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Abstract
Gamma-butyrobetaine dioxygenase (BBOX1) is a catalyst for the conversion of gamma-butyrobetaine to L-carnitine,
which is detected in normal renal tubules. The purpose of this study was to analyze the prognosis, immune response,
and genetic alterations associated with low BBOX1 expression in patients with clear cell renal cell carcinoma (RCC).
We analyzed the relative influence of BBOX1 on survival using machine learning and investigated drugs that can
inhibit renal cancer cells with low BBOX1 expression. We analyzed clinicopathologic factors, survival rates, immune
profiles, and gene sets according to BBOX1 expression in a total of 857 patients with kidney cancer from the Hanyang
University Hospital cohort (247 cases) and The Cancer Genome Atlas (610 cases). We employed immunohistochemical
staining, gene set enrichment analysis, in silico cytometry, pathway network analyses, in vitro drug screening, and gra-
dient boosting machines. BBOX1 expression in RCC was decreased compared with that in normal tissues. Low BBOX1
expression was associated with poor prognosis, decreased CD8+ T cells, and increased neutrophils. In gene set enrich-
ment analyses, low BBOX1 expression was related to gene sets with oncogenic activity and a weak immune response.
In pathway network analysis, BBOX1 was linked to regulation of various T cells and programmed death-ligand 1. In
vitro drug screening showed that midostaurin, BAY-61-3606, GSK690693, and linifanib inhibited the growth of RCC
cells with low BBOX1 expression. Low BBOX1 expression in patients with RCC is related to short survival time and
reduced CD8+ T cells; midostaurin, among other drugs, may have enhanced therapeutic effects in this context.
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Introduction

In 2019, there were 73,820 cases of renal cell carcinoma
(RCC) diagnosed in the United States, with an expected

death rate of 14,770. RCC accounts for 80–90% of kid-
ney cancers, with systemic malignancy in 2–3% of
cases [1]. RCC occurs in 4% of adults and, in 2018, it
was the sixth most common cancer-related cause of
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death worldwide [1,2]. RCC is classified into several
different histological subtypes, each with different bio-
logical characteristics: clear cell (ccRCC, 70–80% of all
RCCs), papillary (10–15% of all RCCs), chromophobe
(3–5% of all RCCs), and others (Xp11 translocation car-
cinoma, collecting duct carcinoma) [3]. Among these,
ccRCC is the most common subtype of renal cancer and
has high metastasis and mortality, as well as poor sensi-
tivity to chemotherapy and radiation therapy. Surgical
treatment after early detection of local RCC is the most
effective therapy [3].
At the time of diagnosis, 15% of patients with RCC

are diagnosed with advanced or metastatic disease [4].
Over the past decade, biomarker studies have been
performed using blood rather than in tissue obtained
from invasive biopsy [5]. Some of the tumor markers
identified to date are as follows: survivin (BIRC5),
X-linked inhibitor of apoptosis (XIAP), myeloid cell
leukemia-1 (MCL-1), hypoxia inducible factor/hypoxia-
induced factor (HIF1α, HIF2α), nuclear factor erythroid
2-related factor 2 (NRF2), mouse double minute
(MDM2, MDM4), p53, Kirsten rat sarcoma viral onco-
gene homolog (KRAS), and protein kinase B (AKT)
[6]. Recent studies demonstrate that inhibitors of vascu-
lar endothelial growth factor (VEGF) and the mamma-
lian target of rapamycin (mTOR) pathway improve the
objective response rate and lead to favorable survival in
metastatic renal cancer [7,8]. Other studies have shown
the efficacy of tyrosine kinase inhibitors (TKIs) and
immune checkpoint inhibitors as therapeutic agents, but
with no significant effect in patients with advanced and
metastatic RCC [9,10].
Gamma-butyrobetaine dioxygenase (BBOX1) acts as

a catalyst for the conversion of gamma-butyrobetaine to
L-carnitine in the final step of the L-carnitine biosynthe-
sis pathway [11]. In humans, BBOX1 is found in nor-
mal kidney (high), normal liver (moderate), and normal
brain (very low). Additionally, large-scale microarray
data analysis showed that BBOX1 may be related to
cancer, such as of the breast, cervix, kidney, and
skin [12,13].
BBOX1 is an important gene for triple-negative breast

cancer (TNBC) tumorigenesis. BBOX1 protects the cal-
cium channel inositol-1,4,5-trisphosphate receptor type
3 (IP3R3). The oncogenic role of IP3R3 is well
described in multiple cancers and relies on its role in
calcium release from the endoplasmic reticulum
(ER) [14]. Cancer cells rewire calcium signaling to meet
their growth needs [15]. The calcium signal, on the one
hand, maintains mitochondrial activity for energy pro-
duction; on the other hand, it supports mammalian target
of rapamycin complex 1 (mTORC1)-mediated glycoly-
sis and other biosynthetic processes. Both mechanisms

contribute to tumorigenesis and cell survival [16].
Another study showed that genetic depletion or pharma-
cologic inhibition of BBOX1 restricts TNBC tumor
growth in vitro and in vivo [16].
The present study aimed to evaluate clinicopathologi-

cal factors and survival rates according to BBOX1
expression in patients with RCC in our cohort and The
Cancer Genome Atlas (TCGA) database [17]. In evalu-
ating BBOX1 expression, our cohort used immunohis-
tochemical analysis of protein expression, and TCGA
data used RNA levels. We investigated tumor-
infiltrating immune cells and gene sets related to
BBOX1 with gene set enrichment analysis (GSEA) and
pathway network analysis. Through in vitro drug
screening, we analyzed drug candidates to which RCC
with low BBOX1 expression is sensitive. Moreover, we
analyzed the effect of BBOX1 on the survival of
patients with RCC using gradient boosting machine
(GBM) learning [18].

Materials and methods

Patient selection
This study included 247 RCC patients who underwent
surgery at Hanyang University Hospital (HYH) from
June 2006 to March 2017. Of 239 cases with follow-up
data or paraffin blocks, 203 with ccRCC were selected.
This study was performed according to the criteria of
The Reporting Recommendations for Tumor Marker
Prognostic Studies [19]. The inclusion criteria were as
follows: (1) patients with microscopic features and a
medical history of primary ccRCC confirmed by a
pathologist and (2) patients not receiving concurrent
prior neoadjuvant chemoradiotherapy. Patients with
missing paraffin blocks of tumor samples or incomplete
clinical outcomes were excluded. T and N stages, age,
sex, histologic features, and death/recurrence/metastasis
were investigated.

Tissue microarray construction and
immunohistochemistry
Tissue microarray (TMA) blocks were assembled
using a tissue array instrument (AccuMax Array; ISU
ABXIS Co., Ltd., Seoul, Korea). We used 3-mm-
diameter tissue cores (tumor components in a tissue
core >70%) from each donor block. Four-micrometer
sections were cut from the TMA blocks using routine
techniques. Immunostaining for BBOX1 (1:100, Santa
Cruz Biotechnology, Dallas, TX, USA) was performed
using Bond Polymer Refine Detection System
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(Leica Biosystems Newcastle Ltd., Newcastle, UK)
according to the manufacturer’s instructions.
BBOX1 cytoplasmic staining intensity in tumor

cells was scored on a scale of 0–3 (0 = negative;
1 = weak; 2 = moderate; 3 = strong). The percentage
of BBOX1-positive tumor cells was also scored
as 1 of 4 categories: 1 (0–25%), 2 (26–50%),
3 (51–75%), or 4 (76–100%). To determine the opti-
mal cutoff values of BBOX1 at HYH, receiver operat-
ing characteristic (ROC) curves plotting sensitivity
versus 1 � specificity were used. The level of BBOX1
staining was analyzed as an immunoreactive score
(IRS), which was calculated by multiplying the scores
for staining intensity and proportion of positive cells.
BBOX1 expression was determined to be either low
(IRS < 1) or high (IRS ≥ 1) [20] (Figure 1A). The cut-
off value calculated by the ROC curve was used to
evaluate the relationship between cancer-specific death
events and BBOX1 expression. ROC analysis
exhibited good discriminatory power for discerning
death events in relation to BBOX1 expression in
tumor cells (area under the ROC = 0.667).

Gene sets, in silico cytometry, and network analysis
based on TCGA database
We obtained 533 ccRCC cases with RNA sequence
data from the TCGA database [17]. On the basis of
the cancer-specific death events in the database,
BBOX1 values were divided into low and high using
the most sensitive and specific values in ROC curve
analysis (cutoff value: 2,538.465). BBOX1 expression
was determined as low or high based on the cutoff
value.
We analyzed significant gene sets using GSEA soft-

ware (version 4.2.2) from the Broad Institute at MIT
[21]. The 11,824 gene sets (hallmark [H], 50; curated
[C2], 6,366; oncogenic signature [C6], 189; immuno-
logic signature [C7], 5,219) were used to identify gene
sets associated with low BBOX1 expression. For this
analysis, 1,000 permutations were used to calculate
p values, and the permutation parameters were set to a
phenotype of p < 0.05 and a false discovery rate of
<0.35. GSEA results can determine whether there is a
relationship between gene sets of H, C2, C6, and C7
and low BBOX1 expression.
We applied CIBERSORT, known as in silico

cytometry, to analyze the proportions of 22 subsets of
immune cells using 547 genes [22]. For grouping of
networks based on functionally enriched Gene Ontol-
ogy (GO) terms and pathways, pathway network ana-
lyses were visualized using Cytoscape software
(version 3.9.1). To interpret the molecular pathway

relevance for BBOX1, we performed functional
enrichment analysis using ClueGO software (version
2.5.8), an application for GO analysis [23,24].

Machine learning algorithm for validation
We integrated BBOX1 protein expression with clinico-
pathological parameters (T stage, N stage, sex, age,
histological grade known as The International Society
of Urological Pathology [ISUP] grading system,
lymphovascular invasion [LVI] or renal vein tumor
thrombus [RVT], perinephric fat invasion [PNI] or
renal sinus invasion [RSI], sarcomatoid change, tumor
necrosis) into composite prognostic models for sur-
vival prediction by applying machine learning
(ML) algorithms for 203 cases from the HYH cohort
using IRS (staining intensity � percentage of positive
cells) for BBOX1 expression (randomization: training
set, 70%; validation set, 30%) (Figures 1 and 2)
[25,26]. A learning algorithm was independently
applied to select and combine multiple covariates from
GBM based on multivariate Bernoulli models. The
hyperparameters of the ML algorithms, such as the
learning rate in GBM, were optimized for each combi-
nation of selected covariates and the learning algo-
rithm by grid search cross-validation through a
predefined range. The final optimal models were
trained based on the selected covariates and optimized
hyperparameters [20]. A ROC curve was used to
explore the performance of the GBM method.

Data extraction from the GDSC database
We analyzed the relationship between anticancer drug
sensitivity and BBOX1 protein expression based on the
Genomics of Drug Sensitivity in Cancer (GDSC)
dataset [27]. Thirty ccRCC cell lines were divided into
high and low groups based on the median value of
BBOX1 expression. In kidney cancer cell lines with low
BBOX1 expression (cell lines: TK10, LB1047-RCC,
VMRC-RCZ, RCC-FG2, KMRC-1, NCC021, NCC010,
U031, CAKI-1, OS-RC-2, KMRC-20, LB996-RCC,
HA7-RCC, G-401, RCC-AB, SW156, RCC-JW, and
RXF393; BBOX1 < 0 based on the z score) or high
BBOX1 expression (cell lines: CAL-54, ACHN,
BB65-RCC, RCC-ER, RCC-JF, A704, LB2241-RCC,
BFTC-909, A498, SN12C, RCC10RGB, and RCC-MF;
BBOX1 > 0), drug response was defined as the natural
log of the half-maximal inhibitory concentration
(LN IC50). A drug was identified as effective when the
calculated LN IC50 value was decreased in cell lines
with low BBOX2 expression and increased in those
with high BBOX1 expression [28,29].
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Figure 1. Legend on next page.

239BBOX1 in renal cell carcinoma

© 2023 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2023; 9: 236–248

 20564538, 2023, 3, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/cjp2.315 by Y

onsei U
niversity, W

iley O
nline L

ibrary on [21/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Statistical analysis
Correlations between clinicopathological parameters
and BBOX1 expression were analyzed using the χ2

test. Student’s t-test and Pearson’s correlation were
used to examine differences among continuous vari-
ables. Disease-specific survival (DSS) was defined as
survival from the date of diagnosis to cancer-related
death. Overall survival (OS) time was defined as the
time from the date of diagnosis to all-cause death. Sur-
vival rates were compared using the log-rank test and
Cox regression analyses. A two-tailed p value of ≤0.05
was considered statistically significant. All data were
analyzed using R software packages and SPSS statis-
tics (version 25.0, SPSS Inc., Chicago, IL, USA).

Results

Clinicopathological correlation
Low BBOX1 expression was significantly associated
with high histological grade (ISUP based on

conventional Fuhrman grading system: grade 1, nucleoli
that are inconspicuous and basophilic at �400 magnifi-
cation; grade 2, nucleoli that are clearly visible at �400
magnification and eosinophilic; grade 3, clearly visible
nucleoli at �100 magnification; and grade 4, extreme
pleomorphism or rhabdoid and/or sarcomatoid morphol-
ogy) [30] and sarcomatoid change (p = 0.016 and
0.019, respectively) (Table 1). In TCGA analysis,
BBOX1 expression was lower in primary tumors than in
normal tissue (p = 0.13) (Figure 1B). Low BBOX1
expression was associated with poor DSS and OS
(p = 0.011 and 0.003, respectively) according to both
HYH and TCGA data (all p < 0.001) (Figure 1C,D and
Table 2).
We applied supervised ML models for prognostic

prediction using a GBM. The covariates included
confounding factors (model 1; T stage, N stage, sex,
age, histological grade, LVI or RVT, PNI or RSI,
sarcomatoid change, and tumor necrosis versus model
2; BBOX1, T stage, N stage, sex, age, histological
grade, LVI or RVT, PNI or RSI, sarcomatoid change,
and tumor necrosis with both HYH and TCGA data)

Figure 1. (A) The intensity of staining was scored as negative (left top), weak (right top), moderate (left bottom), or strong (right bottom)
(original magnification �200). (B) Bar plots of TCGA cohort data: BBOX1 expression was lower in primary tumors (p = 0.13).
(C) Survival analyses of the HYH cohort: low BBOX1 expression was associated with poor DSS and OS (p = 0.011 and 0.003, respec-
tively). (D) Survival analyses of the TCGA cohort: low BBOX1 expression was associated with worse DD and OS (all p < 0.001). (E and F)
Supervised ML models for survival prediction using a GBM. The covariates included the confounding factors: (E) model 1; BBOX1, T stage,
N stage, sex, age, histologic grade, LVI or RVT, PNI or RSI, sarcomatoid change, tumor necrosis versus (F) model 2; T stage, N stage, histo-
logic grade, LVI or RVT, PNI or RSI, tumor necrosis. ROC curves were generated based on a multivariate Bernoulli model.

Figure 2. Gross view of RCC: (A) confinement to renal parenchyma, (B) RSI, (C) PFI, (D) RVT (red circle); microscopic view of RCC:
(E) ccRCC, (F) sarcomatoid change, (G) vascular tumor emboli, (H) tumor necrosis.
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and their relative importance for survival (Figure 1E,F).
We found improved prognostic performance for the pre-
diction model when BBOX1 was added (area under the
curve: model 1, 0.993; model 2, 0.999).

Gene sets and immune cell profiles
We conducted GSEA to detect significant gene sets
associated with low BBOX1 expression using TCGA
data. We found seven significantly enriched gene sets,

such as Mel-18, P53, epithelial mesenchymal transi-
tion (EMT), Kyoto Encyclopedia of Genes and
Genomes (KEGG) cancer pathway, invasiveness sig-
nature, phosphatase and tensin homolog (PTEN), and
CD8+ T-cell downregulation (Figure 3A).
Using in silico cytometry based on CIBERSORT,

we investigated the relationship between BBOX1
expression and immune activity with TCGA data.
CD4+ memory T cells, CD274 (programmed death-
ligand 1 [PD-L1]) expression, cancer testis antigen
(CTA) score, and neutrophils were elevated in patients
with low BBOX1 expression compared to those with
high BBOX1 expression (p = 0.03, 0.194, <0.001,
0.048, respectively). Low BBOX1 expression was also
associated with decreased CD8+ T cells and M1 mac-
rophages (p = 0.005 and 0.001, respectively)
(Figure 3B,C).

Pathway network analysis and in vitro drug
screening
Pathway network analysis demonstrated that BBOX1
was directly linked to lysine degradation. In contrast,
BBOX1 was indirectly linked to the monocarboxylic
acid catabolic process T-cell antigen receptor signaling
pathway, antigen processing and presentation, and can-
cer immunotherapy by PD-1 blockade (Figure 4).
Using GDSC datasets, including the LN IC50, we

analyzed drug sensitivity in 30 RCC cell lines
(Figure 5). Pearson correlation analysis showed a high
positive correlation between BBOX1 and the LN IC50
value of 316 anticancer drugs. Midostaurin, BAY-
61-3606, GSK690693, and linifanib effectively
inhibited the growth of renal cancer cells with low
BBOX1 expression.

Discussion

RCC is a heterogeneous disease, making it difficult to
predict clinical behavior and prepare therapeutic plans.
This study demonstrates that low BBOX1 expression
is associated with high histological grade and worse
DSS and OS in patients with ccRCC. In TCGA,
BBOX1 expression levels were decreased in primary
RCC. Low BBOX1 expression might therefore play
an important role in uncovering the development and
progression of ccRCC.
An important role in malignant tumors arising in the

stomach [31], colon [32], cervix [33], and ovary [34]
has been reported for BBOX1. A study utilizing ovar-
ian cancer cells demonstrated that BBOX1 silencing is

Table 1. Clinicopathological parameters of BBOX1 protein
expression in 203 patients with clear cell RCC from the HYH
cohort

Parameter

BBOX1 expression (HYH cohort)

P value*
Low

(n = 61), n (%)
High

(n = 142), n (%)

Age 57.4 ± 12.8 58.3 ± 12.7 0.639†

Sex
Men 48 (78.7) 94 (66.2) 0.107
Women 13 (21.3) 48 (33.8)

T stage
1 42 (68.9) 107 (75.4) 0.431‡

2 3 (4.9) 6 (4.2)
3 16 (26.2) 28 (19.7)
4 0 (0.0) 1 (0.7)

N stage
0 59 (96.7) 141 (99.3) 0.448
1 2 (3.3) 1 (0.7)

Histologic grade
1 12 (19.7) 10 (7.0) 0.016‡

2 26 (42.6) 77 (54.2)
3 14 (23.0) 48 (33.8)
4 9 (14.8) 7 (4.9)

Lymphovascular invasion
Absence 47 (77.0) 121 (85.2) 0.227
Presence 14 (23.0) 21 (14.8)

Renal vein thrombus
Absence 52 (85.2) 125 (88.0) 0.753
Presence 9 (14.8) 17 (12.0)

Sinus fat invasion
Absence 55 (90.2) 131 (92.3) 0.829
Presence 6 (9.8) 11 (7.7)

Perirenal invasion
Absence 53 (86.9) 127 (89.4) 0.776
Presence 8 (13.1) 15 (10.6)

Necrosis
Absence 48 (78.7) 119 (83.8) 0.5
Presence 13 (21.3) 23 (16.2)

Sarcomatoid histology
Absence 52 (85.2) 136 (95.8) 0.019
Presence 9 (14.8) 6 (4.2)

Histologic grade, International Society of Urological Pathology grading classifi-
cation based on conventional Fuhrman grading system; T or N stage, 8th edi-
tion. p < 0.05 is shown in bold.
*Chi-square test.
†Student’s t-test.
‡T stage: 1 versus 2, 3, 4; histologic grade: 1 versus 2, 3, 4.
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related to anti-apoptotic and pro-proliferative proper-
ties [34]. However, another study showed that high
BBOX1 expression is associated with a high risk of
colorectal cancer [35]. In the human protein atlas pro-
ject, low BBOX1 expression correlated to unfavorable
prognosis in renal cancer [36]. Our study revealed a
similar result to the human protein atlas project. Thus,
controversy still exists regarding the relationship
between BBOX1 and clinical outcomes in various
malignant tumors.
RCC is associated with rich leukocyte infiltrates,

such as CD8+ T cells, CD4+ T cells and NK cells, as
well as myeloid cells with characteristics of macro-
phages and neutrophils [37,38]. RCC cells have a bet-
ter capacity to recruit CD4+ T cells than do normal
renal cells. CD4+ T cells can promote malignant cell
growth by modulating transforming growth factor-beta
1 (TGF-β1), Y-box-binding protein 1 (YBX1), and
hypoxia-inducible factor 2 alpha (HIF2α) signals [39].
A high neutrophil count and tumor infiltrating neutro-
phils (TINs) might suppress an efficient immune
response, with release of reactive oxygen species, and
enhance RCC cell migration and invasion [40]. In the
upregulation of estrogen receptor beta (ER-β) caused
by TIN, activated VEGF-HIF-2 signaling promotes the
proliferation and invasion of RCC cells [41]. Our
study showed decreased CD8+ T cells in RCC
patients with low BBOX1 expression, suggesting low
antitumor immune activity [42]. Low BBOX1 expres-
sion was found to be related to high CD274 expres-
sion, CTA score, and increased neutrophils, indicating
poor prognosis. Decreased CD8+ T cells and
increased CD274 expression in the context of low

BBOX1 expression suggest resistance to anti-PD-L1
therapy. This could be considered for anticancer
immunotherapy for RCC patients. In pathway network
analyses, BBOX1 was linked to ‘lysine degradation’,
‘monocarboxylic acid catabolic process’, ‘T-cell anti-
gen receptor signaling pathway’, ‘cancer immunother-
apy by PD-1 blockades’, and ‘antigen processing and
presentation’. Further experimental studies exploring
BBOX1-linked pathways are needed to investigate
these relationships.
In RCC, histological nuclear grade, subtype,

sarcomatoid component, LVI, and tumor necrosis are
helpful for predicting survival [43,44]. Previous stud-
ies of survival have reported different molecular bio-
markers, such as carbonic anhydrase 9 mRNA
(CAIX), VEGF, and insulin-like growth factor-1
[45–47]. These biomarkers are candidates to explore
the VHL signaling pathway in ccRCC [48]. Other
studies have suggested pAkt, PTEN, p27, and pS6 in
the mTOR pathway as important for RCC develop-
ment [49]. Our study revealed gene sets, such as
Mel-18, P53, EMT, KEGG cancer pathway, invasive-
ness, PTEN, and downregulation of CD8+ T cells
related to low BBOX1. Mel-18, a gene promoter regu-
lator, might affect c-myc, bcl-2, cyclin D2, and Hox
[50,51], which induce tumor cell proliferation, metas-
tasis, and angiogenesis [52,53]. p53, a tumor suppres-
sor, plays a pivotal role in apoptosis, genomic
stability, and anti-angiogenesis [54]. High expression
of a mutated TP53 gene is associated with worse clini-
cal outcomes in different types of malignancy, includ-
ing RCC [55]. EMT increases cancer stem cell
invasion to induce metastases [56]. The KEGG cancer

Table 2. DSS and OS analyses according to BBOX1 protein expression in 203 patients with ccRCC from the HYH cohort
Univariate* Multivariate† Hazard Ratio (HR) 95% CI

DSS
BBOX1 (high versus low) 0.011 0.042 3.466 1.0444 11.500
T stage (1, 2 versus 3, 4) <0.001 0.319 4.701 0.224 98.540
N stage (0 versus 1) <0.001 0.062 4.490 0.929 21.705
Histologic grade (1, 2 versus 3, 4) <0.001 0.197 2.984 0.567 15.700
Lymphovascular invasion (absence versus presence) <0.001 0.257 6.195 0.265 145.068
Necrosis (absence versus presence) <0.001 0.024 4.795 1.2333 18.654
Sex (women versus men) 0.388 0.170 2.739 0.649 11.564

OS
BBOX1 (high versus low) 0.003 0.011 2.735 1.25555 5.961
T stage (1, 2 versus 3, 4) <0.001 0.779 1.216 0.311 4.758
N stage (0 versus 1) <0.001 0.027 5.125 1.20555 21.792
Histological grade (1, 2 versus 3, 4) <0.001 0.046 2.466 1.017077 5.982
Lymphovascular invasion (absence versus presence) <0.001 0.457 1.744 0.403 7.557
Necrosis (absence versus presence) <0.001 0.007 3.604 1.415 9.180
Sex (women versus men) 0.259 0.138 2.082 0.790 5.488

Histologic grade, International Society of Urological Pathology grading classification based on conventional Fuhrman grading system; T or N stage, 8th edition.
*Log rank test.
†Cox proportional hazard model.
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Figure 3. (A) Seven gene sets associated with low BBOX1 expression: MEL18, P53, EMT, KEGG cancer pathway, invasiveness, PTEN,
CD8+ T cells; (B) bar plots showing the relationship between BBOX1 expression with the following parameters: activated memory CD4+
T cells, CD8+ T cells, CD274 (PD-L1), CTA score, M1 macrophage, and neutrophil (p = 0.018, <0.001, <0.001, and 0.011, respectively)
(error bars: standard errors of the mean).
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pathway may represent cancer-related signals in bio-
logical interpretation based on large-scale molecular
level datasets [57]. The tumor suppressor PTEN is a
key component of signal transduction pathways for
cell growth, proliferation, and apoptosis [58,59].
The GDSC database has published in vitro drug

screening data for cancer cell lines [28]. We found
four drugs (midostaurin, BAY-61-3606, GSK690693,
and linifanib) that effectively inhibited RCC cells with
low BBOX1 expression. Midostaurin, known as
PKC412, and benzoyl staurosporine are used to treat
patients with CD135 (FMS-like tyrosine kinase
3 receptor) mutations and are semisynthetic alkaloids
derived from staurosporine [60]. Midostaurin inhibits
growth or induces apoptosis in cancers, blocks
angiogenesis, and sensitizes cancer cells to ionizing
radiation [61]. Midostaurin was effective in RCC cell
lines with low BBOX1 expression. A previous study
using molecular docking analysis demonstrated that
midostaurin, the best ligand for S100A8 and EGFR,
inhibits downstream signaling in RCC [62]. BAY
61-3606 is a highly selective inhibitor of Syk tyrosine

kinase activity that induces cell cycle arrest and
apoptosis [63]. BAY 61-3606 suppressed the growth
of RCC cell lines with low BBOX1 expression.
GSK690693, as a selective protein kinase B (AKT)
inhibitor, is a selective inhibitor of RCC with PTEN
mutation. GSK690693 restores the sensitivity of
PTEN-deficient cancer cells to TKI-mediated apoptosis
[59]. Linifanib, as an adenosine triphosphate competi-
tive inhibitor, has a selective effect against VEGF
receptors and platelet-derived growth factor receptor
tyrosine kinases but minimal activity against unrelated
receptor tyrosine kinases, cytosolic tyrosine kinases
and serine/threonine kinases in patients with advanced
RCC [64].
Our study had some limitations that should be

acknowledged. First, this was a cross-sectional analy-
sis of BBOX1 expression that could not reveal contin-
uous relationships over time, and it is difficult to make
definitive conclusions. Second, an experimental study
on the relationship between BBOX1 and immune cells
could not be performed. Further in vivo studies are
needed. Third, the association between BBOX1

Figure 4. Grouping of networks based on functionally enriched GO terms and pathways related to BBOX1. The functionally grouped net-
works are linked to their biological functions, where only the most significantly enriched terms in the group are labeled: lysine degrada-
tion, monocarboxylic acid catabolic process, T-cell antigen receptor signaling pathway, cancer immunotherapy by PD-1 blockade,
antigen processing and presentation as well as CD274, CD4, and CD8A.
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Figure 5. Pearson correlations (left) and box plots (right) showing the natural log LN IC50 of (A) midostaurin, (B) BAY-61-3606,
(C), GSK690693, and (D) linifanib, the potent anticancer drugs against RCC cell lines with low BBOX1 expression.
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expression and survival rate by other histological sub-
types of RCC was not investigated. Fourth, we cannot
assume that this model can be applied to other cohorts
as we have not included validation data sets.
In summary, this study demonstrates that low

BBOX1 expression is associated with tumor necrosis,
high histological grade, and shorter survival time in
ccRCC. In ML analyses, the model including
BBOX1 showed better performance than that without
BBOX1 for predicting survival. Low BBOX1 was
found to be associated with decreased CD8+ T cells
and high CD274 expression, suggesting resistance
to anti-PD-L1 therapy. Drugs effective against RCC with
low BBOX1 expression are presented, including
midostaurin, BAY-61-3606, GSK690693, and linifanib.
Further experimental studies of patients with ccRCC are
needed to reach firmer conclusions, but these data will
serve as a reference for improving the survival rate of
patients through drug treatment.
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