However, the GM signature had a solid association with clinical outcome
in HCC patients. For validation of high metabolic activity’s association with resistance to
immunotherapy in patients with HCC, more in vitro and in vivo study will be necessary.
Nevertheless, the newly identified oncogenic pathways associated with metabolic activity
will offer opportunities to identify novel therapeutic targets for HCC. Moreover, the GM
signature is well conserved in PDX models, offering a tool for selecting the best preclinical
models for future study.

5. Conclusions

In summary, our finding suggested that high glycolytic activity in HCC is significantly
associated with poor survival of patients. In depth analysis of metabolism associated
genomic traits further suggested that high glycolytic activity in HCC may trigger activation
of cancer stem cells and evasion of cancer cells from immune surveillance.
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