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ABSTRACT—Objective/Introduction: Sequential vital-sign information and trends in vital signs are useful for predicting
changes in patient state. This study aims to predict latent shock by observing sequential changes in patient vital signs.Methods:
The dataset for this retrospective study contained a total of 93,194 emergency department (ED) visits from January 1, 2016, and
December 31, 2020, andMedical Information Mart for Intensive Care (MIMIC)-IV-ED data. We further divided the data into train-
ing and validation datasets by random samplingwithout replacement at a 7:3 ratio.Wecarried out external validationwithMIMIC-
IV-ED. Our predictionmodel included logistic regression (LR), random forest (RF) classifier, amultilayer perceptron (MLP), and a
recurrent neural network (RNN). To analyze the model performance, we used area under the receiver operating characteristic
curve (AUROC).Results: Data of 89,250 visits of patients whomet prespecified criteria were used to develop a latent-shock pre-
diction model. Data of 142,250 patient visits from MIMIC-IV-ED satisfying the same inclusion criteria were used for external val-
idation of the prediction model. The AUROC values of prediction for latent shock were 0.822, 0.841, 0.852, and 0.830 with RNN,
MLP, RF, and LRmethods, respectively, at 3 h before latent shock. This is higher than the shock index or adjusted shock index.
Conclusion: We developed a latent shock prediction model based on 24 h of vital-sign sequence that changed with time and
predicted the results by individual.

KEYWORDS—Shock; clinical decision support system; emergency department; artificial intelligence
INTRODUCTION

Shock is a physiologic state that progresses continuously un-
less treated.Without proper management, patients in a shock state
eventually progress to end-stage organ dysfunction (1,2). If shock
continues without proper management, the patient will die. How-
ever, patients in the compensation stage of shock are difficult to
detect in the emergency department (ED) based on a single mea-
surement of vital signs at triage. Clinicians use several scoring
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tools and triage systems to detect patients in the early stage of
shock to prevent progression (3–5).

Considerable effort has been devoted to classifying the causes
of shock. Scoring tools such as the Early Warning Score
(MEWS), shock index, and quick Sequential Organ Failure As-
sessment (qSOFA) or Sequential Organ Failure Assessment
(SOFA) are widely used in EDs (6–8). In addition, machine
learning–based shock-prediction models are being studied
(9–12), and vital-sign information can be obtained in real time.
A previous study reported the use of serial vital signs in
predicting patient status in intensive care units (ICUs) or wards
(13). However, few studies have explored the use of sequential
vital-sign information in EDs (14).

The early phase of shock is difficult to define clinically or to
predict because, as a compensatory-response state, signs of organ
failure can be absent and difficult to detect, based on laboratory
results (15). Scoring and shock predictions have been based on
information collected at one specific time, hindering detection
of the early phase (11). To predict or detect shock at the early
stage, not only the values of vital signs, but also their trends are
important (1,13,16–20).

This study aims to predict progress to latent shock among pa-
tients in the ED by observing sequential vital-sign changes.
METHODS

This study was approved by the Institutional Review Board (IRB) of Samsung
Medical Center. The need for informed consent was waived due to the retrospec-
tive, observational, and anonymous nature of the study (IRB no. IRB 2022-04-
063-001).

mailto:
http://www.shockjournal.com
http://www.shockjournal.com
http://www.shockjournal.com


374 SHOCK VOL. 60, NO. 3 CHANG ET AL.
Study setting

This retrospective study was carried out in an ED of a tertiary teaching hospital
in a metropolitan city. The hospital holds 1,975 beds, and its ED contains 69 beds
and treats an average of 75,000 to 80,000 patients each year.

Study population

Patients who visited the ED between January 1, 2016, and December 31, 2020,
were included in our study. Patients younger than 18 years, dead on arrival (DOA),
in cardiac arrest, left without being seen, or without an available initial Korean Tri-
ageAcuity Scale (KTAS) score were excluded from the population. TheKTAS is a
five-level rating of disease/injury severity used in South Korea. Patients with fewer
than three vital-sign recordings within the 24 h before the measured outcome were
excluded. Patients who were hypotensive or on inotropic medication at the time of
ED admission were also excluded, as they were already on high alert and clinically
diagnosed by the ED clinician as being in shock.

We used the MIMIC-IV-ED database, a publicly available database sourced
from the electronic health record of the Beth Israel Deaconess Medical Center,
for external validation. This dataset is freely available and contains ED visit infor-
mation about triage, medication, discharge, and diagnosis (21,22).

Outcome

The primary outcome measure of this study is latent shock. A latent shock pa-
tient is defined as one whose initial vital signs were normal but was later prescribed
inotropic agents (dobutamine, dopamine, epinephrine, norepinephrine, or vaso-
pressin) or who had two consecutive recordings of mean blood pressure (MBP)
less than 65 mm Hg during the ED visit. The other patients were defined as
non–latent shock patients.

Predictors

Vital-sign recordings of diastolic blood pressure (DBP;mmHg), systolic blood
pressure (SBP; mm Hg), pulse rate (PR; beats per minute), body temperature (BT;
°C), respiratory rate (RR; breath per minute), and peripheral capillary oxygen sat-
uration (SpO2; %) were used as predictors. Vital-sign measurements within 24 h
before latent shock or the last vital-sign measurements in non–latent shock patients
were included (Fig. 1). Vital-sign records were grouped by hour, and recordings
were averaged when vital signs were measured more than once an hour.

Data preparation and missing data handling

We split the dataset into training, validation, and test subsets. Training and val-
idation datasets (73,067 ED visits) were collected from January 1, 2016, to
December 31, 2019. We further divided the training and validation datasets by ran-
dom sampling without replacement at a ratio of 7:3. The training dataset was used
to train our prediction models, and the validation dataset was used to tune the
hyperparameters. The test dataset (20,127 ED visits) was collected from January
1, 2020, to December 31, 2020, comprised data not used during the training phase,
and was used only to determine the final model performance.
FIG. 1. Model development and validation process. For latent shock
patients, vital signs measured within 24 h of latent shock were collected. For
non–latent shock patients, vital signs measured within 24 h of the last
measurement in the ER were collected. Vital signs were grouped by hour. If
there were multiple measurements within an hour, the average was calculated.
In cases where patient length of stay or time from visit to latent shock was less
than 2 h, the values before visit were left empty.
Because the vital-sign data in electronic health records (EHRs) vary over time,
data manipulation techniques were needed to appropriately represent patient con-
ditions. First, we calculated the average value to create only one value for each
time point. Because there are six vital signs and 24 timeframes, each visit is repre-
sented as a 6� 24matrix. Second, we forward-filled the null values for times with-
out a value.

For example, if the sequence had values of [1, 2, missing, 3], we
carried-forward the most recent value for imputation. With the given example,
the output would be [1–3]. However, there was a case in which carry-forward im-
putation could not be implemented. In this case, we applied three other imputation
methods: impute with −1, impute with 0, and impute with average. In a given se-
quence [missing, missing, 1, 2, 3], the first two missing values do not have an as-
sociated latest value to impute for carry-forward imputation. Instead, we impute
with −1 to create the output sequence [−1, −1, 1, 2, 3], with 0 to produce output
sequence [0, 0, 1, 2, 3], or with the average to produce [1–3]. We compare the per-
formance among imputation methods.

The dimensionalities of the input data differed by predictionmodel. For logistic
regression (LR), random forest (RF), and multilayer perceptron (MLP) methods,
we flattened the 6 � 24 matrix into a vector with 144 values. For recurrent neural
network (RNN), the dimensionality was unchanged (Fig. 1). Following the devel-
opment of the prediction model, we performed external validation using the
MIMIC-IV-ED database.

Machine learning

Our predictionmodel included LR, RF classifier, MLP, and RNN. The baseline
model was LR with L2 regularization. For the RF classifier, we used 100 trees in
the forest and a Gini impurity to measure the quality of the split. In our MLP, we
used eight hidden layers, each with 128 neurons. For RNN, we used one linear em-
bedding layer with 300 neurons, four LSTM layers with 64 neurons, and four linear
layers with 64 neurons, followed by four LSTM layers.

Model evaluation

To analyze model performance, we used the AUROC approach. Model perfor-
mance was reported on the test set using 1,000 bootstrapped samples to calculate
the mean and 95% confidence interval. As this model predicts latent shock, we
compared the results with actual outcomes in the ED.

We compared the model detection time and the time of actual initial bolus hy-
dration for management of shock (1,7,23,24). As this was a retrospective study, we
examined bolus hydration time to indirectly evaluate the time of clinician recogni-
tion of and management time of shock. Bolus hydration time was defined as that at
which a specific amount of fluid was ordered to be infused in less than 1 h. We also
compared the AUROC of the model with a shock index and an adjusted shock
index.

Frequency of vital-sign assessment

The frequency of vital-sign assessment for latent shock and non–latent shock
patients was analyzed by hour before outcome. Average vital-sign recordings for
latent shock and non–latent shock patients were recorded by hour before outcome.

Statistical analysis

Patient characteristics were described using descriptive statistics. Demographic
data, vital-sign data, KTAS scores, initial nurse assessments, vital-sign reassess-
ment time gaps, and frequency of vital-sign reassessment for latent shock and
non–latent shock patients were compared using t test and chi-square test at a
0.01 significance level. Repeated vital-sign measurements within the 24 h
timeframe were described as median and IQR.
RESULTS

Study population and demographics

Patients younger than 18 years (n = 60,122), DOA, in cardiac
arrest, missing KTAS information (n = 10,634), left without be-
ing seen (n = 20,480), with a mean blood pressure lower than
65 (n = 8,984), or with a missing or abnormal vital-sign record
(n = 111) were excluded from the study population. Data of
89,250 visits of patients whomet the prespecified criteria were in-
cluded in the final analysis. Among these visits, 4% (3,650) in-
volved latent shock patients (Fig. 2, Table 1).



TABLE 1. Patient characteristics

Latent shock Non–latent shock P*

SMC (n = 3,650) (n = 85,600)
Age, mean ± SD 66 [56;75] 62 [50;72] <0.001
Sex, n (%) 0.151
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The MIMIC-IV database was used to externally validate our
latent shock prediction model. Data of 142,250 visits of patients
satisfied the same inclusion criteria. Of the total patients, 825
were included as the latent shock group. The patient demo-
graphics are described in Table 1.
Female 1,666 (45.6%) 40,121 (46.9%)
Male 1,984 (54.4%) 45,479 (53.1%)

KTAS, n (%) <0.001
1 (most urgent) 69 (1.9%) 282 (0.3%)
2 699 (19.2%) 6,925 (8.1%)
3 2,360 (64.7%) 51,312 (59.9%)
4 499 (13.7%) 25,113 (29.3%)
5 (least urgent) 23 (0.6%) 1,968 (2.3%)

Length of stay, h 17.1 [8.8;24.6] 12.0 [7.1;21.9] <0.001
MIMIC (n = 825) (n = 141,425)
Age, mean ± SD 65.0 ± 17.6 56.2 ± 20.2 <0.01
Sex, n (%) 0.384
Vital-sign records

Results for latent shock and non–latent shock patients are
shown in Figure 3. The mean (standard deviation) values of
vital-sign reassessment time gap and frequency of reassessment
for latent shock and non–latent shock patients were 1.0 (1.2) h
and 2.0 (1.7) h and 7.0 (4.2) and 6.0 (3.2) times, respectively.
Generally, latent shock patients had lower SBP, DBP, and SpO2

and higher RR, PR, and BT (Fig. 3).
Female 436 (52.8%) 76,983 (54.4%)
Male 389 (47.2%) 64,442 (45.6%)

Acuity, n (%) <0.01
5 (most urgent) 0 (0.0%) 47 (0.0%)
4 1 (0.1%) 2,374 (1.7%)
3 119 (14.4%) 72,461 (51.2%)
2 415 (50.3%) 60,006 (42.4%)
1 (least urgent) 290 (35.2%) 6,537 (4.6%)

KTAS, Korean Triage and Acuity Scale.
*P values were calculated using t test or chi-square test based on variable
type.
Model performance

Figure 4 and Table S1, http://links.lww.com/SHK/B729,
show the AUROC values for prediction of latent shock. These
findings were 0.822, 0.841, 0.852, and 0.830 with RNN, MLP,
RF, and LR methods, respectively, at 3 h before latent shock.
The average AUROC of predictions for latent shock was greater
than 0.7 at 12 h before and greater than 0.85 at 1 h before latent
shock using the four methods. The AUROC values of shock in-
dex and adjusted shock index were between 0.49 and 0.73 (Table
S2, http://links.lww.com/SHK/B729). Table S3, http://links.
lww.com/SHK/B729, shows the sensitivity analysis results of
the RF model.

Figure S1, http://links.lww.com/SHK/B729, shows the interval
between bolus hydration and the hypotensive shock event. The num-
ber is the time between the hypotensive shock event and hydration.
Most hydration, which might refer to the time that clinician shock
recognition and response occur, is performed when shock occurs
or after sock occurs, whereas the latent shock prediction model
shows more than 0.8 AUROC 3 h before latent shock occurs.
FIG. 2. Flowchart. DOA, dead on arrival; EMR, electronic medical records; ER,
seen; MBP, mean blood pressure.
Table S3, http://links.lww.com/SHK/B729, shows varia-
tion in vital signs. The factors with the largest difference be-
tween latent shock and non–latent shock patients were PR
and SBP. Similar trends were observed in the MIMIC-IV-ED
dataset. Generally, latent shock patients had lower SBP, DBP,
and SpO2 and higher RR, PR, and BT. Table S4, http://links.
lww.com/SHK/B729, shows variation of repeated measures
for each vital sign. The proportion of vital-sign information
emergency room; KTAS, Korean Triage Acuity Scale; LWBS, left without being
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FIG. 3. Hourly average vital sign recordings before the shock event. Red dotted lines are the time that shock occurred. SpO2, peripheral capillary oxygen
saturation.
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provided without missing was reported in Table S5, http://links.
lww.com/SHK/B729.
DISCUSSION

This study predicted latent shockwith a greater than 0.8AUROC
at 3 h before shock and showed better performance than traditional
tools, such as shock index or adjusted shock index, using sequential
vital signs in the ED (11,12). Also, this study conducted external
validation with MIMIC-IV-ED data, which had no relationship
with the original data, to show applicability with other databases.
FIG. 4. Area under the receiver operating characteristic (AUROC) curve of th
time.
Our study tries to predict latent shock to allow physiologic
compensation in the initial stage in the ED. If properly managed,
the patient might recover and avoid shock. Viewing shock as a
continuous process, detection of its early stage can help to prevent
its occurrence. Few studies have used continuous data to predict
shock along a continuum or to define a preshock stage or latent
shock progression.

Also, as our latent shock prediction model was based on ED
vital-sign records, which can be recoded both manually and auto-
matically, it can produce real-time predictions in the presence of
more than three measures of each vital sign.
e latent shock predictionmodel, shock index, and adjusted shock index by
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Machine learning–based latent shock prediction models out-
perform shock indexes and age-adjusted shock indexes, and their
performance increases as the time to shock approaches (Table S1,
http://links.lww.com/SHK/B729). This might be because the
shock index only considers period information of vital signs,
while the machine learning model uses continuous vital-sign in-
formation to monitor serial changes. In addition, the latent shock
prediction model incorporates all vital-sign data, including BT,
RR, and SpO2, which are not included in the shock index. These
additional vital indicators can be used to predict shock more accu-
rately. Since our prediction method is based only on vital signs,
the latent shock prediction model based on machine learning
might be used instead of the shock or adjusted shock index.

As shown in Figure S1, http://links.lww.com/SHK/B729, the
first bolus hydration for shock management was administered
typically after shock recognition. Here, we demonstrate that our
latent shock prediction model can accurately predict latent shock
within a few hours before onset. The latent shock prediction
model based onMLP, RF, and LRmethods showed a greater than
0.8 AUROC at 3 h before latent shock. This suggests that our
model may be able to predict latent shock based on vital-sign
trends before it can be recognized and managed clinically
(18,23,24). This could allow early intervention to prevent pro-
gression to a shock state.

As this study was performed in patients in the ED, which is a
very different environment from the ICU, patient information
might not be consistent and detailed. Therefore, patients had var-
iable numbers of vital-sign measurements, and some had only a
short sequence of vital signs. Despite this, the latent shock predic-
tion model showed a high prediction rate for latent shock,
supporting its use in the ED to produce diverse amounts of
vital-sign information by individual.

Also, the newly available MIMIC-IV-ED database was used
for external validation. Despite being based on a single tertiary
hospital, our presented model showed high accuracy in external
validation with MIMIC-IV-ED. As MIMIC-IV-ED data are from
a different nation from the original data, their agreement suggests
that the model can be used in other fields. Prospective study is
needed before clinical use of this model.

This study has several limitations. First is its retrospective na-
ture. However, several dataset-based validations were performed
to minimize bias. We performed external validation using an
open-source database, MIMIC-IV-ED. Second, this study was
based on limited segmented and unstructured vital-sign informa-
tion rather than continuous data. This is related to the ED environ-
ment, which is different from that of the ICU, where intensive
monitoring is possible in selected patients. The ED is a crowded
and dynamic place where patients are continuously moving in
and out with different time stamps and regularity. Therefore, it
is also hard to get frequent vital-sign information as much as ward
or ICU. Frequency and regularity of vital-sign measurements
vary depending on patient condition. For this reason, we tried
many methods for calculating missing vital signs, such as carry-
forward, carry-backward, and imputation, as explained above.
Third, for this same reason, there were several missing values dur-
ing imputation of vital-sign records (Table S5, http://links.lww.
com/SHK/B729). As explained above, we performed imputation
in several ways to produce a prediction model. In addition, we
performed external validation. Fourth, there was no distinct shock
category. Although we attempted to define and categorize shock
based on its variety of physiological underpinnings and causes,
the cause of shock was not always obvious and sometimes was
multifactorial. In addition, since this was a retrospective study,
it was impossible to identify every cause of shock with a medical
record. We simplified the prediction outcome using only vital
signs, vasopressors, and inotropic usage. Finally, the loaded vol-
ume was not considered because we attempted to concentrate
on the time of shock detection rather than its management. In ad-
dition, bolus hydration cannot represent the exact time of clinician
recognition of shock in the real world. However, we performed
this study to evaluate the time of recognition of shock in a retro-
spective setting. We evaluated this to determine clinician recogni-
tion and time of indirect management of shock, as this was a ret-
rospective study.
CONCLUSION

In conclusion, this study well predicted latent shock using cu-
mulative 24 h sequential vital-sign information and showed better
performance than traditional tools using sequential vital-sign data
in the ED. Prospective study is needed, and individual prediction
must be validated before use in the field.
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