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Introduction: Post-donation renal outcomes are a crucial issue for living kidney 
donors considering young donors’ high life expectancy and elderly donors’ 
comorbidities that affect kidney function. We developed a prediction model for 
renal adaptation after living kidney donation using interpretable machine learning.

Methods: The study included 823 living kidney donors who underwent 
nephrectomy in 2009–2020. AutoScore, a machine learning-based score 
generator, was used to develop a prediction model. Fair and good renal adaptation 
were defined as post-donation estimated glomerular filtration rate (eGFR) of 
≥ 60 mL/min/1.73 m2 and ≥ 65% of the pre-donation values, respectively.

Results: The mean age was 45.2 years; 51.6% were female. The model included 
pre-donation demographic and laboratory variables, GFR measured by 
diethylenetriamine pentaacetate scan, and computed tomography kidney 
volume/body weight of both kidneys and the remaining kidney. The areas under 
the receiver operating characteristic curve were 0.846 (95% confidence interval, 
0.762–0.930) and 0.626 (0.541–0.712), while the areas under the precision-recall 
curve were 0.965 (0.944–0.978) and 0.709 (0.647–0.788) for fair and good renal 
adaptation, respectively. An interactive clinical decision support system was 
developed.1

Conclusion: The prediction tool for post-donation renal adaptation showed 
good predictive capability and may help clinical decisions through an easy-to-
use web-based application.
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1. Introduction

The prevalence of chronic kidney disease (CKD) is steadily 
increasing with aging of the general population (1, 2), and many CKD 
patients eventually progress to end-stage kidney disease (ESKD), 
requiring dialysis or kidney transplantation (KT). KT provides better 
overall survival and quality of life than dialysis for patients with ESKD 
(3). However, the organ shortage for transplantation and the overall 
deterioration of patients while waiting for KT are global problems (4). 
Therefore, a significant proportion of KT relies on living donations; in 
Korea, living-donor KT accounts for approximately 60% of total KT 
cases (5).

Well-selected living kidney donors are known to have no 
additional risk of death or ESKD compared with the general 
population (6). However, a recent study reported that kidney 
donation increased the risk of ESKD by 4-fold compared to that in a 
matched healthy population (7). Living kidney donation from 
marginal donors with risk factors for CKD, such as hypertension, 
glucose intolerance, and obesity, is inevitably increasing (8, 9). 
Therefore, the prediction of post-donation kidney function is 
important for selecting eligible kidney donors and long-term 
management after kidney donation.

Compensatory adaptation occurs in the contralateral kidney 
after donor nephrectomy; therefore, the net reduction in glomerular 
filtration rate (GFR) is approximately 25–40% after donation (10, 
11). Although several studies have investigated the risk factors of 
renal adaptation after donation (6, 12–15) and machine learning 
has been introduced in the field of nephrology (16, 17), no clinically 
applicable machine learning model has been available to predict 
post-donation kidney function in living donors. Here we aimed to 
develop a prediction tool for renal adaptation after living kidney 
donation through interpretable machine learning and a web-based 
application with a user-friendly interface for ease of use in 
clinical practice.

2. Materials and methods

2.1. Study setting and population

This retrospective cohort study was performed at Samsung 
Medical Center, a tertiary hospital located in Seoul, Republic of 
Korea that performs a mean 140 KT per year, approximately 60% 
of which are living-donor KT. The data were obtained from the 
electronic medical records. This study was approved by the 
Samsung Medical Center Institutional Review Board, which 
waived the requirement for informed consent due to the 
retrospective nature of the study (no. 2022-06-053). The clinical 
and research activities being reported are consistent with the 
Principles of the Declaration of Istanbul as outlined in the 
“Declaration of Istanbul on Organ Trafficking and 
Transplant Tourism.”

Donors whose baseline information or outcome variables were 
unavailable were excluded. The data were randomly split into two 
cohorts: the training cohort [80% (n = 658)] to develop a prediction 
model; and the test cohort [20% (n = 165)].

2.2. Inputs

Four types of variables were used as input predictors: patients’ 
demographic information, such as age and sex, variables reflecting 
kidney volume, variables representing GFR, and clinically relevant 
pre-donation laboratory values. The volume of kidneys was measured 
using computed tomography (CT). The CT volume of the remaining 
kidney was also adjusted for height, weight, body mass index (BMI), 
or body surface area (BSA). An GFR measured by a diethylenetriamine 
pentaacetate (DTPA) scan was included.

To select significant variables, we used 100× bootstrapping. Based 
on the clinically important variables, we  added more variables to 
improve the performance of the area under the receiver operating 
characteristic curve (AUROC) by more than 50 times.

2.3. Outcomes

Fair and good renal adaptation were the main outcomes. Fair and 
poor renal adaptation were defined as an absolute post-donation 
eGFR value ≥60 and < 60 mL/min/1.73 m2, respectively. Good and 
insufficient renal adaptation were defined as percentage changes in 
eGFR after donation [(post-donation eGFR/pre-donation 
eGFR) × 100]: good renal adaptation ≥65% and insufficient renal 
adaptation <65%. Post-donation eGFR was the median eGFR 
measured 6–12 months after donation. The eGFR was calculated using 
the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 
formula (18), while creatinine clearance was measured through 24-h 
urine collection.

2.4. Statistical analysis

The data were analyzed using R software version 3.5.3 (R 
Foundation for Statistical Computing, Vienna, Austria). For the 
descriptive summaries, frequencies (percentages) for categorical 
variables and means (standard deviations) or medians (interquartile 
ranges) for continuous variables are reported. To evaluate the model, 
the AUROC and area under the precision-recall curve (AUPRC) of 
the testing dataset were calculated. Values of p < 0.05 were considered 
statistically significant.

2.5. AutoScore

AutoScore is a machine learning-based clinical score generator 
that consists of six modules (19). Module 1 used a random forest plot 
to rank variables according to their importance. Module 2 transformed 
the variables by categorizing continuous variables to improve 
interpretation and cope with nonlinearity. Module 3 assigned scores 
to each variable based on a logistic regression model. Depending on 
the trade-off between model complexity and predictive performance, 
Module 4 determined the number of variables to be included in a 
scoring model. In Module 5, when clinical knowledge was 
incorporated, the cutoff points were fine-tuned when categorizing the 
continuous variables. Module 6 evaluated the performance of the 
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scores in a separate test dataset. The AutoScore framework provides a 
systematic and automated approach to the rapid development of a 
scoring system, combining the advantages of machine learning to 
discriminate and the strength of point-based scores in 
its interpretability.

2.6. Application development

A web application was developed with the R Shiny package (20). 
This application is an online interactive tool for real-time 
implementation. It is easy to use, shareable, and adjustable for clinical 
application. We  added the changeable input variables selected 
from AutoScore.

3. Results

3.1. Patients’ characteristics

During the study period of 2009–2020, 830 living donors donated 
kidneys. Among them, 823 donors were included in the final analysis 
after the exclusion of seven donors due to insufficient data. Donors 
belonging to the fair and good renal adaptation groups after donation 
comprised 86.7% and 61.3% of the entire cohort, respectively. Overall, 
the mean patient age was 45.2 years, and 51.6% of the patients 
were female.

The patients’ baseline characteristics according to fair renal 
adaptation (post-donation eGFR ≥ 60 mL/min/1.73 m2) are shown in 
Table 1. Compared with the poor renal adaptation group, donors in 
the fair renal adaptation group were younger and more frequently 
female, had lower body weight and BMI, and had a lower prevalence 
of hypertension. Pre-donation kidney function variables, including 
eGFR, cystatin C eGFR, and creatinine clearance, were all higher, 
while 24-h urine sodium excretion was lower in the fair renal 
adaptation group than in the poor renal adaptation group. CT volume 
and GFR measured with a DTPA scan of the remaining kidney were 
higher in the fair renal adaptation group than in the poor renal 
adaptation group.

Baseline characteristics according to the good renal adaptation 
(post-donation eGFR ≥ 65% of pre-donation eGFR) group are shown 
in Table 2. Similar to the fair renal adaptation group, donors in the 
good renal adaptation group were younger, more frequently female, 
and had lower body weight and BMI than donors in the insufficient 
renal adaptation group. The prevalence of hypertension was 
comparable between the groups. Although the cystatin C eGFR was 
higher in the good versus insufficient renal adaptation group, 
pre-donation eGFR, and creatinine clearance were comparable 
between the groups. The 24-h urine creatinine excretion, 24-h urine 
sodium excretion, and serum uric acid levels were lower in the good 
versus insufficient renal adaptation groups. The CT volume of the 
remaining kidney were not significantly different between groups. 
However, the CT volume adjusted by body weight (CT volume/
weight) of the remaining kidney and CT volume percentage of the 
remaining kidney were higher in the good versus insufficient renal 
adaptation group. The GFR measured with a DTPA scan was also 
higher in the good versus insufficient renal adaptation group.

Donors with a relatively lower pre-donation eGFR tended to 
donate a smaller kidney than the contralateral (remaining) kidney, 

although there was no statistical significance (CT volume percentage 
of the remaining kidney: 50.3 ± 2.5, 50.2 ± 3.6, and 49.6 ± 3.1% in 
donors with pre-donation eGFR <80, 80–120, and ≥ 120 mL/
min/1.73 m2, respectively).

3.2. Development of prediction model

Among the included variables, GFR-related variables, including 
pre-donation eGFR, normalized GFR (on DTPA) of the remaining 
kidney, and cystatin C eGFR, and age were the most effective variables 
for predicting fair renal adaptation. Pre-donation eGFR, serum 
creatinine level, age, and CT volume of the remaining kidney/weight 
were highly effective variables for predicting good renal adaptation. 
Among the variables regarding CT volume of the remaining kidney 
adjusted for weight, height, BMI, or BSA, the weight-adjusted CT 
volume of the remaining kidney (CT volume of remaining kidney/
weight) was selected as an effective variable for fair and good renal 
adaptation. Cystatin C eGFR was selected only for fair renal 
adaptation, while creatinine clearance and serum creatinine level were 
selected only for good renal adaptation. Young age (<40 years), female 
sex, CT volume of remaining kidney/weight ≥ 2.00 mL/kg, and 
normalized GFR (on DTPA) of the remaining kidney ≥30 mL/
min/1.73 m2 were the most significant variables for fair and good renal 
adaptation after donation.

The scores for each outcome are shown in Table 3. The sum of 
scores for each outcome with the included variables was 0–99 and 
0–100 for fair and good renal adaptation, respectively. Approximately 
95% of the donor scores were distributed at 4–53 and 22–51 for each 
outcome, respectively. The probabilities of fair and good renal 
adaptation according to the scores are shown in Figure 1. For fair renal 
adaptation outcome, a score of ≥12 and ≥ 15 ensure fair renal 
adaptation with a probability of >95 and > 99%, respectively. The 
predicted and observed probabilities of fair and good renal adaptation 
were well-matched.

The performance of the models was evaluated using AUROC and 
AUPRC. An AUROC of 0.846 (95% CI, 0.762–0.930) and 0.626 
(0.541–0.712) and an AUPRC of 0.965 (0.944–0.978) and 0.709 
(0.647–0.788) were noted for fair and good renal adaptation, 
respectively (Figure 2).

3.3. Interactive clinical decision support 
system

We developed an interactive clinical decision support system 
entitled “Renal Adaptation Prediction Tool prior to Operation” 
(RAPTO) to facilitate the utility and accessibility (Figure 3). The user 
interface is composed of two parts: input (A); and output (B). The 
output column presents the AutoScore-based score and probability of 
the outcome. RAPTO has been released to the public on GitHub and 
is available online at https://jaeyongyu.shinyapps.io/rapto/.

4. Discussion

We developed an interpretable machine learning–based 
prediction tool for renal adaptation after nephrectomy in living 
kidney donors. Our prediction model showed a good predictive 

https://doi.org/10.3389/fmed.2023.1222973
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://jaeyongyu.shinyapps.io/rapto/


Jeon et al. 10.3389/fmed.2023.1222973

Frontiers in Medicine 04 frontiersin.org

ability for renal adaptation. A random forest plot for variable 
selection and logistic regression for coefficients were the two main 
components used to generate scores. These scores are interpretable 
and easy to apply in clinical practice because of their clinical relevance 
and lightness compared to other conventional machine learning 
methods. The development of clinically feasible applications for both 
physicians and kidney donors in real-world practice is a novel result 
of this study, as applicability is a main issue in the field of medical 
artificial intelligence. Unlike many previous studies that proposed 
models only in terms of accuracy, we developed an interactive easy-
to-use web-based application.

Risk prediction for ESKD after living kidney donation is an 
important topic in transplant nephrology. One large study reported 
that the observed ESKD risk for 15 years after living-donor kidney 
donation in the United  States was 3.5–5.3 times higher than the 
expected risk in the absence of donation (7). However, the absolute 
risk of ESKD remains minimal and has been considered acceptable in 
eligible donors confirmed through a workup. While the estimation of 
the long-term risk of post-donation ESKD or CKD is helpful for 
creating policies regarding living-donor kidney donation, long-term 
kidney function after donation is affected by several factors, including 
newly developed comorbidities after the donation. If kidney function 

TABLE 1 Pre-donation baseline characteristics according to post-donation fair renal adaptation.

Variable Fair renal adaptationa 
(n = 714)

Poor renal adaptation 
(n = 109)

p value

Age, years 44.0 ± 12.3 52.8 ± 9.3 <0.001

Sex, female 385 (53.9%) 40 (36.7%) 0.001

Height, cm 164.6 ± 8.8 165.5 ± 7.9 0.281

Weight, kg 65.8 ± 12.0 68.8 ± 10.5 0.012

BMI, kg/m2 24.2 ± 3.1 25.1 ± 3.0 0.004

Blood pressure, mmHg

  Diastolic 74.3 ± 10.8 76.4 ± 10.8 0.066

  Systolic 121.2 ± 13.5 122.1 ± 13.6 0.529

Diabetes mellitus 7 (1.0%) 3 (2.8%) 0.27

Hypertension 62 (8.7%) 18 (16.5%) 0.017

Pre-donation laboratory findings

  Pre-donation serum creatinine, mg/dL 0.77 ± 0.16 0.90 ± 0.15 <0.001

  Pre-donation eGFR, mL/min/1.73 m2 103.3 ± 12.3 88.3 ± 9.7 <0.001

  Cystatin C eGFR, mL/min 129.0 ± 31.3 102.2 ± 17.6 <0.001

  Serum uric acid, mg/dL 5.0 ± 1.3 5.6 ± 1.3 <0.001

  Low-density lipoprotein 119.8 ± 29.7 127.2 ± 33.4 0.017

  24-h creatinine clearance, mL/min 117.6 ± 28.2 109.6 ± 22.3 0.001

  24-h urine volume, mL 1,782.2 ± 720.2 1,915.0 ± 583.5 0.034

  24-h urine creatinine, g/day 1.3 ± 0.5 1.3 ± 0.5 0.526

  24-h urine sodium, mmol/day 160.8 ± 67.2 175.7 ± 75.8 0.034

Kidney CT

  Total CT volume, mL 333.1 ± 59.4 321.0 ± 56.0 0.047

  CT volume of remaining kidney, mL 167.6 ± 31.9 159.3 ± 27.8 0.011

  CT volume percentage of remaining kidney, % 50.3 ± 3.6 49.7 ± 2.5 0.033

  Total CT volume/weight, mL/kg 5.1 ± 0.7 4.7 ± 0.6 <0.001

  CT volume/weight of remaining kidney, mL/kg 2.6 ± 0.4 2.3 ± 0.3 <0.001

DTPA renal scan

  Total predicted GFR, mL/min 93.6 ± 17.5 79.9 ± 17.0 <0.001

  Predicted GFR of remaining kidney, mL/min 47.5 ± 10.3 40.1 ± 9.9 <0.001

  Uptake percentage of remaining kidney, % 50.8 ± 4.6 49.8 ± 5.4 0.05

  Normalized GFR of remaining kidney, mL/

min/1.73 m2
48.0 ± 10.4 39.3 ± 9.4 <0.001

Continuous variables are presented as mean ± SD, while categorical variables are presented as number (percentage).
p values were calculated using t-tests for continuous variables and chi-squared tests for categorical variables for intergroup comparisons.
aFair renal adaptation was defined as a post-donation eGFR ≥ 60 mL/min/1.73 m2.
BMI, body mass index; BSA, body surface area; CT, computed tomography; DTPA, diethylenetriamine pentaacetate; eGFR, estimated glomerular filtration rate; and GFR, glomerular filtration rate.
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is well maintained within 1 year after kidney donation, long-term 
preservation of kidney function may be  more feasible in donors 
through regular health screening and lifestyle modifications such as 
dietary modification, regular exercise, weight reduction for overweight 
or obesity, smoking cessation, and adequate control of blood pressure 
(21, 22). Therefore, the prediction of short-term post-donation kidney 
function and identification of modifiable risk factors may be very 
important to improving long-term prognosis. Post-donation renal 
adaptation per se does not determine the eligibility of kidney donation. 
We developed the prediction model as a tool to screen potential 
marginal donors and to assist clinical decision of donation site for 
better renal adaptation. The eligibility of kidney donation should 

be determined considering several factors such as potential donor’s 
age, comorbidities, or willingness of post-donation health care. 
Although there was no evidence-based measure to improve renal 
adaptation, donors who are expected to show poor or insufficient 
renal adaptation should be more educated for lifestyle modification to 
reduce risk factors for CKD and actively followed-up by nephrologists. 
We established a donor clinic in our institution and applied systemized 
protocols for kidney donors, including post-donation follow-ups since 
2013 (23). Poor renal adaptation was less frequent in the donor clinic 
period compared to the pre-donor clinic period.

We developed a simple tool to predict a post-donation eGFR 
≥60 mL/min/1.73 m2 (fair renal adaptation) or ≥ 65% of pre-donation 

TABLE 2 Pre-donation baseline characteristics according to good renal adaptation after living kidney donation.

Variable Good renal 
adaptationa (n = 505)

Insufficient renal 
adaptation (n = 318)

p value

Age, years 44.2 ± 12.3 46.7 ± 12.2 0.006

Sex, female 285 (56.4%) 140 (44.0%) 0.001

Height, cm 164.3 ± 8.8 165.4 ± 8.5 0.076

Weight, kg 64.9 ± 11.9 68.2 ± 11.5 <0.001

BMI, kg/m2 23.9 ± 3.0 24.8 ± 3.0 <0.001

Blood pressure, mmHg

  Diastolic 74.3 ± 10.5 75.1 ± 11.3 0.334

  Systolic 121.6 ± 13.6 121.1 ± 13.3 0.604

Diabetes mellitus 6 (1.2) 4 (1.3) 1

Hypertension 44 (8.7) 36 (11.3) 0.267

Pre-donation laboratory findings

  Pre-donation serum creatinine, mg/dL 0.78 ± 0.17 0.81 ± 0.15 0.033

  Pre-donation eGFR, mL/min/1.73 m2 101.8 ± 13.7 100.6 ± 11.8 0.202

  Cystatin C eGFR, mL/min 128.8 ± 32.5 120.1 ± 28.4 <0.001

  Serum uric acid, mg/dL 4.9 ± 1.3 5.3 ± 1.4 0.001

  Low density lipoprotein 119.8 ± 29.7 127.2 ± 33.4 0.017

  24-h creatinine clearance, mL/min 116.3 ± 29.5 116.8 ± 24.3 0.805

  24-h urine volume, mL 1,766.9 ± 704.5 1,852.2 ± 702.9 0.091

  24-h urine creatinine, g/day 1.2 ± 0.5 1.3 ± 0.5 0.002

  24-h urine sodium, mmol/day 158.4 ± 64.5 169.7 ± 74.2 0.025

Kidney CT

  Total CT volume, mL 332.7 ± 60.9 329.5 ± 55.9 0.441

  CT volume of remaining kidney, mL 168.0 ± 32.5 164.1 ± 29.7 0.087

  CT volume percentage of remaining kidney, % 50.4 ± 3.4 49.8 ± 3.6 0.018

  Total CT volume/weight, mL/kg 5.2 ± 0.7 4.9 ± 0.7 <0.001

  CT volume of remaining kidney/body weight, mL/kg 2.6 ± 0.4 2.4 ± 0.3 <0.001

DTPA renal scan

  Total predicted GFR, mL/min 93.6 ± 17.8 89.0 ± 18.0 <0.001

  Predicted GFR of remaining kidney, mL/min 47.7 ± 10.5 44.7 ± 10.4 <0.001

  Uptake percentage of remaining kidney, % 51.1 ± 4.6 50.1 ± 4.8 0.003

  Normalized GFR of remaining kidney, mL/min/1.73 m2 48.7 ± 10.7 43.9 ± 10.1 <0.001

Continuous variables are presented as mean ± SD, while categorical variables are presented as number (percentage).
p values were calculated using t-tests for continuous variables and chi-squared tests for categorical variables for intergroup comparisons.
aGood renal adaptation was defined as a post-donation eGFR ≥ 65% of the pre-donation eGFR.
BMI, body mass index; BSA, body surface area; CT, computed tomography; DTPA, diethylenetriamine pentaacetate; eGFR, estimated glomerular filtration rate; and GFR, glomerular filtration rate.
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eGFR (good renal adaptation). The prediction tool for fair renal 
adaptation showed excellent predictive ability, whereas that for good 
renal adaptation had relatively low predictive ability. These results may 
be because good renal adaptation indicated a proportional change in 
eGFR and was determined by more diverse factors. Pre-donation 
eGFR, age, sex, BMI, CT volume/weight, CT volume percentage, and 
normalized GFR (on DTPA) of the remaining kidney were significant 
factors predicting both fair and good renal adaptation, consistent with 
previous studies (14, 15, 24). Pre-donation GFR was reportedly the 
most important factor determining post-donation GFR and eligibility 
for kidney donation (10). Old age and obesity are well-known risk 
factors for reduced renal functional reserve capacity (6, 12, 13). 
Hypertension, male sex, and small CT volume of the remaining 
kidney were also reported predictors for poor renal adaptation after 
kidney donation (14, 15). However, hypertension was not a significant 
risk factor in our study.

One previous study developed a prediction model for renal 
adaptation based on logistic regression (15). This simple prediction 
model suggested cutoff values for renal adaptation. However, it is 
difficult to know the probability of renal adaptation at a particular 
score. Simplified models that predict the absolute value of post-
donation GFR have a variable margin of error depending on 
pre-donation GFR levels and are difficult to know the likelihood of 
renal adaptation (25, 26). Our prediction model shows the probability 
of renal adaptation according to scores. In addition, it may 
be cumbersome to calculate scores with many variables directly. Our 
model can show the probability of renal adaptation automatically by 
entering the variables through the web-application.

After nephrectomy, compensatory adaptation occurs in a 
remaining kidney, resulting in an increase in single nephron GFR 
compared to pre-donation GFR. There has been no consensus upon 
the cutoff for appropriate renal adaptation, although post-donation 
GFR was reported as 60–75% of pre-donation GFR (10, 11). Previous 
studies suggested 60–66% of pre-donation GFR after donation as the 
cutoff for appropriate renal adaptation (14, 15). Recent studies showed 
that the degree of this initial renal adaptation is a prognostic factor for 
subsequent long-term renal function (27, 28). The third and fourth 
quartile (< 66.6%) of renal adaptation at 1-month post-donation was 
reported as the risk factors for lower post-donation eGFR compared 

TABLE 3 Scores of each variable according to outcomes.

Variable Fair renal 
adaptation

Good renal 
adaptation

Pre-donation eGFR, mL/min/ 1.73m2

  <80 0 19

  80–90 1 10

  90–100 1 4

  100–110 4 4

  110–120 4 0

  ≥120 22 0

Age, years

  <20 21 29

  20–30 24 13

  30–40 2 10

  40–50 0 6

  50–60 0 2

  ≥60 0 0

Sex

  Female 1 3

  Male 0 0

BMI, kg/m2

  <23 1 5

  23–25 2 3

  25–30 1 3

  ≥30 0 0

Normalized GFR (on DTPA) of remaining kidney, mL/

min/1.73 m2

  <30 0 0

  30–40 2 4

  40–50 2 6

  50–60 3 7

  60–70 3 8

  ≥70 23 10

CT volume percentage of remaining kidney, %

  <54 0 0

  ≥54 1 5

CT volume of remaining kidney/body weight, mL/kg

  <2 0 0

  2.0–2.5 1 5

  2.5–3.0 1 9

  ≥3.0 3 19

Cystatin C eGFR, mL/min

  <90 0 NA

  90–120 1 NA

  120–150 2 NA

  150–180 4 NA

  ≥180 23 NA

(Continued)

TABLE 3 (Continued)

Variable Fair renal 
adaptation

Good renal 
adaptation

Creatinine clearance, mL/min

  <80 NA 7

  80–120 NA 0

  120–160 NA 2

  ≥160 NA 4

Serum creatinine, mg/dL

  <0.7 NA 7

  0.7–0.9 NA 5

  0.9–1.1 NA 0

  ≥1.1 NA 3

BMI, body mass index; CT, computed tomography; DTPA, diethylenetriamine pentaacetate; 
eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate; and NA, not 
available.
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to the first quartile (27). The eGFR values after 5 and 15 years were 
higher in the first tercile than the second and third terciles when the 
degree of increase in post-donation single kidney eGFR at 3 months 
was divided by tercile scale (approximately <60%, 60–67%, and > 67%) 
(28). Therefore, we  determined 65% of pre-donation eGFR after 
donation as the cutoff of good renal adaptation although additional 
research is needed on the clinical significance of this criterion.

Interestingly, lower pre-donation eGFR and creatinine clearance 
<80 mL/min were associated with good renal adaptation compared to 
higher pre-donation eGFR and creatinine clearance of 80–119 mL/
min, respectively. A lower pre-donation eGFR was associated with a 
higher likelihood of good renal adaptation in previous studies (14, 24). 
There are two possible explanations for these findings. First, it is 
plausible that donors with a lower GFR are more likely to donate 
smaller kidneys than the contralateral kidney because of concerns 
regarding poor renal adaptation after donation. This is supported by 
our study showing that donors with a low pre-donation eGFR tended 
to have a relatively higher CT volume percentage of the remaining 
kidney than donors with a high eGFR. Another possible explanation 
is that the low GFR in healthy donors may reflect a relatively low 
filtration fraction as well as a low number of nephrons. In a recent 
study by Chakkera et al. (29), the 95th percentile GFR (CKD-EPI 
eGFR at 118 mL/min/1.73 m2) was associated with the highest single 

nephron GFR in kidney donors, suggesting that adaptation reserves 
for increasing filtration after nephrectomy may be limited in donors 
with a high eGFR. In addition, the study by Lerman et al. showed a 
slightly decreasing tendency in single nephron GFR with increasing 
age of 40–70 years, although this was not statistically significant (30). 
Recent studies have reported that renal hyperfiltration was associated 
with poor renal outcome, although it is unclear whether hyperfiltration 
occurs at single nephron level (31, 32). On the other hand, the increase 
in post-donation single kidney GFR is driven by hyperfiltration, which 
may play a favorable role in long-term GFR after kidney donation (27, 
28). Therefore, the factors inducing hyperfiltration, rather than 
hyperfiltration per se, may be responsible for poor renal outcome in 
kidney donors as well as non-donors. Further studies are required to 
clarify this.

Our study had several limitations. First, as it was a single-center 
study, the sample size was relatively small; thus, its findings may 
be insufficient for generalization. Subsequent validation studies using 
external cohorts are required to confirm the usefulness of our 
predictive tool. Second, relatively short-term renal outcomes were 
evaluated. Previous studies reported that the rate of GFR decrease 
after kidney donation in donors was not faster than that in the general 
population, and some donors experienced an increase in GFR over 
time (6, 33). A recent study found that a low eGFR around 6 months 

FIGURE 1

Probabilities of renal adaptation according to the score. Probabilities of fair renal adaptation according to the scores (A) and observed and predicted 
probabilities of fair renal adaptation according to the score groups. A score of ≥12 ensures fair renal adaptation with a probability of >95%. (B). 
Probabilities of good renal adaptation according to the scores (C) and observed and predicted probabilities of good renal adaptation according to 
score groups (D).
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after donation, but not a low pre-donation eGFR, was associated with 
an increased risk of ESKD (21). In addition, previous studies reported 
that the degree of initial renal adaptation was a prognostic factor for 
subsequent long-term renal function (27, 28), supporting GFR 
measured up to 1 year after donation as a useful surrogate marker for 
predicting long-term renal outcomes in living kidney donors. 
However, there are still limitations to predict long-term renal 
function based on initial post-donation renal function. Younger 
donors are more likely to have incident diseases due to their longer 
lifespan than older donors. Furthermore, in the case of living related 
donors, donors have potential risk of sharing a genetic susceptibility 
or a lifestyle that contributes to kidney diseases developed in 
recipients. Short-term post-donation renal function does not fully 
reflect the long-term effects of these factors on the renal function. 
Therefore, when determining eligibility for kidney donation, it is 
important to consider not only the short-term post-donation renal 
function but also the long-term effects of various factors. Third, eGFR 
calculated using serum creatinine was used instead of the actual GFR 
measurement. The difference between eGFR and measured GFR is 

usually small, but deviations from the true GFR of an individual 
donor can be significant (18). However, directly measuring GFR is 
difficult, time-consuming, and expensive. Most kidney donors do not 
require routine direct GFR measurement (34, 35). Several guidelines, 
including the Kidney Disease: Improving Global Outcomes 
guidelines, recommend the evaluation of serum cystatin C-based 
eGFR or creatinine clearance through 24-h urine collection in 
addition to serum creatinine-based eGFR, and considering the direct 
measurement of GFR only if necessary. Therefore, our findings may 
be useful in real-world clinical practice. Despite these limitations, our 
study has significant implications for developing a prediction model 
of post-donation renal adaptation with a new machine learning 
technique and for creating an easily applicable and interpretable tool. 
Through the web-based application of RAPTO, the results of our 
model can be  intuitively communicated to end users despite no 
understanding of machine learning models or other 
computational resources.

In conclusion, here we developed a clinically useful prediction 
model for renal adaptation after donation using interpretable machine 

FIGURE 2

Receiver operating characteristic (ROC) curves and area under the precision-recall curve (AUPRC) for each outcome. The area under the ROC was 
0.846 (95% confidence interval [CI], 0.762–0.930) and 0.626 (0.541–0.712), while the AUPRC was 0.965 (95% CI, 0.944–0.978) and 0.709 (0.647–
0.788) for fair (A,B) and good (C,D) renal adaptation, respectively.
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learning techniques and an easy-to-use web-based application tool for 
potential kidney donors. External validation through multicenter 
studies including more diverse donor populations is required to 
improve the efficacy of our model to increase its generalizability for 
widespread use.
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FIGURE 3

Web-based interactive clinical decision support system: Renal Adaptation Prediction Tool prior to Operation (RAPTO). RAPTO consists of an input 
(A) and an output (B) part. As a result of the input part, the output part provides the sum of scores, along with the probability of fair or good renal 
adaptation corresponding to that score. The fair and good renal adaptation models included pre-donation eGFR, age, sex, BMI, and normalized GFR 
(on DTPA) of the remaining kidney, CT volume percentage of the remaining kidney, and CT volume of the remaining kidney/body weight. Additionally, 
the fair renal adaptation model included cystatin C eGFR, while the good renal adaptation model included pre-donation creatinine clearance and 
serum creatinine. The RAPTO is available online at https://jaeyongyu.shinyapps.io/rapto/. BMI, body mass index; CT, computed tomography; DTPA, 
diethylenetriamine pentaacetate; and eGFR, estimated glomerular filtration rate.
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