
Persistent homology analysis of
type 2 diabetes genome-wide
association studies in
protein–protein interaction
networks

Euijun Song  1,2*
1Yonsei University College of Medicine, Seoul, Republic of Korea, 2Present: Independent Researcher,
Gyeonggi, Republic of Korea

Genome-wide association studies (GWAS) involving increasing sample sizes have
identified hundreds of genetic variants associated with complex diseases, such as
type 2 diabetes (T2D); however, it is unclear how GWAS hits form unique
topological structures in protein–protein interaction (PPI) networks. Using
persistent homology, this study explores the evolution and persistence of the
topological features of T2D GWAS hits in the PPI network with increasing p-value
thresholds. We define an n-dimensional persistent disease module as a higher-
order generalization of the largest connected component (LCC). The 0-
dimensional persistent T2D disease module is the LCC of the T2D GWAS hits,
which is significantly detected in the PPI network (196 nodes and 235 edges,
P<0.05). In the 1-dimensional homology group analysis, all 18 1-dimensional
holes (loops) of the T2D GWAS hits persist over all p-value thresholds. The 1-
dimensional persistent T2D disease module comprising these 18 persistent 1-
dimensional holes is significantly larger than that expected by chance (59 nodes
and 83 edges, P<0.001), indicating a significant topological structure in the PPI
network. Our computational topology framework potentially possesses broad
applicability to other complex phenotypes in identifying topological features that
play an important role in disease pathobiology.
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1 Introduction

Understanding the genotype–phenotype relationships is challenging owing to their
polygenicity and nonlinearity. Complex diseases result from interactions between diverse
cellular processes and genes. Elucidating the genetic basis of complex diseases in the context
of protein–protein interaction (PPI) networks is essential (Barabasi et al., 2011; Barrio-
Hernandez et al., 2023). In the PPI network, genes (or gene products) that have similar
biological functions are likely to interact closely with each other. Thus, genes associated with
a specific phenotype tend to be clustered into a connected component called a disease module
in the PPI network (Goh et al., 2007). Disease modules that significantly overlap with each
other exhibit similar pathobiological pathways, co-expression patterns, and clinical
manifestations (Menche et al., 2015). This disease module concept is useful in
identifying novel disease–disease or disease–drug relationships (Menche et al., 2015;
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Guney et al., 2016), enabling the implementation of network-based
drug repurposing for complex traits/diseases (Song et al., 2020).

Genome-wide association studies (GWAS) have identified
numerous genetic variants associated with various complex
diseases and can be used to characterize disease-associated
modules in the PPI network (Barrio-Hernandez et al., 2023).
Genes associated with GWAS loci or GWAS hits tend to be
mapped onto coherent network modules in the PPI network. As
the p-value threshold increases from 0 to the standard genome-
wide significance threshold of 5 × 10−8, the GWAS hits mapped to
the PPI network tend to gradually form a single, connected
component (Menche et al., 2015; Leopold and Loscalzo, 2018).
This largest connected component (LCC) of disease genes is
occasionally called an observable disease module (Menche
et al., 2015; Paci et al., 2021). However, owing to the limited
sample size and coverage of current GWAS data as well as the
interactome incompleteness, disease-associated seed genes are
often scattered in the PPI network. To detect disease modules,
various seed-expanding and/or heuristic-based algorithms have
been developed to expand and merge the scattered seed genes in
the PPI network (Ghiassian et al., 2015; Vlaic et al., 2018; Wang
and Loscalzo, 2018; Choobdar et al., 2019). In addition, machine
learning and graph embedding algorithms have been used to
predict disease-associated genes (Yang et al., 2019; 2022; Hou
et al., 2022) and disease treatment mechanisms (Zitnik et al.,
2018; Ruiz et al., 2021) in the context of biological networks. Most
studies have focused on identifying connected components by
mapping disease-associated seed genes onto the PPI network and
expanding these seed genes. However, the mechanism by which
GWAS hits are mapped onto the LCC or other unique topological
structures in the PPI network as the p-value threshold increases
remains unclear. Therefore, the topological features of GWAS
hits mapped onto the PPI network warrant investigation.

One mathematical method for analyzing the topological
features of complex networks is simplicial homology (Hatcher,
2002; Salnikov et al., 2019). Simplicial homology is an algebraic
topology tool used to analyze the topological features of a
simplicial complex, which is a collection of higher-order
interactions called simplices, including points (0-simplices),
line segments (1-simplices), triangles (2-simplices), and
higher-dimensional simplices. Simplicial homology can be
used to examine the connectivity patterns within biological
networks, such as gene-regulatory networks or brain
connectivity networks. It can identify topological features,
such as connected components (0-holes), loops (1-holes),
voids (2-holes), and higher-dimensional holes in the data. For
example, the LCC is the largest 0th homology class (connected
component). Persistent homology is a method for capturing the
persistence of simplicial homology features across multiple
thresholds corresponding to a filtration of the simplicial
complex (Otter et al., 2017; Salnikov et al., 2019). It can
identify important topological features that are persistent
across different levels of interaction, rather than artifacts of
noise or parameter uncertainty. Persistent homology features
of biological networks potentially correspond to biologically
relevant components that play a crucial role in disease
mechanisms (Sizemore et al., 2019; Masoomy et al., 2021).

The mathematical details of simplicial complex and homology
concepts are described in the Method section.

This study analyzes the persistent homology features of
GWAS hits in the PPI network to identify important
topological structures that potentially play a significant role
in disease pathobiology. We analyze the simplicial homology
features of GWAS hits in the PPI network as the p-value
threshold increases from 0 to 5 × 10−8. For example, the
LCC of the mapped GWAS hits, which is occasionally called
an observable disease module, can be considered a connected
component (0th homology class) that lives forever. This study
aims to expand the LCC concept using higher-order
topological structure analysis. We use GWAS summary
statistics data of type 2 diabetes (T2D) because T2D has
undergone extensive genetic study across diverse ancestry
populations with large sample sizes. GWAS with
increasing sample sizes have recently identified more than
300 genetic loci associated with T2D (Vujkovic et al., 2020);
however, many of these GWAS loci have small effect sizes of
unclear pathobiological meaning. Therefore, this study
systematically explores the evolution and persistence of
the topological features of T2D GWAS hits in the PPI
network as the p-value threshold increases from 0 to 5 ×
10−8. We also analyze biological pathways, transcription
factors, and microRNAs associated with the persistent
homology features.

2 Methods

2.1 Overview of the computational topology
framework

This study analyzes the topological features of GWAS hits in the
human PPI network. Using persistent homology, we systematically
explore n-dimensional holes associated with a specific phenotype, as
follows.

1. Map GWAS hits onto the human PPI network.
2. Using persistent homology, identify n-dimensional holes of

GWAS hits in the PPI network, as the p-value threshold
increases from 0 to 5 × 10−8.

3. Detect nth persistent disease modules, which we define as unions
of n-dimensional holes that live forever over all p-value
thresholds.

4. Compute the statistical significance of nth persistent disease
modules by comparing the result with the randomized
distribution of a set of randomly selected nodes in the PPI
network.

Since the LCC can be considered a connected component (0th
homology class) that lives forever, the nth persistent disease module
can be viewed as a higher-order generalization of the LCC concept.
We test our computational framework using T2D GWAS summary
statistics data, and perform functional enrichment analysis to
validate the pathobiological significance of the persistent
homology features.
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2.2 Consolidated human protein–protein
interactome

We used a consolidated human PPI network constructed
previously by Wang and Loscalzo (Wang and Loscalzo, 2021;
Wang and Loscalzo, 2023). Briefly, the protein–protein
interactome was compiled from various sources, including high-
throughput yeast-two-hybrid studies, the Center for Cancer Systems
Biology (CCSB) human interactome, binary PPIs from other
laboratories, protein–protein co-complex interactions, signaling
interactions, kinase–substrate interactions, and the Human
Reference Interactome (HuRI) binary PPIs. This network
possesses a scale-free topology (Wang and Loscalzo, 2021). The
LCC of the protein–protein interactome, comprising 16,422 proteins
(nodes) and 233,940 interactions (links), was used for the
downstream analyses.

2.3 T2D GWAS hits

We used a GWAS meta-analysis summary statistics dataset of
228,499 T2D cases and 1,178,783 controls encompassing multi-
ancestral groups (Vujkovic et al., 2020) (downloaded from the
GWAS catalog https://www.ebi.ac.uk/gwas/). The standard
genome-wide significance threshold of 5 × 10−8 was applied. Each
genetic variant was annotated with the closest gene(s) via GWAS
catalog gene-mapping data. Only GWAS loci that had been
annotated with at most two genes were included. Some genes
were linked to multiple GWAS loci with multiple p-values. To
extract GWAS hits, for each gene, we assigned the lowest p-value
from the different GWAS loci mapped onto that gene (Ratnakumar
et al., 2020). We only considered genes (or proteins) in the human
PPI network.

2.4 Simplicial complex and homology theory

Here, we briefly describe the fundamentals of the simplicial
complex and persistent homology theory (Hatcher, 2002; Otter et al.,
2017; Salnikov et al., 2019). An n-dimensional simplex (n-simplex)
is formed by n + 1 nodes

σn � v0, v1, . . . , vn( ) (1)
with an assigned orientation. For example, a 0-simplex is a vertex
(node), a 1-simplex is an edge (link), and a 2-simplex is a triangle.
An n′-face of an n-simplex (n′ < n) is a proper subset of the nodes of
the simplex with order n′ + 1. A simplicial complex K is a set of
simplices closed under the inclusion of the faces of each simplex.
Given a set of n-simplices of a simplicial complex K, an n-
dimensional chain (n-chain) is defined as a finite linear
combination of n-simplices of K, as follows:

cn � ∑
i

biσ
i( )
n (2)

where bi ∈ Z/2Z. In this study, we restrict our analysis to homology
with Z/2Z coefficients. The set of n-chains forms an abelian
group denoted by Cn (n-chain group). For any n-simplex

σn � (v0, v1, . . . , vn), the boundary operator ∂n: Cn → Cn−1 is
the homomorphism defined as follows:

∂n σn( ) � ∑
n

i�0
−1( )i v0, . . . , vi−1, vi+1, . . . , vn( ). (3)

An n-chain is said to be a n-cycle if its boundary is zero; that is,
elements of the subgroup Zn≔ ker ∂n ⊆ Cn are n-cycles. Similarly,
elements of the subgroup Bn≔im ∂n+1 ⊆ Cn are said to be n-
boundaries. Based on the definition of the boundary operator, it
is obvious that any boundary has no boundary (i.e., ∂n∂n+1 = 0).
Thus, Bn ⊆ Zn ⊆ Cn. Hence, the nth simplicial homology groupHn of
the simplicial complex K can be defined as the quotient abelian
group:

Hn K( ) ≔ Zn/Bn � ker∂n/im ∂n+1. (4)
The rank of the nth homology group Hn is called the nth Betti
number βn. The nth homology group Hn is isomorphic to Zβn , with
the basis of independent n-cycles on Zn modulo boundaries.
Intuitively, it represents n-dimensional holes in the simplicial
complex K. For example, β0, β1, and β2 represent the number of
connected components, loops, and voids, respectively.

Persistent homology is a method for analyzing simplicial
topological features at different resolutions of a given simplicial
complex (Otter et al., 2017; Salnikov et al., 2019). Formally, a
filtration of the simplicial complex K is a finite sequence of
subcomplexes Ki | 0≤ i≤m{ } such that

∅ � K0 ⊆ K1 ⊆/⊆ Km � K. (5)
For 0 ≤ i ≤ j ≤ m, the inclusion Ki-Kj induces a homomorphism
hi, jn : Hn(Ki) → Hn(Kj), and the nth persistent homology groups
PHi, j

n are defined as the images of these homomorphisms:

PHi, j
n ≔ im hi, jn . (6)

Intuitively, the nth persistent homology groups represent n-
dimensional holes that persist from Ki to Kj. We can track when
n-dimensional holes appear (birth) and disappear (death) at
different threshold values of the filtration. Persistence diagrams,
representations of persistent homology, can be constructed by
plotting the birth and death sites of topological features.

2.5 Persistent homology analysis of GWAS
hits

In this study, the PPI network G = (V, E) is considered a
simplicial complex K: genes (or proteins) are regarded as 0-
simplexes (nodes), PPIs as 1-simplexes (links), and higher-order
connections (or cliques) as high-dimensional simplices. The T2D
disease module was identified as the LCC of the PPI subnetwork
induced by the T2D GWAS hits. The statistical significance of the
LCC was calculated by comparing the observed LCC size with the
randomized LCC distribution of a set of randomly selected nodes of
the same size in a degree-preserving manner over 1,000 repetitions.
The z-score was estimated as z � LCCobs−〈LCC〉rnd

σrnd
, where LCCobs is the

observed LCC size, and 〈LCC〉rnd and σrnd are the mean and SD of
the randomized LCC distribution, respectively.
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Each T2DGWAS hit’s p-value was used as a varying threshold to
obtain a filtration of the PPI subnetwork induced by the T2DGWAS
hits as a function of the p-value. As the threshold value increases
from 0 to 5 × 10−8, each node appears at the p-value assigned to that
gene. Formally, we define the δ-simplicial complex for the p-value
threshold δ ≥ 0 as follows:

Wδ ≔ σ � v0, v1, . . . , vk( ) ∈ K | ∀i ∈ 0, 1, . . . , k{ }, p vi( )≤ δ{ } (7)
where p(v) ∈ [0, 1] is the GWAS hit p-value assigned to the node v ∈
V. Using this δ-simplicial complex, we define the filtration as
Wδ-Wδ′{ }0≤ δ ≤ δ′. We subsequently examined the persistent
homology features (n-dimensional holes) of this filtration for

each dimension as a function of the p-value threshold.
Persistence diagrams were used to visualize the birth and death
times of topological features. For each dimension, we also computed
the Betti numbers (ranks) of the simplicial homology groups as a
function of the p-value threshold.

We define an nth persistent disease module as a union of n-
dimensional holes that live forever over all p-value thresholds. This
definition is concordant with the conventional disease module
concept–the 0th persistent disease module is the LCC, which is
the persistent 0-dimensional hole (connected component) that lives
forever. The statistical significance of the nth persistent disease
module was calculated by comparing the observed persistent

FIGURE 1
The LCC of the subnetwork induced by the T2D GWAS hits in the protein–protein interaction network (A) The LCC size increases as the p-value
threshold increases from 0 to 5 × 10−8 (B) The LCC of the T2D GWAS hits is significantly larger than that expected by chance. The red arrow indicates the
observed LCC size. LCC, the largest connected component; T2D, type 2 diabetes; GWAS, genome-wide association study.

FIGURE 2
Persistent homology analysis of the T2D GWAS hits in the protein–protein interaction network (A) The persistence diagram of the T2D GWAS hits.
Using persistent homology, 0-dimensional holes (connected components, marked as blue dots) and 1-dimensional holes (loops, marked as orange dots)
were identified as a function of the p-value threshold. The birth and death pairs of topological features are shown (B) The Betti numbers of the simplicial
homology groups as a function of the p-value threshold. T2D, type 2 diabetes; GWAS, genome-wide association study.
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disease module size with the randomized persistent disease module
distribution of a set of randomly selected nodes of the same size in a
degree-preserving manner. The persistent homology features of
randomly selected nodes were analyzed over 1,000 repetitions.
The network and homology analyses were performed using the
NetworkX and Ripser packages of Python 3.8 (https://www.python.
org/), and networks were visualized using Cytoscape 3.9.1 (https://
cytoscape.org/). The core code for analyzing persistent homology is
publicly available in our GitHub repository (https://github.com/
esong0/PHGWAS).

2.6 Functional enrichment analysis

To infer the biological significance of the persistent disease
module, a pathway enrichment analysis was performed based on
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
2021 database using the GSEApy Python package (Fang et al.,
2022) with the Enrichr web server (Kuleshov et al., 2016). In
addition, the transcription factor target enrichment analysis was
conducted based on the ENCODE and ChEA Consensus
databases. The microRNA target enrichment analysis was also
performed based on the miRTarBase database. Adjusted p-values
were computed using the Benjamini–Hochberg method, and
statistical significance was set at P< 0.05.

3 Results

3.1 The LCC of GWAS hits

We compiled the T2D GWAS hits using the large-scale T2D
GWAS summary statistics data, 565 of which are present in the
human PPI network. As the p-value threshold increased from 0 to
5 × 10−8, the LCC of the subnetwork induced by the T2D GWAS hits
increased (Figure 1A).When the standard genome-wide significance
threshold of 5 × 10−8 was applied, we identified the LCC comprising
196 nodes and 235 edges, which is significantly larger than that
expected by chance (p = 0.0487, Figure 1B). We defined a T2D
observable disease module as this LCC of the T2D GWAS hits
(Supplementary Table S1). Other connected components of the
subnetwork induced by the T2D GWAS hits comprised
≤5 nodes, which were excluded from the downstream analyses.

3.2 Persistent homology analysis

We examined how the topological features of the T2D disease
module evolve and persist in the PPI network as the p-value threshold
increases from 0 to 5 × 10−8. In our framework, each node appears at the
p-value assigned to that gene. We used the p-value of each T2D GWAS
hit as a varying threshold and determined the timing of the appearance

FIGURE 3
The 1st persistent T2D disease module in the protein–protein interaction network (A) The 1st persistent T2D disease module comprising persistent
1-dimensional holes (loops) that live forever over all p-value thresholds. The p-values of the T2D GWAS hits are shown (B) The 1st persistent T2D disease
module is significantly larger than that expected by chance. The red arrow indicates the observed module size. T2D, type 2 diabetes; GWAS, genome-
wide association study.
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(birth) and disappearance (death) of n-dimensional holes at different
threshold values. In the 0th homology group (H0) analysis, 61 0-
dimensional holes (connected components) were identified, of which
only one persisted over all p-value thresholds (Figure 2A). This
persistent 0-dimensional hole is the LCC, that is, the T2D
observable disease module. In the 1st homology group (H1) analysis,
18 1-dimensional holes (loops or 1-cycles) were identified, all of which
persisted over all p-value thresholds (Figure 2A). No higher-
dimensional hole (n ≥ 2) existed in the T2D GWAS hit data. The
Betti numbers (ranks) of the simplicial homology groups are shown in
Figure 2B. As the p-value threshold increases, the number of 0-
dimensional holes converges to 1 (i.e., the LCC), while the number
of 1-dimensional holes increases and converges to 18.

We identified the nth persistent disease modules, which were
defined as unions of persistent n-dimensional holes that live forever
over all p-value thresholds. The 0th persistent disease module is the
LCC, which is the persistent 0-dimensional hole that lives forever. As
shown in Figure 1B, the LCC is significantly larger than that expected
by chance. Since the LCC concept has been extensively investigated in
various complex diseases, this study focused on the 1st persistent
disease module. In our T2D GWAS data analysis, we identified
18 persistent 1-dimensional holes (loops or 1-cycles), which
constitute the 1st persistent T2D disease module comprising
59 nodes and 83 edges (Figure 3A). This 1st persistent T2D
disease module is significantly larger than that expected by chance
(P< 0.001, Figure 3B), indicating a significant topological feature of
the T2D GWAS hits in the PPI network. Since the lowest p-value in
the T2D GWAS data is as extremely small as 3e-695 (rs7903146 in
TCF7L2), we repeated our analysis using the log p-value scale. The

same 61 0-dimensional holes and 18 1-dimensional holes were also
identified (Supplementary Figure S1).

3.3 Biological pathways, transcription
factors, and microRNAs

To infer the pathobiological significance of the 1st persistent T2D
disease module, we identified over-represented KEGG pathways. The
top 10 enriched KEGG pathways included mTOR signaling, FoxO
signaling, AMPK signaling, the longevity regulating pathway, PI3K-Akt
signaling, the transcriptional misregulation pathway in cancer, and
several cancer pathways (Figure 4A). In addition, the 1st persistent T2D
disease module was enriched with targets of transcription factors,
including UBTF, YY1, RUNX1, ZBTB7A, KLF4, RCOR1, GATA1,
PBX3, E2F1, and CREB1 (Figure 4B). The 1st persistent T2D disease
module was also enriched with targets of microRNAs, including hsa-
miR-152–3p and hsa-miR-320a (Figure 4C).

4 Discussion

Using persistent homology, this study explored the evolution and
persistence of the topological features of T2D GWAS hits in the PPI
network as the p-value threshold increased from 0 to 5 × 10−8. The nth
persistent disease module was defined as a union of persistent n-
dimensional holes that live forever over all p-value thresholds. This
is a higher-order generalization of the conventional disease module
concept. The 0th persistent T2D disease module is the LCC of the T2D

FIGURE 4
Functional enrichment analysis of the 1st persistent T2D disease module. The 1st persistent T2D disease module was enriched by KEGG pathways
(the top 10 pathways are shown) (A), targets of transcription factors (B), and targets ofmicroRNAs (C). T2D, type 2 diabetes; KEGG, the Kyoto Encyclopedia
of Genes and Genomes.
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GWAShits, which is significantly larger than that expected by chance. In
the 1st homology group analysis, all 18 1-dimensional holes (loops) of
the T2DGWAShits persist over all p-value thresholds. The 1st persistent
T2D disease module comprising these 18 persistent 1-dimensional holes
is significantly larger than that expected by chance, indicating a
significant topological structure in the PPI network. The 1st
persistent T2D disease module is enriched with the mTOR, FoxO,
AMPK, and PI3K-Akt signaling pathways; longevity regulating pathway;
and cancer pathways. It has been known that the mechanisms of T2D,
aging, and cancer are closely related to each other (Wei et al., 2017). The
pathobiological significance of this persistent diseasemodule is subject to
subsequent experimental validation.

Our computational topology framework potentially has broad
applicability to other complex phenotypes. By analyzing the
persistent homology features, the higher-order topological features
that may be closely associated with a specific phenotype can be
identified. We plan to expand this preliminary study to systematically
analyze the topological features of the large-scale disease–gene networks
(Menche et al., 2015; Guney et al., 2016).We expect that there are several
mathematical ways to expand our persistent homology approach in PPI
networks. The weighted topology (Baccini et al., 2022) of weighted PPI
networks reflecting proteome-wide binding affinity and concentration
information should provide more biologically plausible and reliable
information. In addition, relational persistent homology (Stolz et al.,
2023) may be a useful tool for dissecting multispecies data, such as
multiomics data or multilayer biological networks.

Notwithstanding, this study has several potential limitations.
While the conventional disease module concept typically relies on
connected components (0th homology class) of disease seeds, the
proposed persistent disease module concept is a higher-order
generalization of the LCC. Hence, it is hard to directly compare
our homology approach to most other disease module identification
algorithms. Therefore, it is essential to develop higher-order
versions of seed-expanding algorithms to detect robust and
reliable persistent disease modules. The role of seed connectors
(Wang and Loscalzo, 2018) in homology features also warrants
elucidation. As the uncertainty and incompleteness of GWAS and
PPI network data are inevitable (Menche et al., 2015), how these
errors and uncertainty affect the robustness of persistent disease
modules remains unclear. Although no higher-dimensional hole
(n ≥ 2) was present in our T2D GWAS hit data, higher-order
interactions may play a significant role in disease pathobiology.
Dynamic topological data analysis approaches based on sequential
data would provide more rigorous and robust results (Ciocanel et al.,
2021). Tissue- or cell-type-specific networks (Greene et al., 2015)
should provide more biological information regarding persistent
disease modules. Determining whether oncogenic mutations

perturb PPI or higher-order interactions in the PPI network is a
worthwhile endeavor (Cheng et al., 2021).
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