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Background: With the rising global prevalence of fatty liver disease related to metabolic dysfunction, 
the association of this common liver condition with chronic kidney disease (CKD) has become increasingly 
evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) 
was proposed to replace the term non-alcoholic fatty liver disease (NAFLD). The observed association 
between MAFLD and CKD and our understanding that CKD can be a consequence of underlying metabolic 
dysfunction support the notion that individuals with MAFLD are at higher risk of having and developing 
CKD compared with those without MAFLD. However, to date, there is no appropriate guidance on CKD in 
individuals with MAFLD. Furthermore, there has been little attention paid to the link between MAFLD and 
CKD in the Nephrology community. 
Methods and Results: Using a Delphi-based approach, a multidisciplinary panel of 50 international 
experts from 26 countries reached a consensus on some of the open research questions regarding the link 
between MAFLD and CKD. 
Conclusions: This Delphi-based consensus statement provided guidance on the epidemiology, 
mechanisms, management and treatment of MAFLD and CKD, as well as the relationship between the 
severity of MAFLD and risk of CKD, which establish a framework for the early prevention and management 
of these two common and interconnected diseases. 
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most 
common liver disease worldwide with a global prevalence 
of about 25–30% (1,2). NAFLD includes a histological 
spectrum of liver conditions ranging from simple steatosis 
[non-alcoholic fatty liver (NAFL)] to non-alcoholic 
steatohepatitis (NASH), advanced fibrosis and cirrhosis (3).  
NAFLD is always a diagnosis of exclusion in clinical 
practice; to entertain the diagnosis of NAFLD, clinicians 
need to exclude “excessive” alcohol consumption and all 
competing causes of hepatic steatosis. This is despite the 
fact that the coexistence of NAFLD with other chronic 
liver diseases (including but not limited to alcohol use 
disorder) is not rare in clinical practice (4). On the other 
hand, in the realm of drug development and regulatory 
approval processes, the definition of a patient population 
in which the mechanism of the drug can be linked to one 
underlying dominant pathophysiological process is critical. 
For these reasons and given the high heterogeneity and 
stigma around the NAFLD name, in 2020, several experts 

proposed the new term metabolic dysfunction-associated fatty 
liver disease (MAFLD) (5,6). A diagnosis of MAFLD is based 
on evidence of hepatic steatosis (as assessed by liver biopsy, 
imaging techniques or blood biomarkers/scores) in persons 
who are overweight or obese or have type 2 diabetes (T2D), 
or metabolic dysregulation, regardless of the coexistence 
of excessive alcohol consumption and other chronic liver 
diseases. The newly proposed definition of MAFLD better 
emphasises the pathogenic role of metabolic dysfunction 
in the development of this common liver disease and uses 
inclusive criteria for diagnosis (7-10). In this article, we explore 
the definition of MAFLD characterized by the presence of 
metabolic dysregulation but excluding severe alcohol use or 
viral-associated liver disease (i.e., dual aetiology liver disease). 

Growing evidence indicates that NAFLD is associated 
with an increased risk of having or developing chronic 
kidney disease (CKD) (11-14), which is an established risk 
factor for end-stage renal disease (ESRD), cardiovascular 
disease and all-cause mortality (15-18). The magnitude 
of these risks appears to parallel the severity of NAFLD, 
especially the amount of liver fibrosis (11,19). In contrast, 
current data on the strength of the association between 
MAFLD and subsequent risk of CKD is only now being 
acquired, given its proposed adoption as a clinically-
useful entity (20-23). Several epidemiological studies have 
documented that MAFLD may be even more closely 
associated with CKD than NAFLD (Table S1) (24).  
Sun et al. first reported that in 12,571 individuals with 
liver ultrasonography data from the Third National 
Health and Nutrition Examination Survey (NHANES) 
1988–1994, individuals with MAFLD had lower values of 
estimated glomerular filtration rate (eGFR) and a greater 
prevalence of CKD than those with NAFLD (29.6% vs. 
26.6%, P<0.05) (25). Over a 10-year follow-up among 
28,890 Japanese individuals, MAFLD also better identified 
subjects developing CKD, than NAFLD. Furthermore, 
the addition of MAFLD to traditional CKD risk factors 
improved discriminatory capacity to diagnose CKD better 
than NAFLD (26). Similar findings were observed in other 
large cohorts of Asian individuals (23,27). In contrast, in 
two prospective cohort studies from USA and China, the 
MAFLD and NAFLD definitions were both comparable 
risk factors for CKD (21,28). That said, despite some 
inconsistencies between research study findings, the 
MAFLD definition is a landmark in Hepatology bringing 
about a new way of thinking about fatty liver disease and 
the relevance of metabolic dysregulation and increased 
body fat accumulation that has consequences beyond the 

Highlight box

Key findings
• MAFLD and CKD are highly prevalent and interconnected 

diseases;
• MAFLD is associated with a higher risk of CKD compared to 

subjects with NAFLD;
• Individuals with MAFLD and steatohepatitis or advanced fibrosis 

have a higher prevalence and incidence of CKD than those 
without;

• Metabolic dysfunction in MAFLD is an important mechanistic link 
to the association with CKD;

• Apart from disease-specific management, common metabolic 
factors should be targeted for treatment.

What is known and what is new?
• MAFLD is the term proposed to replace NAFLD, comes with 

positive diagnostic criteria, and highlights the role of metabolic 
dysfunction to disease pathogenesis;

• NAFLD is associated with chronic kidney disease, but there has 
been no consensus on the relationship of MAFLD to CKD;

• Through a Delphi process, an international panel arrived at 
consensus statements on the relationship between MAFLD and 
CKD.

What is the implication, and what should change now?
• Increasing physician awareness of the relationship between 

MAFLD and CKD and co-management focusing on shared risk 
factors is important.
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liver. Importantly, MAFLD brings liver disease into closer 
alignment with our current understanding of obesity 
and metabolic syndrome, both of which contribute to 
development of kidney injury (29). Unfortunately, few 
outside the field of Hepatology are familiar with the newly-
proposed MAFLD terminology and its definition; and there 
is limited awareness of the link between MAFLD and CKD, 
amongst the Nephrology community. 

The objective of this study was therefore to build 
consensus among international experts in the field on the 
link between MAFLD and CKD using a Delphi-based 
approach. The consensus statements set out current ideas 
on the link between MAFLD and CKD in specific areas 
ranging from epidemiology to mechanisms, management 
and treatment.

Methods

Study design

The Delphi method was originally developed at the RAND 
Corporation (Santa Monica, CA, USA) in the 1950s 
to forecast the effect of technology on warfare. Today, 
groups of experts use online tools to anonymously answer 
questionnaires and receive feedback that represents the 
“group response” and revise their answers to see whether 
they can approach expert consensus. Thus, the Delphi 
method is a structured multistage process which aims 

to transform expert opinion into group consensus on a 
given subject (30). The Delphi method can be successfully 
applied to areas of controversy or when data are inadequate, 
and involves a series of questionnaires interspersed with 
controlled feedback (31). In the present study, we used 
a modified Delphi process via an online survey with the 
goal of reaching a consensus on the link between MAFLD 
and the risk of CKD (3). A two-round Delphi survey 
(i.e., the R1-survey on 15 April 2022, and R2-survey on  
16 June 2022) employed a structured interaction in which 
a multidisciplinary panel of 50 international experts from  
26 countries evaluated and re-evaluated consensus 
statements in multiple rounds until agreements were reached  
(Figure 1). The web-based Delphi survey was delivered to 
each member of the expert panel via email with a secure 
link using Google forms (link for R1 survey: https://
forms.gle/oPNEQqfv53UpsTC59; for R2 survey: https://
forms.gle/tntWm2Nk2s4EeEmg9). The data collection 
periods for each survey ranged between one and four 
weeks. The R1-survey contained four domains and 22 
draft statements with four-point Likert-type categories for 
respondents to indicate their level of agreement with the 
statements (that is, ‘Agree’/‘Somewhat agree’/‘Somewhat 
disagree’/‘Disagree’) (as specified in Table S2). In the first 
round, respondents who agreed or somewhat agreed with 
a statement could provide comments or suggest edits while 
those who disagreed or somewhat disagreed needed to 
explain why. Further discussion was undertaken by email 

Figure 1 Flow diagram of the Delphi process adopted for the development of consensus statements on MAFLD and the risk of CKD. 
MAFLD, metabolic dysfunction-associated fatty liver disease; CKD, chronic kidney disease; R1, round 1; R2, round 2.
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to report the results of R1-survey and the comments in 
R1-survey. The R2-survey reflected suggestions developed 
from the R1-survey, including revised, merged or deleted 
statements and, finally, contained 21 statements. Only 
respondents who completed the R1-survey were eligible 
to take the R2-survey (Table S3), and all respondents in 
the R1-survey participated in the R2-survey. Participants 
had the option of keeping their first-round ratings or having 
them re-scored. After the R2-survey, we included summaries 
of the edits made to each statement from respondents and 
emailed all respondents to consider their level of agreement or 
disagreement with the statements. For the Delphi process, the 
consensus statements were developed by the expert panel and 
we assigned a grade to each statement and recommendation 
to indicate the level of agreement utilising a grading system 

used in other published Delphi studies, in which ‘U’ denotes 
unanimous (100%) agreement, ‘A’ 90–99% agreement, ‘B’ 
78–89% agreement, and ‘C’ 67–77% agreement (3,32). A 
preliminary consensus draft on these recommendations from 
the expert panel was sought over a 1-week period via a shared 
Google document. Any disagreements were resolved through 
discussion until consensus was reached.

Recruitment of expert panel members

Members of the international expert panel (n=50) were 
selected from the representative Continents. To be 
included, they were active researchers with expertise in the 
management of fatty liver and/or kidney diseases. 

The following criteria were used to select members of 
the expert panel participating in the Delphi survey: 

(I) To be corresponding authors of published articles 
on the association between MAFLD or NAFLD and 
the risk of CKD.

(II) To be representative members from scientific 
S o c i e t i e s  o f  N e p h r o l o g y,  H e p a t o l o g y, 
Endocrinology/Diabetology, and Obesity.

(III) To be core members of the NAFLD Consensus 
Consortium and/or the Kidney Disease: Improving 
Global Outcomes (KDIGO) organization.

Members of the expert panel were expected to meet 
at least one of the three aforementioned criteria. To 
achieve global representation, we selected members from 
six continents, i.e., Asia, Europe, North America, South 
America, Africa and Oceania (Table 1).

Findings

Here, we report the final consensus statements along with a 
summary of the broader relevant literature. Across the two-
based Delphi surveys, there was an increase in consensus 
for all proposed statements. The mean percentage of 
“agreement” responses increased from 63.9% to 76.1% and 
“agreement or somewhat agreement” responses increased 
from 94.3% in the R1-survey to 97.3% in the R2-survey 
(Figure 2). In the end, there was unanimous “agreement or 
some agreement” on 12 consensus statements and >85% 
agreement on 7/12 statements (Table 2).

Epidemiology of MAFLD and CKD—statements 1.1–1.6 
(Grade U in 1.1 and 1.5; Grade A in 1.2 to 1.4, 1.6)

Studies using the NAFLD definition have estimated a 

Table 1 Demographic composition of the expert panel

Characteristics Round 1 Round 2

Surveys sent, n 60 50

Total respondents, n (%) 50/60 (83.3) 50/50 (100.0)

Participant type, %

Researcher 6 6

Nephrologist 20 20

Gastroenterologist/hepatologist 62 62

Endocrinologist/diabetologist 10 10

Methodologist 2 2

Age (years), %

<40 12 12

40–65 84 84

>65 4 4

Gender, %

Women 12 12

Men 88 88

Region of practice, %

Asia 48 48

North America 8 8

South America 2 2

Europe 32 32

Africa 6 6

Oceania 4 4
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global prevalence of this condition of about 30% in the 
general adult population. NAFLD is considered part of 
a multisystem disease associated with an increased risk of 
developing not only liver-related complications but also 
cardiovascular disease (33) and CKD (34). Given this 
current understanding of the pathogenesis of NAFLD, the 
term MAFLD focuses attention on the pathogenic role of 
metabolic dysfunction in the development and progression 
of this liver disease and its accompanying systemic extra-
hepatic complications (35-37).

Recently, it has been reported that during a median 
follow-up of 23 years, individuals with MAFLD had a 24% 
higher risk of cardiovascular mortality [hazard ratio (HR) 
1.24; 95% confidence interval (CI): 1.01–1.51; P=0.041] 
and a 17% higher risk of all-cause mortality (HR 1.17; 
95% CI: 1.04–1.32; P<0.01) compared to those without 
MAFLD (38). It is, therefore, not surprising that MAFLD 
is associated with a higher prevalence of CKD compared to 
that observed in the non-MAFLD population. For example, 
from the cross-sectional NHANES 1999–2002, 2003–2006, 
2007–2010 and 2011–2016 cohort databases, individuals 
with MAFLD had a greater odds of any CKD stage and 
albuminuria compared with those without MAFLD (28). 
Using the NHANES 1988–1994 database, the authors 
reported that compared to the NAFLD or non-metabolic 
risk NAFLD groups, subjects with MAFLD had lower 
eGFR values and a higher prevalence of both CKD and 
abnormal albuminuria (25). Collectively, these findings 
suggest that MAFLD is associated with a higher risk of 
CKD compared to subjects with fatty liver but without 

coexisting metabolic disorders. 
In most published studies, using the term NAFLD, 

liver disease was associated with a nearly 2-fold increased 
prevalence of CKD and this association persisted both in 
patients with T2D and in those without diabetes, even after 
adjustment for common risk factors for CKD (12,39,40). 
In a large retrospective cohort study of German individuals 
with NAFLD, Kaps et al. reported that NAFLD was 
associated with higher risk of developing CKD over 10 years 
of follow-up (41). This association remained significant 
across different age and patient subgroups, such as those 
with T2D, obesity, hypertension or ischaemic heart disease. 
In contrast, NAFLD was not independently associated 
with the future risk for ESRD requiring haemodialysis. In 
a study where the MAFLD population was stratified by 
presence or absence of T2D, individuals with MAFLD and 
T2D had a higher prevalence of CKD stage ≥1 than their 
counterparts without T2D [odds ratio (OR) 1.18; 95% CI: 
1.05–1.32; P<0.05] or those with T2D alone [OR 2.09; 
95% CI: 1.78–2.46; P<0.05] (25). Using the NHANES 
2017–2018 database, the authors found that the metabolic 
comorbidities of MAFLD such as T2D, hypertension 
and hyperuricemia were all independently associated with  
CKD (22). Therefore, these findings suggest that MAFLD 
is associated with CKD in both patients with or without 
T2D, even after adjustment for common risk factors for 
CKD. 

Although the association between MAFLD and CKD 
from cross-sectional studies appears to be strong and 
consistent, whether MAFLD is also an independent risk 

Figure 2 Scores for agreement in Delphi process. (A) Scores for agreement by experts in R1 and R2; (B) the total scores for agreement and 
somewhat agreement of experts in R1 and R2. R1, round 1; R2, round 2.
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Table 2 Consensus statements on MAFLD and risk of CKD

Domain and statements Grade

1. Epidemiology of MAFLD and CKD

1.1 The prevalence of CKD in individuals with MAFLD is higher compared to that in the non-MAFLD population U

1.2 MAFLD is an independent risk factor for CKD in patients with T2D, even after adjustment for common risk 
factors for CKD

A

1.3 MAFLD is an independent risk factor for CKD in patients without T2D, even after adjustment for common risk 
factors for CKD

A

1.4 MAFLD is associated with a greater risk of CKD than patients with liver fat but without evidence of systemic 
metabolic dysregulation

A

1.5 MAFLD is associated with an increased incidence of CKD U

1.6 CKD increases the risk of overall mortality among patients with MAFLD A

2. Severity of MAFLD and CKD

2.1 The prevalence of CKD more strongly associates with steatohepatitis compared to simple steatosis A

2.2 The incidence of CKD more strongly associates with steatohepatitis compared to simple steatosis A

2.3 MAFLD with advanced fibrosis (stage F3/4) has a higher prevalence of CKD than MAFLD without advanced 
fibrosis (stage F0–2)

U

2.4 MAFLD with advanced fibrosis (stage F3/4) has a higher incidence of CKD than MAFLD without advanced 
fibrosis (stage F0–2)

U

2.5 Advanced liver fibrosis in patients with MAFLD is independently associated with an increased risk of incident 
CKD in patients with T2D

U

2.6 Liver stiffness measured by transient elastography is independently associated with an increased presence of 
albuminuria

A

3. Mechanisms linking MAFLD with CKD

3.1 MAFLD and CKD share multiple risk factors such as abdominal obesity, insulin resistance, dyslipidemia, 
hypertension and dysglycemia

U

3.2 The MAFLD-associated genetic polymorphism PNPLA3 rs738409 variant is associated with CKD B

3.3 Alterations in gut microbiota may be linked to both MAFLD and CKD A

3.4 Metabolic dysfunction is an important mechanistic link between MAFLD and CKD U

4. Managing and treating MAFLD and CKD

4.1 Lifestyle intervention including a hypocaloric diet and regular physical exercise is associated with improvements 
in both MAFLD and CKD, though the extent of benefit might be different for both diseases

U

4.2 Cardiometabolic risk factors should be treated in patients with MAFLD and CKD U

4.3 The use of antihypertensive treatment (if required) is important in MAFLD for decreasing risk of CKD U

4.4 Increased clinical vigilance for presence of severe MAFLD might be considered in patients with CKD U

4.5 Patients with MAFLD and CKD should ideally be treated in a multidisciplinary team setting, though the ideal care 
model has not been identified

U

 ‘U’ denotes unanimous (100%) agreement, ‘A’ 90–99% agreement, ‘B’ 78–89% agreement, and ‘C’ 67–77% agreement. MAFLD, 
metabolic dysfunction-associated fatty liver disease; CKD, chronic kidney disease; T2D, type 2 diabetes.
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factor for CKD remains uncertain. In a cohort study of 
middle-aged and elderly Chinese subjects without CKD 
at baseline, the authors found that the incidence rates of 
CKD in those without fatty liver and those with MAFLD 
were 8.2% (95% CI: 7.3–9.2%) and 12.9% (95% CI: 11.7–
14.1%), over a mean follow-up of 4.6 years (21). These 
authors also found that MAFLD was associated with a 
higher risk of incident CKD (HR 1.64, 95% CI: 1.39–1.94). 
This finding is consistent with results from an updated 
meta-analysis of 13 observational studies showing that fatty 
liver disease was significantly associated with a nearly 1.5-
fold increased long-term risk of incident CKD stage ≥3 (11).  
In 268,946 individuals from the NHANES 2009–2015 
database, the investigators found that MAFLD identified a 
higher proportion of individuals at risk of developing CKD 
than NAFLD over a median follow-up of 5.1 years (27). 
Similar results were reported in another cohort study with 
a 10-year follow-up, where the risk for incident CKD was 
1.12 (95% CI: 1.02–1.26) in MAFLD individuals, even after 
adjustment of traditional renal risk factors (26). Moreover, a 
Mendelian randomization study supported the existence of a 
causal effect of fatty liver disease on lower eGFR levels and 
CKD (42). Thus, the aforementioned studies suggest that 
individuals with MAFLD are at higher risk of new-onset 
CKD even after adjustment for common cardiometabolic 
risk factors compared to subjects with fatty liver who do not 
have metabolic dysregulation. 

Moderate to advanced stages of CKD may also 
increase the risk of overall mortality among patients with 
NAFLD (CKD stages 2–3a: HR 2.31, 95% CI: 1.70–3.15; 
CKD stages 3b–5: HR 4.83, 95% CI: 2.40–9.71) (43). 
Interestingly, in that study, mortality risk was significantly 
increased in NAFLD patients with CKD due to metabolic 
comorbidities, and not influenced by CKD per se . 
According to the newly proposed MAFLD definition, most 
of these NAFLD individuals had MAFLD. In contrast, a small 
prospective study showed that NAFLD patients with CKD 
had a higher risk of overall mortality than NAFLD patients 
without coexisting CKD. However, after adjustment for 
metabolic comorbidities, this risk was no longer significant (44).  
Although further studies are needed, the evidence from 
the current studies indicate that recognition of CKD 
may increase the risk of overall mortality in patients with 
MAFLD, and the new term MAFLD improves our ability 
to identify individuals at higher risk of developing CKD. 

Studies also support a role for NAFLD as a risk factor 
for CKD in childhood (45,46). For example, in a cohort of 
596 children who were overweight or obese, an association 

between NAFLD and early kidney dysfunction (defined 
as microalbuminuria or eGFR <90 mL/min/1.73 m2) was 
suggested (45). Other studies indicate that the link between 
NAFLD and CKD could be modulated by some genetic 
factors. For example, the risk patatin-like phospholipase 
domain-containing protein 3 (PNPLA3) allele may increase 
the risk of developing both NAFLD and CKD. However, 
in other studies, carriers of the hydroxysteroid 17-beta 
dehydrogenase 13 (HSD17B13) at-risk A gene or the 
trans-membrane 6 superfamily 2 (TM6SF2) 167K allele 
had higher eGFR levels in patients with NAFLD (47-49). 
Overall, given that current evidence on the relationship 
between MAFLD and CKD in childhood is not robust, a 
specific consensus statement cannot be generated. New data 
to inform this are eagerly awaited. In our two-round Delphi 
survey process, about 25% of experts disagreed with the 
statement in the R1-survey, so this statement was deleted in 
the R2-survey. 

Severity of MAFLD and CKD—statements 2.1–2.6 (Grade 
U in 2.3 to 2.5; Grade A in 2.1 to 2.2, 2.6)

As per its definition, the MAFLD criteria are more likely to 
capture those who have coexisting metabolic comorbidities 
compared to NAFLD criteria, and to identify individuals 
with advanced liver fibrosis (50,51). Given the close 
association between fibrotic fatty liver disease and CKD, 
it is reasonable to infer that the severity of MAFLD may 
be closely associated with CKD. Though there are only a 
few studies exploring the relationship between the severity 
of MAFLD and risk of CKD, the available evidence 
suggests that MAFLD individuals with steatohepatitis or 
advanced fibrosis had a higher prevalence and incidence of 
CKD than those without advanced fibrosis or those with 
simple steatosis. An observational study demonstrated that 
advanced liver fibrosis but not steatosis was associated with 
abnormal albuminuria in Chinese patients with NAFLD 
and T2D (all of whom fit the MAFLD definition) (52). 
In a meta-analysis of 13 observational cohort studies with 
a median follow-up of 9.7 years, Mantovani et al. also 
showed that imaging-defined NAFLD was associated 
with a moderately increased risk of incident CKD stage 
≥3 (random-effects HR 1.43; 95% CI: 1.33–1.54) (11). 
Similarly, from 5 small studies with liver histology, the 
presence of advanced fibrosis (F3/4 stage) was associated 
with a higher prevalence (random-effects OR 5.20; 95% CI: 
3.14–8.16) and incidence (random-effects HR 3.29; 95% 
CI: 2.3–4.71) of CKD than either non-advanced fibrosis 
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(F0–2) or simple steatosis, respectively (53).
While evidence for the existence of a significant 

association between severity of NAFLD and risk of 
prevalent and incident CKD is robust, the association 
between severity of MAFLD and the risk of having or 
developing CKD remains uncertain (54,55). In a study from 
the NHANES-III database, it was reported that MAFLD 
with increased liver fibrosis scores was strongly associated 
with a greater risk of having CKD stage ≥1 or ≥3 and 
abnormal albuminuria (25). Another small prospective study 
of T2D patients with and without NAFLD followed for  
75 months showed that the presence of NAFLD with high-
risk fibrosis (defined as NAFLD fibrosis score >0.181) 
conferred a greater eGFR reduction (58.7% vs. 37%; 
P=0.04) and higher risk of CKD progression (defined 
as decrease in >50% eGFR) (P<0.001) (56). In a meta-
analysis, participants with T2D and steatohepatitis (where 
by definition all subjects had MAFLD) there was a 3.8-fold 
risk of prevalent CKD (95% CI: 1.47–9.81, I2=0%, n=3,119 
participants) and a 2.5-fold increased risk of incident CKD 
(95% CI: 1.05–6.17, I2=0%, n=396 participants) compared 
with their counterparts who had simple steatosis (53). 
Furthermore, in subjects who had T2D and NAFLD 
with advanced fibrosis (F3/F4) (subjects all fulfilling the 
MAFLD criteria), there was a 5.1-fold increased risk of 
prevalent CKD (95% CI: 1.46–17.21, I2=0%, n=3,120 
participants) and a 4.2-fold increased risk of incident CKD 
(95% CI: 2.10–8.38, I2=0%, n=397 participants), compared 
to those subjects with non-advanced fibrosis (stage  
F0–2) (53). The above-mentioned studies indicate that 
MAFLD patients with steatohepatitis have a higher 
prevalence and incidence of CKD compared to those with 
simple steatosis alone. Further, MAFLD with advanced 
fibrosis has a higher prevalence and incidence of CKD than 
MAFLD without advanced fibrosis.

Transient elastography (TE) is extensively used in 
clinical practice as a non-invasive technique for measuring 
liver stiffness, a correlate of liver fibrosis. Consistently, TE 
identifies a subgroup of NAFLD patients who are at higher 
risk of developing liver-related clinical events (57-59). Our 
prior study also showed that the association between liver 
stiffness (assessed by TE) and risk of abnormal albuminuria 
was consistent with histological data obtained by liver 
biopsy (34). A meta-analysis of 7 cross-sectional studies also 
showed that increased liver stiffness was associated with an 
increased odds for both CKD (OR 2.49; 95% CI: 1.89–3.29; 
P<0.001) and abnormal albuminuria (OR 1.98; 95% CI: 
1.29–3.05; P=0.002) in patients with NAFLD (60). Another 

small study from 42 outpatients with established T2D showed 
that significant liver fibrosis [i.e., defined as liver stiffness 
≥7.0/6.2 kPa (medium/extra-large probe)] was associated 
with an increased likelihood of CKD (OR 4.54; 95% CI: 
1.24–16.60), independently of common cardiometabolic risk 
factors (61). Thus, liver stiffness, which is a surrogate of liver 
fibrosis and inflammation, is independently associated with 
an increased risk of CKD or albuminuria. While there are no 
specific studies on patients with MAFLD, data are awaited to 
better clarify the association between the severity of MAFLD 
and CKD progression.  

I t  i s  important  to  emphasise  that  none of  the 
aforementioned studies used renal biopsy to examine the 
pathology of CKD, so whether MAFLD is associated 
with a specific type of kidney injury is currently unknown. 
Moreover, it is also important to highlight that while we 
identify CKD by using a functional classification of CKD 
stages based on eGFR and proteinuria, we do not have a 
corresponding scale for evaluating the degree of hepatic 
function impairment. Recently, Aubert et al. reported that 
patients with diabetic kidney disease (confirmed by renal 
biopsy) and advanced liver fibrosis (F3–F4 stages) tended 
to have a greater annual eGFR decline (−3.27±3.07 vs. 
−6.29±4.72 mL/min/1.73 m2) compared to those with 
diabetic kidney disease without advanced liver fibrosis 
during a 75-month follow-up period (56). 

Mechanisms linking MAFLD with CKD—statements 
3.1–3.4 (Grade U in 3.1 and 3.4, Grade A in 3.3, Grade B 
in 3.2)

Current evidence suggests that MAFLD may be an 
independent risk factor for CKD (29). A large cross-
sectional study also showed that the metabolic syndrome 
and its individual components are independently associated 
with CKD (62). Therefore, as highlighted in the consensus 
statements, metabolic dysfunction in MAFLD might be an 
important mechanistic link between MAFLD and CKD as 
discussed below.

Firstly, convincing evidence showed that obesity plays an 
important role in the development and progression of both 
MAFLD and CKD (63-66). For example, in a retrospective 
study evaluating native kidney biopsies, obesity-related kidney 
disease increased in parallel with the worldwide epidemic of 
obesity. In that study, 56% of patients had overt proteinuria 
alone and 44% had overt proteinuria and CKD (67).  
At a mechanistic level, the renal physiologic responses to 
obesity include increases in glomerular filtration rate, renal 
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plasma flow, filtration fraction and tubular reabsorption 
of sodium, which exerts a high fluid shear stress on renal 
podocytes, thereby promoting maladaptive renal hypertrophy, 
podocyte detachment and global glomerulosclerosis.

Secondly, T2D has a substantial adverse impact on health 
and increases risk of both kidney and liver diseases. Strong 
evidence shows that chronic hyperglycaemia is a driving force 
for the development and progression of MAFLD and CKD, 
possibly through intraglomerular hypertension induced by 
glomerular hyperfiltration, increased formation of advanced 
glycation end-products, microinflammation and subsequent 
extracellular matrix expansion (68,69). Meanwhile, 
adipokines may also play important roles in kidney disease 
progression by promoting maladaptive responses of renal 
cells to the mechanical forces of hyperfiltration, thereby 
leading to podocyte depletion, proteinuria, focal segmental 
glomerulosclerosis and interstitial fibrosis (70). 

Thirdly, abnormal lipid metabolism promotes increased 
triglyceride and cholesterol ester accumulation in the liver 
and kidneys (71). Increased lipids accumulate in mesangial 
cells, which may, in turn, transform to a type of foam cell, 
which activates insulin growth factor-1 and contributes to 
the loss of glomerular integrity. More importantly, renal 
fat accumulation as a result of increased fatty acid synthesis 
[which is mainly mediated by sterol regulatory element-
binding protein 1c (SREBP-1c) and its target enzymes] 
may induce low-grade inflammation, oxidative stress and 
increased expression of multiple profibrotic growth factors 
(72-74). Finally, increased fat accumulation is associated 
with SREBP expression and activity, thus resulting in the 
development of renal disease (75). These results provide 
mechanistic data suggesting that metabolic dysfunction 
links MAFLD and CKD. 

Findings from genome-wide association studies in large 
cohorts of well-phenotyped individuals show that the 
rs738409 C>G SNP encoding the I148M genetic variant 
of PNPLA3 accounts for the largest fraction of genetic 
predisposition to fatty liver disease (76,77). Carriage 
of this genetic variant has also been associated with an 
increased risk of liver-related mortality and extrahepatic 
complications, especially kidney injury (46,78,79). PNPLA3 
is highly expressed both in the liver (by hepatic stellate 
cells and hepatocytes) and in the kidneys. Studies have 
shown that individuals with the PNPLA3 rs738409 GG 
genotype are more likely to have lower levels of eGFR, and 
higher prevalence of both abnormal albuminuria and CKD, 
compared to those carrying the PNPLA3 rs738409 GC and 
CC genotypes (46,80-83). Another study showed that this 

PNPLA3 genetic variant or other NAFLD-related genetic 
polymorphisms did not directly contribute to eGFR decline, 
but that metabolic risk factors were more important (84). 
However, such study did not retrieve data on albuminuria, 
so that the CKD diagnosis was based only on eGFR 
values. Evidence about the association between MAFLD, 
PNPLA3 rs738409 variant and CKD is still limited since 
the data have only accrued for less than 2 years. Further 
studies are therefore needed to better understand the 
role of the PNPLA3 rs738409 variant (or other MAFLD-
related genetic polymorphisms) in the development and 
progression of CKD, and to elucidate the function of the 
mutant PNPLA3 protein in the kidney.

Recent studies have unveiled a role for the liver-gut-
kidney axis in both health and disease states (85-88). Gut 
microbiota is thought to be one of the major contributing 
factors to the pathophysiology of CKD associated with fatty 
liver. Gut microbiome homeostasis is important for health 
and its imbalance can lead to bacterial translocation, as well 
as the release of microbial products like lipopolysaccharide, 
indoxyl sulphate, p-cresyl sulphate and trimethylamine 
N-oxide (TMAO) into the circulation, where they may 
contribute to low-grade inflammation. These factors may 
also increase the risk of both MAFLD and CKD (85,89,90). 
On the other hand, MAFLD may alter gut microbiota 
composition and contribute to the development and 
progression of CKD associated with MAFLD. For instance, 
gut microbiota metabolizes dietary components such as 
choline and carnitine to produce TMAO, which may induce 
kidney and liver injuries. A cohort study of 521 subjects 
with 5-year follow-up showed that compared to non-CKD 
individuals, patients with CKD had higher plasma levels of 
TMAO and that plasma TMAO levels were associated with 
a near 1.9-fold increase in mortality risk after adjustment 
for traditional renal risk factors (91). Meanwhile, compared 
to non-steatotic controls, patients with fatty liver disease 
had higher plasma TMAO levels, which were positively 
correlated with serum bile acid concentrations and the 
mRNA expression of hepatic CYP7A1 (92). Experimentally, 
administration of TMAO to mice induced progressive 
renal tubulo-interstitial injury and fibrosis, while in mice 
fed a high-fat diet TMAO administration exacerbated 
hepatic steatosis by inhibiting hepatic farnesoid X receptor 
signalling and up-regulating hepatic de novo lipogenesis (92).  
Although current evidence is inconclusive and further 
studies are needed, the aforementioned studies suggest 
that alterations in gut microbiota may be linked to both 
MAFLD and CKD.
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A study has identified various immune mechanisms 
which play a key role in NAFLD pathogenesis, especially 
triggering low-grade inflammation, and which are rooted 
in intrahepatic and extrahepatic systems (93). Extrahepatic 
factors include multiple organ crosstalk between 
inflammatory signals derived from the gut, adipose tissue, 
skeletal muscles and bone marrow, and some intrahepatic 
factors such as the cholangiocytes that are recognised as 
a potential driver of low-grade inflammation in NAFLD. 
However, to date, we are uncertain on how specific immune 
cell subsets interact and how they interact with stromal 
liver cells during NAFLD development and progression. 
Even less is known about how immune-mediated molecular 
mechanisms are implicated in the pathologic interaction 
between the liver and kidney in MAFLD. It is known that 
low-grade inflammation plays a key role in the development 
and progression of CKD. A prospective study of 2,838 
Chinese patients with T2D (with or without chronic 
hepatitis B virus infection who were followed for a median 
of 3.5 years) showed that the presence of liver inflammation 
was associated with increased risk of ESRD, and this was 
independent of other potential confounding factors (94). 
Finally, emerging evidence supports a potential pathogenic 
role of the hepato-renal reflex in CKD development which 
may be triggered by subclinical portal hypertension (95), 
although further research in this area is needed.

Managing and treating MAFLD and CKD—statements 
4.1–4.5 (Grade U for 4.1–4.5)

Currently, there are no specific treatment guidelines for 
patients with CKD and MAFLD. However, MAFLD 
and CKD share multiple cardiometabolic risk factors and 
therapeutic strategies for MAFLD and CKD should be 
similar and primarily focussed on improving all coexisting 
renal and metabolic risk factors. 

Lifestyle intervention (including a hypocaloric diet and 
regular physical activity) is associated with improvements 
in both MAFLD and CKD, though the extent of benefit 
might be different for each disease (96-100). For example, 
a large prospective study in real-world clinical practice 
showed that modest (7–10%) and good (≥10%) weight 
reduction induce significant improvements in liver 
histology in patients with steatohepatitis (101). A recent 
study that included 261 patients with biopsy-proven NASH 
also showed that a one-stage reduction in liver fibrosis 
and resolution of steatohepatitis was associated with an 
improvement in kidney function parameters (102). Recently, 

an aerobic exercise intervention study of patients with 
biopsy-proven MAFLD showed that a 12-week intervention 
reduced liver fibrosis and hepatocyte ballooning by one 
stage in 58% (P=0.034) and 67% (P=0.02) of these patients,  
respectively (103). Another study including obese patients 
with T2D and CKD reported that a combined diet and 
exercise intervention reduced proteinuria compared to a diet 
only (104). A further study of overweight and obese patients 
with T2D showed that weight loss improved renal function 
parameters (105). Therefore, a body of evidence supports the 
notion that lifestyle interventions play an important role in 
the prevention and management of both MAFLD and CKD. 

Current evidence indicates that MAFLD and CKD 
are two risk factors for adverse cardiovascular outcomes 
and all-cause mortality (106-109). Increasing evidence 
recommends that patients with MAFLD should be treated 
early and aggressively for obesity and other coexisting 
cardiometabolic risk factors (110,111). Most available 
drugs that target cardiometabolic risk factors exert their 
actions either directly or indirectly on glucose and lipid 
metabolism. Newer classes of glucose-lowering agents, 
such as glucagon like peptide-1 (GLP-1) receptor agonists 
(mostly subcutaneous liraglutide and semaglutide) and 
SGLT2 inhibitors, not only exert some beneficial effects 
on the liver (especially hepatic steatosis and necro-
inflammation), but also have clinically meaningful effects 
on cardiovascular and kidney outcomes (112-117). Statin 
use also markedly reduces the risk of fatal and nonfatal 
cardiovascular disease events associated with MAFLD 
(118,119) and may contribute to reduce the risk of MAFLD 
development (120). Similarly, in patients with CKD not 
requiring dialysis, statin use decreases the risk of all-cause 
mortality and major adverse cardiovascular events (121). 
Therefore, an early and aggressive treatment of coexisting 
cardiometabolic risk factors will help prevent or slow the 
development and progression of both MAFLD and CKD.

Hypertension is an established cardiovascular risk factor 
and a major component of the metabolic syndrome. The 
coexistence of hypertension and MAFLD has been reported 
to be common and to increase metabolic and cardiovascular 
risks (122). The strong association and similar pathogenic 
profile of MAFLD and hypertension suggests that 
treatment with antihypertensive agents might be beneficial 
in hypertensive subjects with MAFLD (123). Although 
no large randomized controlled trials have specifically 
investigated the long-term effect of antihypertensive agents 
on MAFLD, inhibitors of the renin-angiotensin-aldosterone 
system (RAAS) may be of benefit (124). For example, in a 
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small intervention study of 54 subjects with hypertension 
and fatty liver disease assigned to receive either valsartan or 
telmisartan, both treatments led to amelioration of insulin 
resistance and hepatic fibrosis improvement (123). A meta-
analysis of seven interventional studies (1,066 participants) 
reported that treatment with RAAS inhibitors may exert 
beneficial effects on hepatic fibrosis or cirrhosis patients 
based on effects on liver histological endpoints (125).  
Another intervention study reported that telmisartan 
decreased liver fat content and serum free fatty acid levels 
in hypertensive patients with MAFLD (126). Several 
studies showed that RAAS inhibitors were associated with 
beneficial effects on proteinuria and the rate of eGFR 
decline in patients with CKD (127,128). Similarly, in a 
cross-sectional study of CKD individuals with or without 
NAFLD, treatment with RAAS inhibitors was associated 
with lower liver stiffness in those with NAFLD, compared 
to those without (129,130). Finally, and more interestingly, 
treatment with angiotensin-converting enzyme (ACE)-
inhibitors may have beneficial effects on liver fibrosis (131).  
In a cohort study of 12,327 Asian individuals with NAFLD 
followed for at least 5 years, the authors found that 
treatment with ACE-inhibitors (but not with angiotensin 
II receptor antagonists) in those with hypertension, was 
associated with a lower risk of developing liver-related 
events, liver cancers, and cirrhotic complications, especially 
amongst those with CKD (131). Therefore, treatment with 
antihypertensive agents, especially RAAS inhibitors (if 
required), is clinically important in hypertensive patients 
with MAFLD for decreasing the risk of CKD.

Taken together, the current evidence from published studies 
suggest that increased clinical vigilance for the presence of 
MAFLD should be considered in patients with CKD. Patients 
with MAFLD and CKD should ideally be managed in teams, 
though the ideal model of care has not been identified.

Study strengths and limitations

Although the Delphi method is a consensus-building 
initiative, it also comes with strengths and limitations. 
As an important strength, we employed 50 experts from 
six continents and more than 26 countries, comprising 
hepa to log i s t s ,  nephro log i s t s ,  endocr ino log i s t s , 
diabetologists and other specialists with extensive research 
and clinical expertise. Delphi studies often involve a 
combination of in-person, in-depth deliberation and survey 
rounds for voting. However, in light of the geographical 
spread of the panel members and the COVID-19 travel 

restrictions, we employed alternative modes for group 
discourse in which members were able to provide written 
comments on the draft by email and two survey rounds. 
We incorporated risk factors from the preliminary findings 
of our review and translated them into Delphi survey 
statements. We received and incorporated a large volume 
of open-ended comments across all four data collection 
components. Such feedback provided a mechanism for 
reconciling the different views. We however acknowledge 
that a combination of in-person and written feedbacks 
might have resulted in more comprehensive contributions 
overall. The increasing levels of agreement with the 
consensus statements across the two survey rounds, together 
with the high level of participation [83.3% (50/60) in the 
R1-survey and 100% (50/50) in the R2-survey], further 
strengthens our confidence in the results. The experts’ 
ability to include detailed comments on each of the draft 
statements enabled us to improve them, as reflected in the 
increasing level of agreement with the statements in the 
second round, from 93.05% in the R1-survey to 97.8% 
in the R2-survey. Unlike NAFLD and CKD where after  
40 years there has been an organic consensus, for MAFLD 
and CKD we are just beginning to acquire the relevant data 
to set a baseline for ongoing improvements in knowledge.

Conclusions

MAFLD and CKD are two highly  prevalent  and 
interconnected conditions, posing a challenge to global 
public health. In this Delphi-based consensus statement, 
several international experts from different countries 
developed and endorsed a set of consensus statements 
that provide guidance on the epidemiology, mechanisms, 
management and treatment of MAFLD and CKD, as well 
as the relationship between the severity of MAFLD and risk 
of CKD. These consensus statements establish a framework 
for the early prevention and management of these two 
common and interconnected diseases. 
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