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Prediction model for myocardial 
injury after non‑cardiac surgery 
using machine learning
Ah Ran Oh 1,2,9, Jungchan Park 1,9, Seo Jeong Shin 3, Byungjin Choi 4, Jong‑Hwan Lee 1, 
Seung‑Hwa Lee 5,6,8,9* & Kwangmo Yang 4,7,9*

Myocardial injury after non‑cardiac surgery (MINS) is strongly associated with postoperative 
outcomes. We developed a prediction model for MINS and have provided it online. Between January 
2010 and June 2019, a total of 6811 patients underwent non‑cardiac surgery with normal preoperative 
level of cardiac troponin (cTn). We used machine learning techniques with an extreme gradient 
boosting algorithm to evaluate the effects of variables on MINS development. We generated two 
prediction models based on the top 12 and 6 variables. MINS was observed in 1499 (22.0%) patients. 
The top 12 variables in descending order according to the effects on MINS are preoperative cTn level, 
intraoperative inotropic drug infusion, operation duration, emergency operation, operation type, age, 
high‑risk surgery, body mass index, chronic kidney disease, coronary artery disease, intraoperative 
red blood cell transfusion, and current alcoholic use. The prediction models are available at https:// 
sjshin. shiny apps. io/ mins_ occur_ predi ction/. The estimated thresholds were 0.47 in 12‑variable models 
and 0.53 in 6‑variable models. The areas under the receiver operating characteristic curves are 0.78 
(95% confidence interval [CI] 0.77–0.78) and 0.77 (95% CI 0.77–0.78), respectively, with an accuracy 
of 0.97 for both models. Using machine learning techniques, we demonstrated prediction models for 
MINS. These models require further verification in other populations.

Myocardial injury after non-cardiac surgery (MINS) is reported to occur in approximately 20% of major 
 surgeries1. It is strongly associated with postoperative outcomes, mostly without presenting ischemic  symptoms2. 
Therefore, numerous guidelines recommend monitoring perioperative cardiac troponin (cTn)  level3–6. However, 
the details of these guidelines are inconsistent, especially in patients needing cTn  monitoring2–6. Initially, general 
cardiac risk stratification models in surgical settings were adopted for MINS predictions, and the risk factors in 
these models have been individually validated for  MINS2,7. Although previous studies reported the risk factors 
of  MINS8, there is no established prediction model, particularly for monitoring of postoperative cTn.

MINS prediction is not a simple task because the mechanism is highly complex, with patient characteristics 
and operative variables affecting each  other9. Machine learning has allowed substantial possibilities in medi-
cine, especially in evaluating  predictors10. The most remarkable advantage of machine learning techniques over 
traditional statistical models is that they can handle an enormous number of predictors by combining them in 
nonlinear and highly interactive ways, and this seems suitable for predicting  MINS11. Therefore, the present study 
aimed to evaluate MINS predictors and develop prediction models based on machine learning techniques. Using 
real-world data of consecutive adult patients who underwent non-cardiac surgery with preoperatively normal cTn 
level, we evaluated the effects of all available variables on postoperative cTn. Based on this result, we eliminated 
variables to a number suitable for daily clinical practice and generated two prediction models. Our models are 
available online for verification and for clinicians to adopt them into daily practice.
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Results
Baseline characteristics and mortality. From the total of 43,019 patients, we excluded (1) 1154 (2.7%) 
patients younger than 18 years, (2) 6596 (15.3%) patients without postoperative cTn measurement, (3) 27,328 
(63.5%) patients without preoperative cTn measurement, (4) 1117 (2.6%) patients with elevated preoperative 
cTn level, and (5) 13 (0.03%) patients who had a definite non-ischemic cause of postoperative cTn elevation such 
as pulmonary embolism, sepsis, cardioversion, or atrial fibrillation. Overall, preoperative cTn level was available 
in 15,195 (35.3%) patients, and 35,882(83.4%) patients had available postoperative cTn levels. The flowchart of 
the study patients is presented in Fig. 1. In a total of 6811 study patients, MINS was developed in 1499 (22.0%). 
The baseline characteristics of patients with and without MINS are presented in Table 1. The median value of 
preoperative cTn level was 6 ng/L (IQR 6–11). The median values of postoperative cTn were 7 ng/L (IQR 6–15) 
in patients without MINS and 11 ng/L (IQR 6–34) in those with MINS. The median period to peak cTn level was 
0.9 days after surgery, and MINS was detected within 48 h after surgery in 77.9% (1168/1499) of MINS patients. 
The patients with MINS were older, more frequently male, and had higher preoperative cTn level and lower body 
mass index. They also exhibited higher incidences of most underlying diseases such as heart failure, valvular 
heart disease, peripheral arterial disease, and chronic pulmonary disease. In contrast, the incidence of active 
cancer was lower in the MINS group. For preoperative medications, the MINS group was more frequently pre-
scribed beta blocker, calcium channel blocker, angiotensin-converting enzyme inhibitor, antiplatelet agents, and 
diabetic medications. Operative variables also showed a large difference (Table 1). The patients with MINS more 
frequently underwent high-risk surgery and emergency operation with a longer duration. Postoperative mortal-
ity was higher in patients with MINS (Table 2). The median follow-up period was 2.54 (IQR 1.75–3.42) years.

A predictive model for MINS. The SHAP summary plot for the results of the XGB model is shown in 
Fig. 2. The input variables, as listed on the y-axis, are ranked from most important (top) to least important (bot-
tom) according to their contributions to the development of MINS. The x-axis presents the influence of vari-
ables on the prediction of MINS. A positive SHAP value indicates that the feature value increases the likelihood 
of MINS, and a negative SHAP value is associated with lower risk. The top 12 variables were preoperative cTn 
level (0.369), intraoperative inotropic drug infusion (0.268), operation duration (0.256), emergency operation 
(0.243), operation type (0.190), age (0.128), high-risk surgery (0.087), body mass index (0.074), chronic kidney 
disease (0.042), coronary artery disease (0.038), intraoperative red blood cell transfusion (0.035), and current 
alcoholic use (0.033). The prediction model using all 52 variables showed an AUROC of 0.78 (95% CI 0.77–0.79) 
and accuracy, sensitivity, and specificity of 0.81, 0.37, and 0.93, respectively (Fig. 3).

For practical use in daily practice, we eliminated variables according to SHAP value. We developed two 
prediction models by retaining the top 12 variables with SHAP value > 0.03 and the top 6 variables with SHAP 
value > 0.1. These models are available at https:// sjshin. shiny apps. io/ mins_ occur_ predi ction/ (Supplementary 
Fig. S1). When values for the variables of the target patient were entered, the probability for MINS is shown as 
an output. The estimated thresholds were 0.47 for the 12-variable model and 0.53 for the 6-variable model. The 
receiver operating characteristic curves of the models are shown in Fig. 3. The prediction models exhibited an 
AUROC of 0.78 (95% CI 0.77–0.78) for the 12-variable model and 0.77 (95% CI 0.77–0.78) for the 6-variable 
model. Accuracy, sensitivity, and specificity were 0.79, 0.29, and 0.93 in the 12-variable model and 0.79, 0.21, 
and 0.96 in the 6-variable model, respectively (Fig. 3).

Figure 1.  Study patient flowchart.

https://sjshin.shinyapps.io/mins_occur_prediction/
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No MINS
(N = 5312)

MINS
(N = 1499) p value

Preoperative cardiac troponin, ng/L 9.0 (± 6.2) 13.2 (± 9.6)  < 0.001

Male 3174 (59.8) 943 (62.9) 0.03

Age 64.0 (± 12.9) 65.1 (± 14.2) 0.004

Body mass index 24.0 (± 3.8) 23.5 (± 3.9)  < 0.001

Diabetes 2956 (55.6) 889 (59.3) 0.01

Hypertension 3426 (64.5) 1064 (71.0)  < 0.001

Chronic kidney disease 321 (6.0) 205 (13.7)  < 0.001

Dialysis 97 (1.8) 76 (5.1)  < 0.001

Current smoking 692 (13.0) 187 (12.5) 0.6

Current alcohol 1128 (21.2) 237 (15.8)  < 0.001

Coronary artery disease 1016 (19.1) 396 (26.4)  < 0.001

Previous disease

Old myocardial infarction 321 (6.0) 162 (10.8)  < 0.001

History of coronary revascularization 507 (9.5) 218 (14.5)  < 0.001

Percutaneous coronary intervention 444 (8.4) 178 (11.9)  < 0.001

Coronary artery bypass graft 82 (1.5) 54 (3.6)  < 0.001

Heart failure 130 (2.4) 45 (3.0) 0.27

Stroke 504 (9.5) 178 (11.9) 0.01

Atrial fibrillation 362 (6.8) 128 (8.5) 0.03

Arrhythmia 450 (8.5) 157 (10.5) 0.02

Valvular heart disease 94 (1.8) 33 (2.2) 0.33

Aortic disease 142 (2.7) 101 (6.7)  < 0.001

Peripheral arterial disease 202 (3.8) 64 (4.3) 0.45

Chronic pulmonary disease 269 (5.1) 92 (6.1) 0.12

Active cancer 1732 (32.6) 377 (25.2)  < 0.001

Preoperative treatment

Intensive care unit care 371 (7.0) 225 (15.0)  < 0.001

Continuous renal replacement therapy 10 (0.2) 18 (1.2)  < 0.001

Ventilator care 49 (0.9) 38 (2.5)  < 0.001

Preoperative medication

Beta blocker 1422 (26.8) 535 (35.7)  < 0.001

Calcium channel blocker 1857 (35.0) 555 (37.0)  < 0.001

Renin angiotensin aldosterone system inhibitor 2010 (37.8) 563 (37.6) 0.87

Angiotensin-converting enzyme inhibitor 445 (8.4) 171 (11.4)  < 0.001

Angiotensin receptor blocker 1792 (33.7) 488 (32.6) 0.41

Diltiazem 426 (8.0) 128 (8.5) 0.55

Statin 1874 (35.3) 516 (34.4) 0.56

Antiplatelet 2097 (39.5) 650 (43.4) 0.01

Aspirin 1817 (34.2) 522 (34.8) 0.68

Clopidogrel 503 (9.5) 158 (10.5) 0.24

Ticagrelor 277 (5.2) 131 (8.7)  < 0.001

Direct oral anticoagulant 105 (2.0) 27 (1.8) 0.74

Warfarin 318 (6.0) 122 (8.1) 0.003

Diabetic medication 2766 (52.1) 842 (56.2) 0.01

Metformin 849 (16.0) 224 (14.9) 0.35

Insulin 2549 (48.0) 800 (53.4)  < 0.001

Operative variables

General anesthesia 4836 (91.0) 1334 (89.0) 0.02

ESC/ESA surgical high risk 1135 (21.4) 574 (38.3)  < 0.001

Emergency operation 1217 (22.9) 549 (36.6)  < 0.001

Operation duration, hours 3.1 (± 2.2) 4.0 (± 3.1)  < 0.001

Operation types  < 0.001

Vascular 934 (17.6) 285 (19.0)

Orthopedic 563 (10.6) 191 (12.7)

Neuro 1692 (31.9) 248 (16.5)

Breast or endo 110 (2.1) 27 (1.8)

Continued
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Discussion
In this study, we used machine learning techniques with an XGB algorithm to identify variables associated with 
MINS and created prediction models. The incidence of MINS, defined by cTn elevation above the upper reference 
limit, in patients with preoperatively normal cTn level was 22.0%. The top 12 variables retained in our prediction 
models were preoperative cTn level, intraoperative inotropic drug infusion, operation duration, emergency opera-
tion, operation type, age, high-risk surgery, body mass index, chronic kidney disease, coronary artery disease, 
intraoperative red blood cell transfusion, and current alcoholic use. We created two models according to number 
of variables, and the prediction models achieved an AUROC of 0.78 (95% CI 0.77–0.78) for the 12-variable model 
and 0.77 (95% CI 0.77–0.78) for the 6-variable model.

Current guidelines recommend selective monitoring of postoperative cTn, but there are still difficulties in 
predicting the probability of  MINS2–6. In this study, we included patients who had available pre- and postopera-
tive cTn level to exclude patients with chronic cTn elevation. Two discrete mechanisms are involved in devel-
opment of MINS. Although oxygen supply–demand mismatch outnumbers thrombosis, risk factors for both 
mechanisms should be considered in MINS  development12. In addition, non-ischemic causes that contribute 
to cTn elevation are frequently found in the perioperative period, complicating prediction of  MINS13. Machine 
learning might be a suitable tool to interpret interactive data from electronic hospital records and transform 
them into  knowledge10. In this study, we curated real-world data directly from the electronic hospital records 
of consecutive patients undergoing non-cardiac surgery with preoperatively normal cTn level and investigated 
the effects of variables on postoperative cTn elevation. We applied machine learning techniques with the XGB 
algorithm, known as the best performing  algorithm14. In our previous study, we compared performances of 
various machine learning algorithms for prediction of patients with mortality after MINS, and XGB was shown 
to be the best performing  algorithm15.

One of the issues in interpreting results of the machine learning techniques is that causal inference of obser-
vational data is not  resolved16. In other words, predictors from machine learning techniques are not necessarily 
causes of an  event16. However, variables that were selected for our predictive model exhibited clinical relevance. 
According to our result, preoperative cTn showed the largest effect on MINS, despite our inclusion of only 
patients with preoperative cTn level within normal range. In the perioperative period, cTn level even within 
the normal range was reported to be associated with  outcome17. The current guidelines do not provide a clear 
recommendation for preoperative cTn  measurement2–6, and only the guideline from Canadian society refers to 
the need for baseline cTn  level3. Our model supprots that preoperative cTn level may need to be measured in 
high-risk patients. Numerous variables in our model reflected myocardial burden from surgical procedures such 
as intraoperative inotropic drug use, emergency operation or duration of the procedure. The need for intraop-
erative inotropic drug infusion and red blood cell transfusion also might be related to hypotension or anemia, 

Table 1.  Baseline characteristics of patients according to myocardial injury after non-cardiac surgery (MINS). 
Data are presented as n (%), mean (± standard deviation). ESC, European Society of Cardiology; ESA, 
European Society of Anaesthesiology.

No MINS
(N = 5312)

MINS
(N = 1499) p value

Plastic or otolaryngeal or eye 151 (2.8) 26 (1.7)

Transplantation 333 (6.3) 316 (21.1)

Gynecology or urology 168 (3.2) 52 (3.5)

Gastrointestinal 1092 (20.6) 234 (15.6)

Noncardiac thoracic 256 (4.8) 114 (7.6)

Others 13 (0.2) 6 (0.4)

Intraoperative treatment

Red blood cell transfusion 502 (9.5) 357 (23.8)  < 0.001

Inotropic drug infusion 1897 (35.7) 812 (54.2)  < 0.001

Table 2.  Mortalities according to myocardial injury after non-cardiac surgery (MINS). Data are presented as 
n (%).

No MINS (N = 5312) MINS (N = 1499) p value

Overall mortality 969 (18.2) 449 (30.0)  < 0.001

Cardiovascular mortality 394 (7.4) 156 (10.4)  < 0.001

One-year mortality 489 (9.2) 309 (20.6)  < 0.001

Cardiovascular mortality 147 (2.8) 90 (6.0)  < 0.001

30-day mortality 73 (1.4) 126 (8.4)  < 0.001

Cardiovascular mortality 15 (0.3) 29 (1.9)  < 0.001
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Figure 2.  SHapley additive exPlanations (SHAP) summary plot representing the results of the extreme gradient 
boosting (XGB) algorithm of machine learning techniques.

Figure 3.  The receiver operating characteristic curves of the (A) 52-variable model, (B) 12-variable model, and 
(C) 6-variable model.
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which is associated with a higher risk of  MINS18–20. In addition, transfusions per se could act as an additional 
 burden21,22. On the other hand, this may also be due to pre-existing anemia, and this needs further investigation. 
Regarding the types of surgery, there was no case where intraoperative cardiopulmonary bypass was required. A 
higher incidence of MINS was reported in thoracic surgery where the pericardium was manipulated based on 
the extent of lung  resection23, and a similar result was observed in our model.

Our models also retained known risk factors from patient characteristics such as age and previous history of 
cardiovascular disease. Postoperative monitoring of cTn was recommended for patients over 45 years of age as 
an expert  opinion24, and the cost to monitor MINS was appealing per health gain for patients over 65 years of 
 age25. The association with body mass index was also reported. Although obese individuals are known to have 
higher risks of cardiovascular disease and death, the “obesity paradox” of lower mortality in mildly obese patients 
has been suggested for MINS and perioperative myocardial  injury26,27.

The strength of our models is the feasibility to be adopted into daily clinical practice after further validation, 
because the variables are clinically convincing and readily available from routine medical records. For user 
convenience, we provided multiple models based on less number of retained variables and showed similar pre-
dictive values. We also provided the estimated cut-off values of each model according to our dataset. However, 
whether the model with more variables could offer superior predictive value and the optimal cut-off value that 
can be universally applied needs further validation. In addition, the low sensitivity of the model limits the use as 
a screening test in a clinical practice. It seems more reasonable to consider this model when ruling out low-risk 
patients rather than to select high-risk patients, considering the high specificity and low sensitivity. This could 
help sparing a limited medical resources from patients who were ruled out from MINS. In this model, we only 
included preoperative variables, so it could be used from the preoperative period when applied into the clinical 
practice. Some of our variables were even modifiable, but it is unclear whether modification of these variables 
could reduce the incidence of MINS. An effective method to prevent MINS has yet to be  established2,7, and spar-
ing a limited resource from low-risk patients based on our model could be a good start for an early identification 
and treatment of MINS patients. However, in this study, we evaluated various preoperative medications, but 
none exhibited a meaningful effect on MINS occurrence. This is in line with previous findings where the use 
of beta blockers decreased postoperative myocardial infarction but increased the incidence of  stroke28. Other 
cardiovascular drugs including aspirin, nitrous oxide, and clonidine in the preoperative period exhibited non-
significant results for MINS  prevention7.

Our study has several limitations that must be considered. First, this study used single-center retrospective 
data, and there is a residual risk of confounding effects of unmeasured factors. Our analysis lacked detailed 
cardiac evaluations such as echocardiography since not all patients had such data. Preoperative results of other 
blood laboratory tests and intraoperative variables that could not be retained owing to the lack of data avail-
ability may need to be taken into account in future studies. To exclude patients with chronic cTn elevation, we 
enrolled those with available preoperative cTn level, and numerous patients were excluded due to the absence of 
preoperative cTn level. Moreover, perioperative cTn was selectively measured, so the incidence of MINS might 
have been overestimated, and there may be patients who were supposed to be evaluated with cTn but were not. 
Furthermore, postoperative cTn was not monitored systemically. There may be patients who were lost during 
cTn monitoring, and a graded association could not be evaluated. In addition, our study was conducted among 
cTn I, and the results might have differed according to the cTn assay. So, for our model to become generalizable, 
it needs further internal and external validations, especially in patients where cTn was routinely measured. In 
addition, the definition of non-ischemic cause of cTn elevation was strictly applied owing to the retrospective 
nature of the study, and this may have caused selection bias. In further study, different models may need to be 
developed according to types of surgery and emergency procedures. Additionally, our study population showed 
relatively high mortality, because they were high-risk patients in whom cTn was measured in both pre- and 
postoperative periods. This may have also caused selection bias. Lastly, perioperative management was not 
well-controlled. Although we followed the institutional protocol based on current guidelines, this might have 
been updated during the study period. Despite these limitations, this is the first study to demonstrate predictive 
models of MINS based on risk factors identified by machine learning techniques.

Conclusion
Based on the results of machine learning techniques, we demonstrated prediction models of MINS, which we 
made available online. These models require further verification among other populations.

Methods
Ethics. The Institutional Review Board of Samsung Medical Center approved this study and the requirement 
for informed consent was waived because this study used retrospectively collected de-identified data (Samsung 
Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea, 2021-06-078). Our study was conducted following the 
principles outlined in the Declaration of Helsinki, and the results were reported following the “Strengthening the 
Reporting of Observational Studies in Epidemiology” guidelines.

Study population and data curation. WE created the Samsung Medical Center-Troponin In NonCar-
diac Operation (SMC-TINCO) registry (KCT0004244), which is a single-center de-identified cohort of 43,019 
consecutive patients who underwent non-cardiac surgery with at least one measurement of cTn value during 
30 days before or after the surgery in Samsung Medical Center, Seoul, Korea, between January 2010 and June 
2019. Raw data for the registry were extracted from our institutional electronic archive system which contains 
electronic hospital records of over 4 million patients with more than 900 million laboratory findings and 200 mil-
lion prescriptions. We used “Clinical Data Warehouse Darwin-C,” an electronic system that allows investigators 
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to search and retrieve de-identified medical records. To assess the mortality data outside our institution, this 
system is consistently renewed and verified with the National Population Registry of the Korea National Statisti-
cal Office using a unique personal identification number. The blinded investigators collected related preopera-
tive variables such as demographic data, underlying disease, and blood laboratory tests from the preoperative 
evaluation sheet based on medical information extracted from electronic hospital records where the patients 
self-reported their comorbidities We also adapted International Classification of Diseases-10 codes to curate 
missed underlying disease and calculate the Charlson comorbidity index based on the preoperative  diagnosis29.

Postoperative events were investigated based on the extracted in-hospital progress notes, nursing charts, 
discharge notes, results of examinations, and drug prescriptions. All patients in this registry completed 30 days 
of follow-up to detect MINS and mortality.

From the entire registry, we excluded the following patients: (1) patients younger than 18 years, (2) patients 
without preoperative or postoperative cTn data, (3) patients with elevated preoperative cTn level, and (4) patients 
who had a definite non-ischemic cause of cTn elevation such as pulmonary embolism, sepsis, cardioversion, or 
atrial fibrillation. After finalizing 6811 patients for this study, they were divided into two groups according to 
MINS occurrence.

Study endpoint and definitions. The primary endpoint was MINS, and we aimed to demonstrate a pre-
diction model for MINS using machine learning techniques. We quantified and compared the effect of each 
variable on the predictive performance of the models. After conducting feature elimination, we developed a 
calculator for MINS prediction and provided it online.

Following the current diagnostic criteria, MINS was defined as a peak cTn level above the 99th percentile 
of the upper reference limit within 30 days after  surgery2,7. Elevation of cTn with a definite non-ischemic cause 
such as pulmonary embolism, sepsis, cardioversion, chronic elevation, or atrial fibrillation was not regarded as 
MINS. Active cancer was defined as a histologic confirmation of malignancy within six months before  surgery30. 
High-risk surgical procedures were selected following the European Society of Cardiology (ESC)/European 
Society of Anaesthesiology (ESA) guidelines on non-cardiac  surgery5.

Perioperative cTn measurement and management. According to our institutional protocol, periop-
erative cTn was measured in patients undergoing moderate to high-risk surgery or in those undergoing low-risk 
surgery with at least one major cardiovascular risk factor such as a history of ischemic heart disease, heart failure, 
stroke including transient ischemic attack, diabetes mellitus on insulin therapy, or chronic kidney disease based 
on current  guidelines5. In patients with minor risk factors, attending clinicians performed cTn measurement at 
their own discretion based on the patient’s recent symptoms suspected of ischemic heart disease or advanced 
age. An automated analyzer (Advia Centaur XP; Siemens Healthcare Diagnostics, Erlangen, Germany) with a 
highly sensitive cTn I immunoassay was used. According to the manufacturer, the lowest limit of detection was 
6 ng/L, and the 99th percentile URL was 40 ng/L31. Patients with elevated cTn were referred to a cardiologist for 
consultation and were managed appropriately by an attending clinician.

Development of prediction models. We used a machine learning technique with an extreme gradient 
boosting (XGB) algorithm provided by the xgboost package of R. It is a boosting ensemble prediction model 
based on decision trees implementing machine learning algorithms under the Gradient Boosting  framework14,32. 
Optimization of hyper-parameters was based on grid searches using the area under the receiver operating char-
acteristic (AUROC), and five-fold cross-validation was implemented during model development. We conducted 
a stratified random split of the data with a constant ratio of patients with MINS occurrence to divide the data into 
training and testing sets. Of the data, 80% was used for training the machine learning model, and the remaining 
20% was for the testing model.

For model interpretation, feature importance on MINS was reported based on SHapley Additive exPlanations 
(SHAP) values and presented in the SHAP summary plot. The SHAP value explains the intensity and direction 
of impact on the outcome of interest and is determined by comparing the prediction of the model with and 
without the  feature32. In the SHAP summary plot, features are arranged in descending order by the effect on the 
outcome of interest, and one dot on each variable line represents each patient. The x-axis depicts the direction 
and magnitude of the impact. Features with positive SHAP values suggest directly proportional variables to the 
outcome of interest, and those with negative SHAP values suggest an inverse correlation.

For easy access to the prediction model in clinical practice, we eliminated the features using Recursive Feature 
Elimination with cross validation. In this method, we eliminated features starting from those with less importance 
while observing the performance of the models. We developed prediction models for MINS with less number of 
variables using leveraging R Shiny. Users can develop the application freely via public link. We demonstrated two 
prediction models using the features with the top 12 and 6 SHAP values. An optimal threshold for probability 
was estimated using Youden’s J statistic, and AUROC, accuracy, sensitivity, and specificity were also provided.

Statistical analysis. We compared the differences between patients who developed MINS and those who 
did not. Continuous features were expressed as mean ± standard deviation or median with interquartile range 
(IQR). The Student’s t-test was used for comparisons between parametric data, and nonparametric data were 
analyzed with the Mann–Whitney U test. Categorical variables were presented as a number with percentage, and 
chi-square or Fisher’s exact tests were used to test for differences between groups as appropriate. All statistical 
analysis was performed with R 4.1.2 (Vienna, Austria; http:// www.R- proje ct. org/).

http://www.R-project.org/
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