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Abstract

Background: Just-in-time adaptive interventions (JITAIs) are designed to provide support when individuals are receptive and
can respond beneficially to the prompt. The notion of a just-in-time (JIT) state is critical for JITAIs. To date, JIT states have been
formulated either in a largely data-driven way or based on theory alone. There is a need for an approach that enables rigorous
theory testing and optimization of the JIT state concept.

Objective: The purpose of this system ID experiment was to investigate JIT states empirically and enable the empirical
optimization of a JITAI intended to increase physical activity (steps/d).

Methods: We recruited physically inactive English-speaking adults aged ≥25 years who owned smartphones. Participants wore
a Fitbit Versa 3 and used the study app for 270 days. The JustWalk JITAI project uses system ID methods to study JIT states.
Specifically, provision of support systematically varied across different theoretically plausible operationalizations of JIT states
to enable a more rigorous and systematic study of the concept. We experimentally varied 2 intervention components: notifications
delivered up to 4 times per day designed to increase a person’s steps within the next 3 hours and suggested daily step goals.
Notifications to walk were experimentally provided across varied operationalizations of JIT states accounting for need (ie, whether
daily step goals were previously met or not), opportunity (ie, whether the next 3 h were a time window during which a person
had previously walked), and receptivity (ie, a person previously walked after receiving notifications). Suggested daily step goals
varied systematically within a range related to a person’s baseline level of steps per day (eg, 4000) until they met clinically
meaningful targets (eg, averaging 8000 steps/d as the lower threshold across a cycle). A series of system ID estimation approaches
will be used to analyze the data and obtain control-oriented dynamical models to study JIT states. The estimated models from all
approaches will be contrasted, with the ultimate goal of guiding rigorous, replicable, empirical formulation and study of JIT states
to inform a future JITAI.
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Results: As is common in system ID, we conducted a series of simulation studies to formulate the experiment. The results of
our simulation studies illustrated the plausibility of this approach for generating informative and unique data for studying JIT
states. The study began enrolling participants in June 2022, with a final enrollment of 48 participants. Data collection concluded
in April 2023. Upon completion of the analyses, the results of this study are expected to be submitted for publication in the fourth
quarter of 2023.

Conclusions: This study will be the first empirical investigation of JIT states that uses system ID methods to inform the
optimization of a scalable JITAI for physical activity.

Trial Registration: ClinicalTrials.gov NCT05273437; https://clinicaltrials.gov/ct2/show/NCT05273437

International Registered Report Identifier (IRRID): DERR1-10.2196/52161

(JMIR Res Protoc 2023;12:e52161) doi: 10.2196/52161
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Introduction

Background
There is great interest in the promise of just-in-time adaptive
interventions (JITAIs) to support behavioral medicine. A JITAI
is a behavioral intervention that is designed to (1) provide
interventions and support during just-in-time (JIT) states,
defined as times when a person would have a need for support,
an opportunity to act in accordance with the support, and be
receptive to support [1]; and (2) adapt over time to a person’s
changing needs with the use of adaptation algorithms that strive
toward enabling a person to meet clinically meaningful
behavioral targets (eg, national recommendations for a given
behavior) while accounting for the person’s current capabilities
and constraints. Although there is a lot of interest in this type
of intervention, more work is needed to advance the
understanding of the foundational concepts implied by JITAIs,
particularly the JIT state. The JIT state concept is inherently
context dependent, dynamic, and likely to manifest differently
for different people over time. Given this complexity, much of
the work on JITAIs has focused on either creating interventions
that are theory driven in terms of specifying JIT states according
to a priori decision rules or through more data-driven approaches
such as reinforcement learning. An important gap is the lack of
a conceptual understanding of JIT states, which could be
achieved by conducting rigorous theory-testing protocols
designed to test dynamic hypotheses about JIT states.

The purpose of this paper is to describe a research protocol for
a National Institutes of Health–funded Smart and Connected
Health study (R01LM013107) explicitly designed to produce
rigorous empirical evidence to study JIT states in the context
of a physical activity (PA) JITAI. The structure of the paper is
as follows. First, background information is provided about
JITAIs that is necessary to understand the motivation for our
system ID protocol. Next, a description of the system ID
experimental protocol is provided, including the specific goals
of the project, experimental design procedures, measurement
approach, and analysis plan. Finally, a discussion and the
implications of this work are offered in terms of future research
on JITAIs.

Improving Understanding of JIT States Within a
Digital Health PA Intervention
There is convincing evidence indicating that PA is valuable for
reducing the risk of colon, breast, endometrial, lung, and
pancreatic cancers [2,3] and cardiovascular disease [4] and
improving glycemic control [5]. With an aging population, step
interventions could help prevent chronic diseases, reduce health
care costs, and improve functional life years and quality of life
[2-18]. The clinical guidelines for steps suggest 8000 steps per
day for adults [19,20], but only one-third of this group meets
the guidelines [21-31]. Across PA interventions for adults (eg,
human-delivered and digital), results show increases of 496
steps per day achieved above baseline levels of 5000 steps per
day, and even high-impact interventions peak at 1363 steps per
day above baseline; both result in activity that is still below the
guidelines. Even among interventions that produce an effect,
maintenance is rarely measured, and when it is, it is not achieved
by many participants [32-35]. Our long-term goal is to create
a model-predictive controller-driven JITAI to increase walking
that, we hypothesize, will be more effective than current PA
interventions at supporting individuals in achieving and
maintaining national guideline recommendations of at least
8000 steps per day averaged across a week [19,20].

Although there are many possible algorithmic approaches to
achieve this, such as reinforcement learning [36] or
recommender systems [37], this research effort is focused on
the use of a model-predictive controller approach [38]. A
model-predictive controller is an adaptation algorithm that uses
time-series data from an N-of-1 unit [39,40] to support decisions
over time in dynamic, often complex situations, such as
dynamically providing support to a person to increase their PA.
As the name implies, a central feature is a computational
dynamical model, which is a series of mathematical equations
that encode previous domain knowledge and include parameters
that are estimated from data derived from each N-of-1 unit (ie,
a person in this context), thus enabling the controller to account
for individual differences in predictions. These computational
models, similar to weather or climate forecasting models, enable
rigorous simulations of a person’s likely responses to different
types of support provided both now and in the future. For
example, the model could be used to simulate a person’s
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response to the provision of a notification meant to nudge them
to walk within the next 3 hours. The model would generate
predictions on the likelihood that a person will walk after
receiving the notification at each moment. In addition, the model
can be used to simulate the potential synergistic or antagonistic
effects that might occur because of different decisions that could
be made. For example, using the model, predictions could be
made on the potential diminishing effects of providing
notifications over time owing to habituation or growing
annoyance, particularly if notifications are sent when a person
does not need them.

As this description implies, model-predictive controller-driven
JITAIs are complex and, thus, are difficult to create using theory
alone, which, historically, was the dominant way in which
adaptive behavioral interventions were developed [41,42].
Instead, JITAIs require robust experimentation that enables
empirical optimization of their elements, particularly the
generation of the computational dynamical models that the
controller uses to run simulations and, by extension, make
dynamic decisions. As described in previous work [43], the
empirical estimation and validation of dynamical models occur
through system ID.

The system ID study described in this paper had 2
complementary but distinct aims. First, it aimed to gather
empirical evidence on the concept of JIT states. By varying
whether a notification is provided when the person is thought
to be in a state of need, when they have an opportunity to walk,
when they are thought to be receptive, or combinations of these
3 states, the experiment collected initial evidence for which
aspects of the JIT state are most important for supporting the
effectiveness of JIT interventions and whether this changes over
time.

Second, the experiment was designed to collect the data needed
to optimize a digital health intervention, JustWalk JITAI. The
goal was to estimate and validate dynamical models that can
be used to construct a model-predictive controller that can make
decisions on the provision of support in given moments to
achieve and sustain clinically meaningful PA targets. Prior work
was used as a foundation to achieve these aims, particularly a
dynamic model of social cognitive theory (SCT) that
encapsulates domain knowledge about behavioral processes
that influence PA [44-46]. The SCT models were refined using
the newly collected data both to help us better understand JIT
states and to develop models that can be incorporated into a
multitimescale model-predictive controller.

Methods

Overview

Aims
The aim of this study was to conduct a system ID experiment
to empirically assess the conceptual elements of a JIT state and
estimate and validate dynamical computational models relevant
to JIT states. This work was conducted to inform the
development of a future model-predictive controller-driven
JITAI. We had three broad hypotheses: (1) walking bout
planning prompts that are provided when the system determines

that individuals meet all 3 conditions of a JIT state—have a
need, have an opportunity to walk, and are receptive to
intervention notifications—will be more effective than when
such prompts are provided when only some or none of those
conditions are met; (2) idiographic computational models (ie,
models developed by and for individual participants) can be
produced that are effective at predicting contexts in which
suggestions to go for a walk will be effective and how such
suggestions and adaptive step goals combine to support a person
in achieving both daily step goals and sustained engagement in
steps per day; and (3) nomothetic analyses (ie, insights gleaned
from data aggregated across participants) will reveal meaningful
clusters for different types of contextual patterns and trajectories
of change across participants. These clusters will enable the
selection of initial dynamical model parameters and, by
extension, the development of a generic semiphysical model
that can be used as a starting point for new participants in a
future model-predictive controller-driven JITAI. In aggregate,
these results will also be used to empirically test the added value
of previous domain knowledge, as encapsulated in previous
computational models, for improving model prediction and
response, with a basic autoregressive model with external input
as a reference model that only accounts for previous domain
knowledge in the form of variable selection but not the structure
of their relationships.

Study Design Overview
Building on prior work, including the mobile health app
HeartSteps (which was relabeled JustWalk JITAI for this study
to continue on the control systems side of JITAI development)
[47,48], we conducted a system ID experiment designed to study
the theoretical concept of JIT states as a tool for fostering
behavior change. The system ID experiment focused on two
key intervention components: (1) notifications delivered up to
4 times per day designed to increase a person’s steps within the
next 3 hours via either increased awareness of the urge to walk
or via bout planning and (2) adaptive daily step goals. Both
types of notifications prompting short walks within the next 3
hours were experimentally provided or not across variations of
need (ie, whether daily step goals were previously met),
opportunity (ie, the next 3 h are a time window when a person
has an opportunity to walk based on their previous step data),
and receptivity (ie, the person received <6 messages in the last
72 h and walked after notifications were sent). In addition, the
suggested daily step goals also varied systematically across time
rooted in a person’s baseline levels of steps per day (eg, 4000
steps) and gradually increasing until they met clinically
meaningful targets (at least 8000 steps/d on average).
Participants wore a Fitbit Versa 3 and used the study app for
270 days.

Technology

Wearable Sensor

The Fitbit Versa 3 is a wrist-worn, watch-style activity tracker
that records participants’ steps and minutes of moderate or
vigorous PA (active minutes in the language used by Fitbit) that
the tracker detects based on accelerometer and heart rate data.
The Fitbit tracker records the step and activity data,
automatically synchronizes with the Fitbit server, and pushes

JMIR Res Protoc 2023 | vol. 12 | e52161 | p. 3https://www.researchprotocols.org/2023/1/e52161
(page number not for citation purposes)

Park et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


to the JustWalk JITAI servers using Fitbit’s subscription
application programming interface (API). It was recommended
to participants to set the Fitbit to use one of the market-available
watch faces with the following features: (1) always visible
information about the current step count, daily step goal, and
progress toward meeting the goal and (2) positive reinforcement
(in the form of a fireworks display and vibrations) when the
daily step goal is met. The list of watch faces that met these
requirements was provided by the staff.

Mobile App

The JustWalk JITAI app contained (1) pull components that
participants could access at any time by opening the JustWalk
JITAI app (Figure 1), (2) push components that were sent to the
participants as app notifications based on system-based rules
(these were our key experimental manipulations and are
described in the Interventions and System ID Experimental
Design section and Figure 2), and (3) ecological momentary
assessment (EMA) questions (described in the Measures
section).

The JustWalk JITAI app consisted of 3 pull components, which
were drawn from the HeartSteps app [48]. These were accessible
through tabs along the bottom of the app screen (Figure 1; left):

1. Dashboard: the dashboard was the home screen of the app
and was displayed whenever a participant entered the app
or finished interacting with a JustWalk JITAI notification.
The dashboard implemented 3 behavior change techniques

[49,50]: self-monitoring, feedback on goal progress, and
reminders of activity plans. At the center of the dashboard,
a participant’s progress toward their daily step goal was
shown as feedback. If participants created an activity plan
for the day, the dashboard also displayed this plan for the
participants.

2. Planning: through the planning tab (Figure 1; center),
participants could identify when they would plan to exercise
that week. The planning tool was designed to operationalize
the behavior change technique implementation intentions
[51,52] by enabling participants to identify when they would
be active and for how long and identify a specific activity
to engage in.

3. Activity log (Figure 1; right): participants could see an
activity summary for the last 2 weeks, including steps
walked and distance covered each day, as well as the types
of activities that the Fitbit tracker detected automatically
or the user logged manually (eg, running, hiking, walking,
and yoga). In addition, the activity log displayed
Fitbit-derived active minutes for each day. Finally, the tab
displayed the participants’ all-time statistics—hours of
active time, total distance walked, total counts of activities
(detected or manually logged), and total number of steps
recorded since the user started using the JustWalk JITAI
system. These all-time statistics were intended to provide
longer-time-frame feedback on what the participant
accomplished over the duration of the study.

Figure 1. JustWalk JITAI app screenshots (left: app dashboard; center: planning tab; right: activity log tab).
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Figure 2. JustWalk JITAI app notification screenshot on the locked screen and background status.

Participant Procedures

Recruitment
Participants were recruited nationally using a noncontact
approach. Participants were recruited mainly through university
mailing lists and word of mouth. The targeted number of
participants was 50, with a final fully enrolled sample of 48 as
2 participants never showed up to preintervention meetings.

Eligibility
Inclusion criteria were participants who (1) were aged ≥25 years;
(2) were inactive, defined as engaging in <60 minutes per week
of self-reported moderate-intensity PA; (3) owned either an
iPhone with iOS 11 or above or an Android phone with Android
5.1 or above; (4) stated a commitment to follow study protocols,
including regularly carrying a mobile phone, using the JustWalk
JITAI app, answering phone-based questionnaires, and wearing
the Fitbit Versa 3 activity tracker at least 8 hours a day; and (5)
were fluent in English.

The exclusion criteria were participants who (1) were incapable
of providing informed consent or (2) had a psychiatric disorder
that limited their ability to follow the study protocol, including
psychosis and dementia.

Screening, Informed Consent, and Onboarding Meeting
All participant interactions occurred remotely. Recruitment
materials directed participants to the study website, which
included a contact entry form. Upon completion, participants
were automatically sent a link to an eligibility screener, which
asked about age and PA levels (as reported using the Global
Physical Activity Questionnaire [53] and the revised Physical
Activity Readiness Questionnaire [54]). The staff reviewed the
survey responses to confirm eligibility.

Eligible participants were offered time slots for an informed
consent meeting. Ineligible participants were informed of their
ineligibility.

During the informed consent meeting, the following activities
took place: (1) the study was described in detail via a guided
read-through of the consent form, (2) participants were provided
with a list of reasons to and reasons not to take part in the study,
(3) participants were invited to develop a list of their own pros
and cons for taking part in the study, and (4) participants were
given time to ask any questions they had. If participants verbally
agreed, the study staff asked them to sign the consent form via
DocuSign (DocuSign, Inc).

Consented participants were asked for a mailing address to send
a Fitbit. Participants were also sent instructions on how to set
up the Fitbit and the app via email. Once confirmation of
delivery of the Fitbit was received by the staff, a follow-up
email was sent to participants inviting them to pick a time slot
for the preintervention meeting.

During the onboarding internet-based meeting, participants were
instructed on the following topics: (1) instructions on how to
install and use the Fitbit and study app, (2) information on the
10-day baseline, (3) information on what to expect after the
10-day baseline period, (4) direction to complete a baseline
survey, and (5) instructional videos with corresponding notes
about how to use and maintain the Fitbit (eg, strategies to keep
it charged and reminders to clean it to reduce skin irritation).
All meetings between the participants and the staff took place
via Zoom (Zoom Video Communications), and the interviews
took place within 2 weeks after the time slots were sent.

Incentives
Participants received the following incentives: (1) Fitbit Versa
3 (received at study enrollment; US $229 in value), (2) US $25
gift cards provided to them up to 3 times (US $75 in total) if
they completed at least 80% of the daily EMA items within
each 3-month period, and (3) US $25 gift cards if they attended
an optional postintervention interview.
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Study Timeline
During the 10-day baseline, participants were asked to engage
in their normal level of steps or PA and always wear the Fitbit
except while charging. No interventions were provided, and no
EMA questions were asked during the baseline period. When
participants opened the app, 10 circles were shown designating
the number of days they had met the minimal wear time
requirements (ie, 8 h/d). If the participant did not wear the Fitbit
for at least 8 hours a day, the circles did not fill up. Once all 10
circles were filled, the app automatically transitioned to the
intervention phase, displaying a dashboard.

In the intervention phase, all app features were delivered,
including the 2 push intervention components (ie, walking
prompts and adaptive suggested step goals) and the daily EMA
questions. The participants also gained access to other parts of
the JustWalk JITAI app such as activity logs and planning
support. Participants were asked to interact with the app
whenever it sent them notifications and were told that they could
open the app at any time if they wanted to access pull
components and found them useful. Total interaction time with
the app from push interventions and EMA notifications does
not exceed 10 minutes each day, but participants may choose
to spend more time on the app accessing other features. The
interactions participants were prompted to do occurred in
response to four types of notifications: (1) daily step goal
notifications, (2) walking suggestion notifications, (3) prompts
to complete the daily EMA battery, and (4) experience sampling
prompts (ie, if Fitbit detected an activity) to complete EMA
items throughout the day and in relation to the notifications to
either increase the urge to walk or plan (for details about EMA,
see the Measures section).

Interventions and System ID Experimental Design

System ID Overview
This study used a system ID approach to manipulate 2
intervention components experimentally: walking suggestions
and daily step goals. To achieve the desired dynamics on the
timescale of interest, we used 2 input signals, one for each of
the 2 components. Although our study design enables traditional
statistical analyses to examine the impact of intervention
components on behavioral outcomes, that is not the primary
focus of a system ID experiment. The primary goal of a system
ID experiment is to estimate and validate dynamical
computational models that are validated based on their ability
to predict the future responses of each individual’s behavior
across time. These aims are achieved by having different
intervention components—suggestions to walk in the next 3
hours and adaptive goal setting—delivered at different
timescales and orthogonally, that is, statistically independent
of each other. Our approach is analogous to a within-person
factorial experiment (and, indeed, can be treated as such with
all relevant nomothetic statistics used on the developed data
set, which the team plans to perform as secondary analyses).
The critical difference is that, in system ID studies, the designed
input signals achieve statistical independence through
orthogonality as verified in the frequency domain. Orthogonality
enables separate study and estimation of the dynamics and
impact of each intervention component. One can think of

frequencies as different repeating rhythms across time, such as
the notion of a minute-by-minute, daily, or weekly frequency.
The study was designed to ensure that the intervention signals
were disambiguated across time (via delivery at different
frequencies). This enables a rigorous independent study of
dynamical responses to both intervention components within
the same experiment and, indeed, within each person, both
proximally (eg, immediate responses following intervention
delivery) and distally (eg, continued or delayed effects up to
several days after any notification).

Specifically, both signals are designed to follow the guidelines
presented in the study by Rivera et al [55], in which equation
1 is highlighted to define the effective frequency range of the
input signal based on a priori knowledge of the dominant system
time constant.

Equation 1 is the equation used to define the effective frequency
range of the input signals of the JustWalk JITAI study based on
a priori knowledge:

and represent the higher and lower bounds for the
estimated dominant time constant of the system, meaning the
range in which signals relevant to walking would occur
naturalistically. αs and βs dictate the input signal’s content of
high and low frequency, respectively. The orthogonality of our
intervention components was confirmed via the use of
cross-correlation analysis (the appropriate approach for testing
orthogonality via frequency domains) to the designed input
signals.

Sample Size Considerations
The number of participants has little impact on the power
estimate for system ID studies as system ID approaches mostly
use dynamic models that consider individual-level changes over
time [43]. Instead, different methods, such as study length and
validation analysis, can be used to establish the equivalent notion
of power [56]. A multisine signal’s cycle, or predetermined time
interval, serves as the foundation for the power calculation [57].
By dividing the cycles into estimation and validation data sets,
this type of design maximizes the signal-to-noise ratio and aids
in the evaluation of model fits.

Previous research has demonstrated that 3 independently excited
harmonics per cycle can achieve a sufficient excitation to deliver
dynamically meaningful data in relation to daily frequencies.
This can be performed with 3 sinusoids per cycle, resulting in
a cycle that lasts at least 12 days [58]. Estimating and
comprehending the multitimescale dynamics of behavior change
are the goals of this effort. A total of 9 excited harmonics were
revealed through simulations to be necessary to provide
persistence of excitation across relevant frequencies [59]. The
result is that each cycle lasts 26 days. From this, the final study
length was set at 10 cycles (260 d).
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Intervention Design

Overview

An overview of the JustWalk JITAI intervention elements is
provided in Textbox 1.

Textbox 1. Summary of the JustWalk JITAI intervention elements

Wearable sensor

• Fitbit Versa 3

Mobile app

• HeartSteps [47] (renamed JustWalk JITAI)

Walking notifications

• Walking notifications were pushed up to 4 times a day starting at the participant-set time (eg, 7 AM or 8 AM), with 3-h gaps between each
possible notification (eg, 7 AM, 10 AM, 1 PM, and 4 PM as possible decision points for sending notifications).

• Notification texts were randomly chosen from a library of 50 messages that included 24 messages meant to inspire participants to plan a time
when they would walk in the next 3 h and 26 messages meant to invite participants to become aware of internal urges that could inspire them to
walk (Figure 2 and Multimedia Appendix 1).

• The experimentation setting used 4 just-in-time (JIT) definitions: (1) full JIT (need [N], opportunity [O], and receptivity [R]), (2) N+R, (3) N+O,
and (4) random, with each element defined as follows:

• N: on track to meet the daily step goal accounting for time of day when assessed (eg, 50% of steps accrued halfway in a person’s day, using
their self-selected start time as a reference and assuming 12-h windows)

• O: next 3-h time window was predicted to have an 80% likelihood that someone could take steps using a previously published algorithm
[60]

• R: participant received <6 notifications and responded (ie, walked) to at least 50% of notifications sent to them within the previous 72 h

Adaptive step goals

• Each morning, participants were provided with a suggested daily step goal.

• The notification also included a single-item ecological momentary assessment whether it was helpful or not.

• Daily step goals were calculated using the following procedures:

• For the first cycle, median steps/d were used as a personalized reference to guide adaptive step goal suggestions. For cycle 1, a participant’s
personalized reference (ie, median steps/d) was calculated from their 10-d baseline period excluding nonwear days.

• For all subsequent cycles, their personalized reference (ie, median steps/d) was calculated from the previous 26-d cycle (eg, cycle 2’s median
steps/d were calculated using all step/d data from cycle 1 excluding nonwear days).

• Participants were provided with a step goal that ranged between their personalized reference (median steps/d) up to their personalized
reference+4000 steps.

• A multisine signal design that ranged from 0 (personalized reference) to 1 (personalized reference+4000 steps) was used. For example, if
a person’s median steps/d during the baseline period were 5000 steps/d, they would receive step goal suggestions between 5000 and 9000
steps/d.

• Maximum step goals were set at 12,000 steps/d, and minimum step goals were 2000 steps/d.

Walking Notifications

Overview

The first component of the JustWalk JITAI was notifications
meant to inspire short (eg, ≥10 min) walking bouts within 3
hours after receiving the notification. This component had two
variations that targeted different behavioral processes: (1) an
invitation for a person to create a microimplementation intention
on when, where, and how to fit in a ≥10-minute walk in the next
3 hours—we label these suggestions as bout planning—and (2)
an invitation for a person to become aware of interoceptive
experiences and signals (eg, stiff muscles and lethargy) that
may inspire them to go for a walk—we refer to these messages
as cultivating an urge. Both types of walking notifications were

drawn from a library of 50 messages (n=24, 48% on bout
planning and n=26, 52% on cultivating an urge). Walking
notifications were provided in the form of push notifications
from the JustWalk JITAI app. The notification could be sent 4
times a day (ie, decision points) starting at the user-defined start
of day time, which was gathered during the onboarding
processes. Starting from the participant’s self-described start
of the day, the walking notification decision points occurred
every 3 hours. For example, if a participant’s day started at 8
AM, their decision points would be 8 AM, 11 AM, 2 PM, and
5 PM. For each participant, on each day of the study at each of
the 4 decision times, the JustWalk JITAI system decided whether
to send a walking notification based on the system ID procedure
described in the following section.

JMIR Res Protoc 2023 | vol. 12 | e52161 | p. 7https://www.researchprotocols.org/2023/1/e52161
(page number not for citation purposes)

Park et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Operationalization of JIT States

JIT states were experimentally varied via the use of different
rules to define a JIT state. By nudging participants when they
were in JIT states, the hypothesis is that the effect of the walking
notifications should increase while maintaining a low level of
burden on participants, thus minimizing notification fatigue.

A JIT state has been previously conceptualized [1] as a state in
which a person is receptive to support (eg, if a notification is
sent, a person would appreciate receiving said notification) and
has the opportunity to engage in the desired behavior (or
vulnerability to a negative behavior). Building on this theoretical
formulation, a third theoretical parameter was added: the need
for intervention support. For example, if someone is already
meeting their daily step goals, they likely do not need additional
intervention prompts to walk. For the purposes of this study,
JIT states were operationalized as follows:

1. Need (N): a person is defined as in a state of need if they
did not meet the previous day’s step goal (for the first
decision point) or if they are not making steady progress
toward that day’s goal (for all other decision points).
Sufficient progress was defined as the goal prorated to the
current time of day:

2. Opportunity (O): a person is deemed to be in a state of
opportunity when they can feasibly walk. To operationalize
this, a predictive algorithm described in the study by Park
et al [60] used a threshold of 80% probability that, within
the next 3 hours, a person may walk. We used the high
threshold of 80% so that even a slight nudge to walk could
effectively achieve short-term behavior change (note:
whether notification is needed at such a high moment of
opportunity is a question that we will be able to study
retrospectively).

3. Receptivity (R): a person is deemed to be receptive when
they have received ≤6 messages in the last 72 hours and
have responded (ie, walked in the following 3 h) after ≥50%
of the walking notifications sent in that period.

The operationalizations of these 3 facets of a JIT state allow us
both to define a full JIT state—that is, when need, opportunity,
and receptivity are all present—and to empirically test how
different operationalizations of JIT states (eg, states when only
some of these components are present) influence walking
notification effectiveness. Specifically, daily decision rules were
tested that embodied four different levels of being in a JIT state:

1. Full JIT state: need, opportunity, and receptivity are present.
2. Partial JIT state (2 forms): N+O (only need and opportunity

are present) and N+R (only need and receptivity are
present).

3. Not in a JIT state (random): notifications are randomized
each time at 50% probability.

How and when each of these rules for defining JIT states was
varied experimentally is described in the following section.

Previous Observations and Theoretical Considerations That
Guided Our Study Design to Test JIT States

This specific study design was created based on data from the
original HeartSteps trial [47] followed by engaging with
previous domain knowledge, including behavioral theory and
our previously developed SCT dynamical model [61], to guide
the final study design such that this study could provide robust
data for supporting computational model testing.

Concerning previous observations, in the HeartSteps trial related
to the notifications designed to inspire bouts of walking, 3
empirical observations guided our understanding of JIT states.
First, as reported previously [47], notifications had a diminishing
proximal impact on the total number of steps taken within the
30-minute window after the notification. These results indicated
a theorized diminishing value-to-burden ratio of the prompts,
namely, a dynamic concept that balances, for each instance, a
person’s perceived value that they receive from an intervention
compared with the perception of the level of burden of the
intervention. This dynamic hypothesis, which conformed to the
data, was that the value-to-burden ratio would diminish over
time, with initial notifications being perceived as more valuable
than burdensome; however, by the end of the study, this would
shift toward a low or negative value in relation to the burden.

Second, it was observed that, if <2 notifications were sent on a
given day, even later in the 6-week trial, then the bout
notifications resulted in significantly improved steps taken
within the 30-minute window after the notification. We
interpreted this dynamic observation as representing a
hypothesized autorecovery that could take place on a person’s
value-to-burden ratio. One could think of this as analogous to
a neuron. Once a neuron fires, if new signals come in, the neuron
will not fire again until it has sufficient time to recover, but this
recovery process is automatic. It was hypothesized that a similar
dynamic takes place regarding notifications. Namely, if
notifications are sent at a rate that is faster than a person’s
autorecovery rate, habituation will set in and the notifications
will be ignored (again, similar to a neuron not firing). If, in
contrast, sufficient time has passed for autorecovery to take
place (eg, such as a neuron re-establishing itself as ready for
the next signal), then a notification sent would be more likely
to be attended and reacted to by a participant. Previous data
guided us to a population-based starting point of, on average,
2 notifications in a day, providing sufficient time for
autorecovery. With that said, it was postulated that this
autorecovery may vary among individuals. This study design
enables us to study these individual differences in temporal
responses.

Finally, it was observed that there was a trend in the daily
timescale or frequency. Specifically, it was observed that there
was an overall trend of increased steps per day over the 6-week
intervention period. This third observation was translated into
a hypothesized internalization process of the knowledge, skills,
and practices that the intervention was meant to cultivate. This
third dynamic hypothesis is the most critical target for designing
an effective JIT intervention. Specifically, the goal is to create
a JITAI that would enable a person to develop internalized
knowledge, skills, and practices that could be maintained after
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the cessation of the intervention while accounting for the likely
diminishing value-to-burden ratio and the need for recovery
between notifications. This complex, interactive dynamic
hypothesis, which postulates 3 different underlying dynamics
that interact together, is what is primarily being studied in this
experiment. Most critically, it was hypothesized that
internalization, observed in the form of increases in steps per
day in a time series, would take place more often when
notifications or interventions were provided using JIT states
compared with times when notifications were offered without
taking account of JIT states.

System ID Experiment Design via Simulation Studies

With these empirical observations as a foundation, previous
behavioral literature was reviewed to (1) look for previous
domain knowledge that could be used to guide the understanding
of these dynamics and (2) support us in better operationalizing
the dynamic expectations we hypothesize to be observed,
particularly if interventions could be provided consistently
taking account of JIT states. A computational model was
developed guided by these empirical observations and building
on principles drawn from operant learning and cognitive science,
which is described elsewhere [62]. A set of simulations was run
to model anticipated responses to receiving PA notifications
during positive and negative JIT states. A key focus of the
simulation work was to determine whether the models could
produce the dynamics observed in HeartSteps, described
previously, and to guide the anticipated length of time needed
to observe a possible overall step per day increase across days
when notifications are repeatedly delivered during positive JIT
states. In this context, a positive outcome was operationalized
as a person taking at least 1000 steps (as a proxy for 10 min)
within the 3-hour window after receiving a walking notification.
Overall, it was hypothesized that a greater number of positive
outcomes when using the full JIT state operationalization
(N+O+R) would be observed, with increased overall steps per
day occurring across days during those times (accumulative
internalization). In contrast, it was hypothesized that a relatively
steady steps per day response would occur during times when
notifications were sent at random (which was a replication of
the original HeartSteps study and intentionally did not consider
JIT states; thus, it was hypothesized that the random signals
would replicate the observations from the original study). A set
of additional simulations was run based on the SCT model [61],
with the results of the simulation reported elsewhere [59] to
further refine our study design.

On the basis of the simulation results from both models, a
system ID study was devised that experimentally varied the use
of different definitions of JIT states but did so in a way that
would enable the study of possible accumulation or degradation
of the dynamic effects across days. Specifically, 4 days was set
as the minimal length of days needed to observe the effects of
successive full JIT rules. It was anticipated that stabilization to
degradation of effects would start to occur within 1 day of

sending non-JIT notifications based on our simulation studies.
With that said, given the highly novel study design and limited
robust empirical data to guide this subtle study of dynamics,
longer periods were used, particularly for the full JIT state
(N+O+R). In other words, the experiment compared decision
rules that range from not trying to intervene in a JIT state to
trying to intervene in a full JIT state over a sustained period
that, based on simulation studies, would be sufficiently long to
detect accumulative effects if they occurred.

This resulted in a categorical 4-level design. To construct this
categorical 4-level input signal, a pseudorandom binary
sequence (PRBS) was used (for full justification and details,
see the study by El Mistiri et al [59]). This base signal compares
JIT with some form of partial JIT or random (ie, non-JIT) states.
To incorporate the exploratory examination of differences
between JIT operationalizations, a random multilevel sequence
was superimposed over one of the PRBS binary levels to
compare the 2 incomplete JIT decision rules (N+O and N+R)
with the randomly sent walking notifications [59]. The input

signal design parameters for the PRBS were chosen as =3

days, =3.5 days, αs=2,βs=2, which was done to cover the
frequency range of interest based on the guidelines provided in
equation 1. This resulted in a 60-day cycle with nr=4 shift
registers and switching time Tsw=4 days (Figure 3). This 60-day
cycle enabled the team to (1) study the hypothesized dynamic,
positive accumulative effect on steps within 3 hours of
notification times, and steps per day when walking notifications
were sent during theoretically defined JIT states; (2) compare
these dynamics with the hypothesized dynamic degradation
across days when walking notifications were delivered during
partial or negative JIT states (ie, at random); and (3) as an
exploratory aim, study if the dynamics vary across different JIT
state operationalizations. In total, 4 cycles of a 60-day PRBS
signal were generated to support both estimation and validation
of the dynamical models that operationalized the hypothesized
dynamics, which results in a 240-day period followed by a final
period of full JIT state level to match the full study period (260
d), which was constrained by adaptive step goal cycles (26 d ×
10 cycles).

Figure 4 provides a visualization of the spectral power density
as it relates to the walking notifications. This visualization
provides insights into the degree to which the theorized
dynamics will be appropriately excited, enabling the detection
of effects if they occur across various frequencies and, thus, the
study of the proposed dynamic hypotheses. The results suggest
sufficient persistent excitation by the number of harmonics
included in the effective frequency range between 0.14 and 0.67
rad per day. This frequency range, determined by the time
constant guidelines in equation 1, ensures that the appropriate
slow dynamics (ie, low frequencies) and fast dynamics (ie, high
frequencies) of the system are captured.
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Figure 3. The designed decision rules signal for the walking notification component of the intervention in the time domain in the JustWalk JITAI study.
Each level represents one of the decision rules. The 4 signal levels were obtained by superimposing a 3-level random multilevel sequence (RMLS)
signal on the base pseudorandom binary sequence (PRBS) signal. JIT: just-in-time; N+O: need and opportunity; N+R: need and receptivity.

Figure 4. Spectral power density of the designed decision rule input signal of the JustWalk JITAI study. It is shown to determine whether sufficient
excitation across key frequencies is established within the trial.

Adaptive Step Goals Intervention Component

Overview

The adaptive daily step goal component follows a similar
structure to that of a previous system ID experiment whereby
participants were given a specific suggested step goal to target
each day [63]. Similar to this previous design, a key
consideration is to design a cycle, which is a deterministic,
repeatable pattern that defines the provision of intervention
options to an individual. Intervention options can be provisioned
to mimic randomness via pseudorandom signal designs that
achieve the valuable properties of randomness for causal
inference while still being deterministic and, thus, repeatable.
This provides valuable properties for a system ID experiment
as it enables a more robust comparison between cycles (for more
details, see prior work [38]). In this study, the same basic logic
of prior work was followed, specifically, using a pseudorandom
signal design that varied step goals between an achievable target
up to a plausibly ambitious target (how goals are assigned each
day is described in greater depth in prior work [59]).

The definition of an achievable step goal was personalized to
each participant, which was labeled as a personalized reference,
defined as a person’s median steps per day calculated from the
previous 26-day cycle period [59]; note that, for the first cycle
only, the personal reference was the 10-day-baseline period.
Each morning, participants received a notification informing
them of their targeted step goal for the day. The updated goal
was also available to them on the JustWalkJITAI dashboard and
was automatically synced by the JustWalkJITAI server to the
participant’s Fitbit account so that the feedback on the Fitbit
app and the participant’s Fitbit tracker always showed the correct
goal progress each day. To further facilitate goal pursuit,
participants were instructed to install a watch face providing
the step goal number and a goal progress bar to enable always
visible goal progress feedback. Fitbit’s native visual and haptic
feedback was used when the participant completed the daily
step goals (ie, fireworks animation and vibrations).
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Experimental Manipulation: Input Signal Design

To define a cycle for this component, a multisine signal was

used. The input signal design parameters ( =1 day, =2
days, αs=2,βs=2), as described in equation 1, were chosen based
on the results from previous work and the simulation studies
we conducted in preparation for staging this system ID
experiment [59]. The design parameters result in a cycle length
of 26 days, as shown in Figure 5. For each participant, a
personalized realization of the multisine signal generates the
daily goals throughout the 260-day intervention across 10 cycles
by determining, for each day, the factor by which the 4000 steps

per day range is multiplied and then added to the participant’s
personalized reference (ie, median steps/d), as described in
Textbox 1.

The effective frequency range of the signal is related to the
design parameters through equation 1, which yields the

persistence of excitation between ω∗=0.25 rad per day and ω∗=2
rad per day approximately for the designed multisine signal, as
it is highlighted in the power spectrum of the signal shown in
Figure 5. This showcases that the designed input signal for goal
setting creates variability in the relevant dynamical ranges of
interest.

Figure 5. One cycle of the designed multisine input signal for the goal setting component of the JustWalk JITAI intervention in both the time (top)
and frequency (bottom) domains. The multiplier factor varies between 0 and 1 over time. The spectral power density plot highlights the number of
excited harmonics at the frequencies of interest.

Measures

Baseline Survey
The baseline survey includes (1) demographic information,
including age, height, weight, ethnicity, gender, race, marital
status, household size, employment status, and level of
education; (2) personal characteristics related to the study (ie,
how the participants spend their time and information about
their routine and their neighborhood); (3) self-perception (ie,
personality [64] and perceived stress [65]); and (4) life habits
[66] and PA [67] (ie, how they feel about PA, how they engage
in exercise, how much they intend to exercise, and how they
notice the effects of exercise).

Continuous Measurement of Activity and Heart Rate
Steps per minute and minute-level heart rate were measured
using the Fitbit Versa 3, a wrist-worn, consumer-level activity
tracker that uses triaxial accelerometry to measure movement.
Further details are provided in the next subsection. Moderate
or vigorous PA was measured in four ways: (1) automatically
triggered objective measurement (the Fitbit Versa 3
automatically detects vigorous movement [68] if the activity is
sufficiently vigorous and long), (2) manually initiated objective
measurement (the Fitbit Versa 3 or the Fitbit app on the
smartphone has an activity tab to log activity manually), (3)
manual logging in the Fitbit app, and (4) manual logging on the
study app using the activity tab (which was also populated with
any reporting on the Fitbit app). The Fitbit assesses steps, PA

intensity levels, energy expenditure, start or end time point and
type of activity, distance traveled, and number of floors. Prior
work shows that Fitbits likely underestimate heart rates and, by
extension, total activity, but they do so reliably, thus establishing
a meaningful within-person comparison [69], which is the focus
of this study.

EMA Items
Psychological constructs and process variables were asked daily
for inclusion in our targeted, dynamic models via EMA
conducted at 7 PM local time. The EMA items included concepts
of (1) self-efficacy for walking, (2) self-efficacy for
problem-solving, (3) positive context for walking, (4) negative
context for walking, (5) supportive routine, (6) drive to walk,
(7) relationships supportive of walking, (8) interoceptive
awareness of cues that could inspire walking (eg, stiffness and
fatigue), (9) negative reinforcement of walking, (10) behavioral
repertoire, and (11) typical supportiveness for walking. Detailed
items are included in Multimedia Appendix 2. Items 1 to 6 were
asked daily, items 7 to 10 were asked every 4 days to minimize
the burden of responding, and item 11 was asked every day for
the first week of each month (ie, 7 times/mo).

In total, 2 other types of EMA question items were sent.
Triggered by completed PA, the participants were asked if they
felt healthy, fatigued, energized, and discomfort. We also asked
if the participants thought that they could meet the daily goal.
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Weather
Daily weather data (current weather and weather forecasts) were
gathered from the public weather database API [70]. No actual
location GPS data were gathered; instead, a self-reported home
zip code was used to gather weather data.

Postintervention Interviews
After the 260-day intervention, participants were asked to fill
out a brief postintervention survey and were also given the
option to participate in a postintervention interview. During the
postintervention interviews, participants were asked about their
overall reactions, including both positive and negative aspects
of using the app and any suggestions to improve the intervention.
The interviews were audio recorded and transcribed.

The participants were also given a choice to either stop the use
of the JustWalk JITAI intervention or continue to use it, in which
case the data past the study end date would not be used in the
analyses.

Treatment Fidelity Monitoring Procedures

Mobile App Use Logs
Mobile app use was recorded with time stamps for every page
viewed in the JustWalk JITAI app, including opening
notifications, opening the app, viewing pages within the app,
and opening surveys. The one piece of information that could
not be logged owing to operating system limitations was whether
notifications (eg, walking notifications) were seen without being
opened, such as when they automatically expanded on the iOS
lock screen.

Monitoring the JustWalk JITAI Systems
The JustWalk JITAI server was automatically monitored every
10 minutes throughout the study period using a separate program
to check for 5 performance and stability targets: the web server,
the database server, the security firewall, the software
framework for the server, and the Fitbit API. If the server
stopped working or took too long to respond (>3000 ms), the
program sent SMS text messages and emails to the study staff.
The monitoring program was separately overseen by another
program to ensure that monitoring was conducted properly. If
any data operations failed (eg, if the Fitbit server was not
responding), the study staff were immediately notified via email.
If there was an error in the Fitbit data synchronization, when
the data connection resumed, all the missing data were refetched
to fill up any missing period.

Data Collection Monitoring
Data collection was monitored by the study staff on a weekly
basis with automated visualizations to ensure that there were
no technical errors that may compromise the study.

Study Adherence
Study adherence was monitored automatically using the
JustWalk JITAI server. During the preintervention meetings,
participants were asked to wear the Fitbit for a minimum of 8
hours a day, but it was suggested that they wear the Fitbit all
day, even at night. Fitbit devices typically synchronize with the
Fitbit server via the Fitbit phone app every 15 minutes. This

synchronization stops if the Fitbit device runs out of battery or
is not worn for several days. The JustWalk JITAI server regularly
checks whether a participant’s device has stopped syncing with
the Fitbit server, and if so, it sends an adherence SMS text
message to the participant.

As an operationalized protocol, at 15 minutes before the first
decision point for walking notifications (eg, 6:45 AM local time
for most participants), if a participant had no Fitbit app
synchronization records for 60 minutes (eg, since 5:45 AM local
time for most participants), the server sent an automated
adherence SMS text message including an approximate length
of the period for which the updates were missed (eg, a few
hours, a day, or a while) to invite participants to recharge and
synchronize their Fitbit on the Fitbit app.

This approach helped avoid making the mistake of responding
too immediately to the problem of data drops caused by
accidental battery discharges. As it can be assumed that people
do not carry their Fitbit charger around during the day, sending
an immediate charge it now message when data updates stop
during the day is unlikely to be an effective remedy. In addition,
given that it only takes approximately 30 minutes to charge a
Fitbit from fully depleted to lasting more than a day, it was
assumed that sending these reminders before the start of the day
would give participants a chance to charge their Fitbit.

Modeling and Data Analysis
A series of system ID estimation approaches will be used to
analyze the data and obtain control-oriented dynamical models
to study JIT states. General data analysis will start with
examining the cross-correlation of the data to verify the
hypothesized structure of the system as operationalized via the
computational models described previously. Nonparametric
estimation methods such as correlational analysis and spectral
analysis [71] will be used to obtain preliminary information
about the responses of each individual (ie, time constants, gains,
and orders). The knowledge gained from the nonparametric
estimation methods will be used to obtain ideographic models
through prediction error modeling approaches such as
autoregressive with external input and output error [71]
estimation and more elaborate gray box methods using the SCT
model structure. In addition, the model-on-demand [72,73]
estimation will be used to estimate more flexible models that
address nonlinearities in the system. The estimated models from
all approaches will be contrasted with one another, and the
advantages or disadvantages of each will be assessed to inform
future efforts.

Ethical Considerations
The study was approved by the University of California, San
Diego, institutional review board (protocol 800132) and was
preregistered on ClinicalTrials.gov (NCT05273437).

Results

Simulations
The input signal design for the 2 intervention components in
this study involved an iterative procedure that relied on a priori
knowledge and simulation results for different types of
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anticipated participants to guide the efforts. The simulations
were based on a dynamic SCT model derived from a fluid
analogy, which provided the means to guide specific conditions
for the JIT states considered in the decision rules to ensure that
both the number of notifications sent per day and the overall
number of notifications sent throughout the intervention were
not burdensome for the participants. Furthermore, the simulation
framework with diverse scenarios provided insights into the
ambitious yet achievable range of adaptive goals provided in
each goal setting cycle. A detailed account of the model used
in the simulations, technical details of the designed input signals,
and simulation results that guided the design are provided in
the study by El Mistiri et al [59]. In this section, the results for
a hypothetical adherent participant are presented to illustrate
the dynamic nature by which the daily goals adapt to the
participant’s performance, as well as the effectiveness of the
JIT decision rules in limiting the provision of support only to
times that are hypothesized to be beneficial.

Figure 6 [59] shows the implementation of the designed daily
goal signal in a simulation setting. In this case, the goals in each
cycle are adjusted to the performance of the participant in the
previous cycle, as described in Textbox 1. Note that, in this
case, a hypothetical adherent participant is capable of achieving
the daily goals given to them in each cycle; consequently, the
median of the participant’s performance increases, which leads
to an increase in the goals provided in subsequent cycles. As a
result, the daily goals gradually increase over the span of the
intervention, from a low of 2000 steps per day in the first 2
cycles of the intervention (the first 52 d) to a high of 12,000
steps per day in the last 5 cycles. This simulation result
illustrates that the input signal design for this component is

working as intended by adapting the daily goals to each
participant in a personalized manner while nudging the
participant toward higher levels of PA through a combination
of ambitious and achievable goals.

Figure 7 [59] shows the walking notification component of the
intervention in the simulated scenario for the hypothetical
adherent participant. As shown in the figure, the decision rules
work as intended in terms of dictating the nature of the
notifications sent to the participant. At the beginning of the
intervention, when the participant does not achieve the daily
goals (hence, the need condition of the decision rules is met),
the number of notifications sent to the participant is high across
all levels of the decision rules. Later in the intervention, as the
participant adopts healthier behaviors and meets the daily goals,
the number of walking notifications sent on a daily basis is
significantly lower. Furthermore, note that, on days when the
receptivity condition is considered, the number of notifications
sent follows the notification budget mentioned in Textbox 1.

Finally, as the need condition is not met by the participant
toward the end of the intervention, walking notifications are
only sent on days with fully randomized notifications. This
design allows for comparing the impact on the participant of
fully randomized notifications with that of notifications that are
guided by JIT state conditions that should make them more
beneficial. From these simulation results, the rate at which
notifications are sent (ie, notifications or decision point) on full
JIT state days is the lowest at 0.084, followed by days of need
and opportunity (N+O) conditions at 0.148 and need and
receptivity (N+R) conditions at 0.176. The highest rate of
notifications is observed on days with fully randomized walking
notifications at 0.488.

Figure 6. Simulation results illustrating the implementation of adaptive daily goals (top) in reaction to the performance of a hypothetical adherent
participant in terms of daily step count (bottom) in the JustWalk JITAI study (adapted from the study by El Mistiri et al [59]).
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Figure 7. Simulation results for a hypothetical adherent participant illustrating the expected walking notifications (top) sent based on the designed
decision rules signal (bottom) of the JustWalk JITAI study. For the sent notifications signal at the top, a 0 value implies that no notifications were sent
at that decision point, whereas a value of 1 implies that a notification was sent (adapted from the study by El Mistiri et al [59]). JIT: just-in-time.

Recruitment
Enrollment began in March 2022 and ended in July 2022. In
total, 761 potential participants submitted a letter of interest,
and 48 (6.3%) were enrolled in the study. Figure 8 shows the

CONSORT (Consolidated Standards of Reporting Trials)
diagram [74]. The intervention was completed in April 2023.
The data were gathered without major incidents. The source
code for the server and the app is publicly available on the
project’s GitHub repository [75].

Figure 8. CONSORT (Consolidated Standards of Reporting Trials) recruitment diagram for the JustWalk JITAI study. PA: physical activity.

Discussion

This is a study protocol to investigate 3 JIT states (ie, need,
opportunity, and receptivity) empirically and enable the
empirical optimization of a JITAI intended to increase PA
(steps/d) in adult populations with an inactive lifestyle.

There is well-documented evidence suggesting that digital health
interventions to date have not lived up to their intended potential
[76-78]. From issues of poor adherence; results that only
produce limited effects; and questionable scalability, particularly
among those with less access to digital devices, the potential of
digital health interventions has not yet translated to a real-world
impact [76,77,79]. A pathway for improving this is to focus on
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producing evidence directly targeting and seeking to improve
the fundamental shortcomings of digital health interventions
[77,78].

In this study, our primary focus was to rigorously examine the
notion of JIT states. To date, JIT states used to formulate
intervention decision rules have either been assumed to be
correctly defined—typically based on guidance from behavioral
theory—but not empirically tested or they have been derived
using data-driven approaches such as reinforcement learning
whereby previous domain knowledge and understanding is
underemphasized and, instead, there is hope that useful insights
about intervention timing will emerge from data collected in
intervention studies [80]. Although we believe that both of these
paths have merit, this study protocol offers a middle ground
whereby previous domain knowledge is encapsulated into
computational models, which, through simulation studies, can
then be used to guide the careful generation of evidence that
can test dynamic hypotheses about the nature of JIT states.

This is important as a JIT state, conceptually, is an inherently
nonlinear causal phenomenon [81]. There is no one causal factor
that makes a given moment a JIT state, but instead, it is a
mixture of different factors such as time of day, a person’s
current motivational levels, their relationships, recent
experiences with the types of support given, and the degree to
which support is well matched to a person’s current needs. Such
factors combine at a given moment to influence the decision to
engage—or not—in the target behavior. This study protocol
recognizes the inherent nonlinear causal nature of the
phenomenon under study and provides a rigorous approach to
gathering the data needed to make progress in the context of
such complexity. By varying whether a notification is provided
when the person is thought to be in a state of need, when they
are thought to have an opportunity to walk based on their
personal historical step data, and when they are thought to be
receptive, or combinations of these 3, the experiment will collect
initial evidence for which aspects of the JIT state are most
important for supporting the effectiveness of JITAIs and whether
this changes over time. Using this information, particularly
when linked with slow dynamic processes of change (ie, daily
goal setting), the experiment produces data needed to empirically
optimize a digital health intervention, JustWalk JITAI.
Specifically, this work will result in individualized, empirically
validated dynamical models that can be used to predict each
individual’s response to the intervention options offered to them.
These individualized or idiographic dynamical models can be
applied to optimal personalized behavioral interventions through
sophisticated control algorithms such as model-predictive
control [43,82]. These model-predictive control–driven JITAIs
could have the potential to work more effectively than previous
digital health interventions.

The key limitations of this study stem from the high novelty of
the overall experiment and its approach. To the best of the
authors’ knowledge, no system ID experiment of this
sophistication for studying human behavior has ever been
conducted. On the basis of this, there was very little robust

previous evidence and examples that we could draw upon to
guide study design decisions. Although we did compensate for
this by drawing on some relevant data (largely from our own
work, as already described) and via a number of simulation
studies, overall, there are potential risks and limitations to our
approach. For example, given the novelty of this experiment,
it is unknown how well the assumptions we used to guide the
experiment will hold up. With this, it is unclear exactly how
informative those data will be for studying JIT states. Second,
given the novelty of this experiment, it was unclear what an
appropriate sample size should be. This point is critical for
determining the degree to which any patterns or insights gleaned
about JIT states from this sample will be transportable to other
populations or settings.

With that said, the primary focus of any system ID experiment
is the study and articulation of computational models that are
predictive and foster robust control decisions for each system.
In this context, a system is a person. This is critical to note
because, as flagged previously, the notion of statistical power
as is used in the classic frequentist inferential statistics used
most commonly by health scientists does not have any direct
translation or use within system ID experiments. Indeed, the
key focus of system ID experiments is to work within each
system to gain a deep understanding of its dynamics. This focus
makes sense particularly for a concept such as JIT states, which,
definitionally, will likely manifest idiosyncratically. The critical
question is not whether some general pattern of JIT states can
be inferred but, instead, whether the same algorithmic
development processes can be conducted ideographically and
in a replicable and scalable fashion to enable the insights that
the algorithm can produce to guide intervention
decision-making. This is the primary focus of our work. Thus,
the limitation is less one of statistical power and more akin to
what arises with regard to the right training data sets for machine
learning algorithms. It is unclear at this time what variations
across people, places, and time could occur in real-world
contexts that would render our approach nonfunctional. With
a sample of only 48 participants, a key limitation is that we very
likely did not have diversity across variations in people and
places where this type of algorithm could be used to test the
robustness of our approach. With that said, given the great
novelty of our overall approach, we contend that this is an
appropriate trade-off. Most critically, it is likely that, even in
the sample of 48 participants, we will discover some individuals
from whom we can create computational models that are
informative and others from whom we cannot. That will be the
type of initial data we could use to then develop more rigorous
hypotheses about the transportability of our methods, which
can then guide future experimentation.

Overall, this work could feasibly be a key step in filling the gap
between the hope of digital tools and current realities in terms
of limited long-term impact and engagement based on the
evidence. Although this is all still quite hypothetical, this trial
is a critical step in testing the potential benefits of this overall
approach for intervention optimization.
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