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Abstract

Though chest radiography is a first-line diagnostic tool in the emergency department
(ED), interpretation has a high error rate. We aimed to evaluate the usability and
acceptability of deep learning-based computer-aided detection for chest radiography
(DeepCADCR) in an ED environment. We conducted a single-institution survey of
emergency physicians (EPs) who had used DeepCADCR (Lunit INSIGHT Chest Xray
(CXR), version 3.1.4.1) as part of their ED workflow for at least three months. We
developed 22 questions that assessed the subscales of effectiveness, efficiency, safety,
satisfaction, and reliability. A seven-point Likert agreement scale was used to rate the
responses. A total of 23 EPs who completed the survey was enrolled in the study.
When averaged by subscale, satisfaction scores were highest (mean 4.71, standard
deviation (SD) 1.43), and safety scores were lowest (mean 4.3, SD 0.72). When scores
were converted to acceptability, the total average acceptance of DeepCADCR was
86.0%, with higher scores in ED residents than ED specialists for all subscales. Use
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of DeepCADCR in the ED workflow was well accepted by EPs.
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1. Introduction

Chest radiography is a first-line diagnostic tool in the emer-
gency department (ED) [1, 2]. However, interpretation has
a high error rate (up to 22%) [3]. Moreover, interpretation
of Chest xray (CR) images of patients requiring immediate
procedures, such as pneumothorax or large pleural effusion,
is often delayed [4, 5]. Although it is recommended that
radiologists interpret all diagnostic radiology images in the ED
[6, 7], coverage by radiologists is limited, especially on nights
or weekends [8].

Recently, there have been major breakthroughs in the de-
velopment of deep learning-based computer-aided detection of
chest radiography (DeepCADCR) [6, 9-11]. Several studies
have demonstrated that DeepCADCR can contribute to prompt
and accurate interpretation as well increased work efficiency
[12—15]. These benefits have been studied mostly in simulated
studies with radiologists [ 14, 16, 17]. Implementation of Deep-
CADCR by non-radiologists in a real clinical environment has
only been investigated by a single study [18].

Although promising, the impact of DeepCADCR for EPs
in real practice remains unclear [19]. Patients present vari-
ous symptoms and signs in the ED environment, and timely
interpretation of all CRs and prompt decision-making can

be difficult [20, 21]. Moreover, CR conducted in the ED
generally was interpreted by radiologists after ED care was
complete and was not used for ED decisions. Implementation
of DeepCADCR in the ED has been expected to result in
more accurate and prompt interpretations, but its usability and
acceptability have not been evaluated. Therefore, we aimed to
evaluate the usability and acceptability of DeepCADCR in the
clinical workflow of EPs.

2. Methods

2.1 Study design

We conducted a survey study of EPs in a tertiary academic
center ED in Seoul, Korea. The survey was carried out after
the EPs had used DeepCADCR in their ED workflow for three
months.

2.2 Study settings

The ED of a tertiary academic hospital in a metropolitan area
with an average of 250 ED visits per day implemented Deep-
CADCR from June 2022 to September 2022. When patients
visit this ED, EPs examine the patient and then transcribe initial
laboratory orders, including CR if indicated. The EP interprets
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the CR images and consults with a radiologist if necessary.
Radiologists are stationed in the hospital 24—7 and interpret CR
images for ED patients, but it usually takes hours for specific
consults.

2.3 Radiology, Picture archiving and
communication system (PACS) and the
DeepCADCR system

Chest radiographs were obtained with the patients in the pos-
teroanterior projection or in the supine position according to
condition. All CRs were obtained using an XGEO GC80 (Dig-
ital Radiography System, Samsung Medison, Seoul, South
Korea) or GM60A-32 (Mobile Digital Radiography System,
Samsung Medison, Seoul, South Korea) digital radiography
system.

DeepCADCR (Lunit INSIGHT CXR, version 3.1.4.1) was
implemented to assist the interpretation of ED CRs with a
focus on nine abnormal findings: pulmonary nodules, calci-
fication, fibrosis, pneumothorax, pleural effusion, atelectasis,
pneumothorax, cardiomegaly, and consolidation. The system
provides a probability score between 0% and 100%, with a heat
map of each original chest radiograph to identify the location of
the abnormality when the probability score is 15% or greater.

Routine ED practice during the study period is illustrated
in Fig. 1. When CR was performed, the DeepCADCR sys-
tem received the image from PACS storage and presented
results in the electronic medical records (EMR) integrated view
within a few seconds. Results were presented in the form
of an INSIGHT map and/or INSIGHT report. Location(s)
of abnormalities and abnormality scores were provided in the
heat map of each chest radiograph. The INSIGHT report
includes the anatomical location of the detected lesion along
with information about the INSIGHT map.

Original CRs were examined side by side with INSIGHT
maps by EPs to receive assistance from DeepCADCR in real
time. An example image of a DeepCADCR INSIGHT map is
provided in Fig. 2.

2.4 Participants

Fig. 3 describes the inclusion flow of study participants. ED
residents and board-certified ED specialists affiliated with the
ED were enrolled as participants. Only EPs with clinical
experience with DeepCADCR during the study period were in-
cluded; EPs who were on rotation in other clinical departments
were excluded.

2.5 Survey development

There is as no consensus on standards for assessing deep
learning-based clinical decision support systems. We devel-
oped a systematic questionnaire format based on review of
previous studies [18, 19]. A total of 22 questions was de-
veloped to assess effectiveness, efficiency, safety, satisfaction
and reliability. A 7-point Likert agreement scale was used to
rate the responses as “Strongly disagree = 17, “Disagree = 27,
“Somewhat disagree = 3”, “Neither agree nor disagree = 4”,
“Somewhat agree =57, “Agree = 6”, or “Strongly agree = 7.
Averages of scores were calculated to determine the overall
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user experience, along with the system usability scale (SUS).
More specific questions were developed for each feature of the
DeepCADCR to assess the level of agreement among EPs and
the impact of the CAD system on clinical practice.

2.6 Statistical analysis

All continuous variables are reported as mean (SD) or me-
dian (IQR). Categorical variables are described as number and
percentage. We calculated Cronbach’s alpha to measure the
internal consistency of the developed questions. We defined
a score of 4 or higher as an “acceptable” response. For
all statistical analyses, p < 0.05 was considered statistically
significant. Statistical analyses were performed using R soft-
ware (version 4.1.2, R Foundation for Statistical Computing,
Boston, Messachusetts, USA).

3. Results

3.1 Participants

A total of 31 EPs used DeepCADCR during the study pe-
riod. We excluded 8 EPs who left or who rotated to other
departments. Finally, 23 EPs were enrolled and completed the
survey. Table | describes the baseline characteristics of partic-
ipants. Average age of the participants was 33.2 years, and 12
(52.2%) participants were female. Fifteen (65.2%) participants
were emergency residents, and 10 (43.5%) participants had
more than 5 years of work experience.

3.2 Chest radiograph interpretation by
DeepCADCR

A total of 19,649 patients visited our ED during the study
period. Ofthese, 2882 (14.7%) were younger than 19 years and
5373 (27.3%) did not undergo CR. As a result, a total of 14,745
CR images from 11,394 ED patients were collected during the
study period.

The DeepCADCR interpreted 6138 (41.6%) CR images as
normal and 8607 (58.3%) as abnormal. The proportions of
specific abnormal findings are shown in Supplementary Fig.
1. The most common abnormal finding was pulmonary nodule
(24.5%), followed by consolidation (22.8%), fibrosis (16.4%),
and pleural effusion (13.2%)).

3.3 User experience with DeepCADCR

The full survey questions are listed in Table 2. Response distri-
bution for each subscale of user experience with DeepCADCR
is presented in Supplementary Fig. 2. When averaged by
subscale, satisfaction scores were highest (mean 4.71, SD
1.43), and safety scores were lowest (mean 4.3, SD 0.72).
Average user experience scores for each subscale are presented
in Fig. 4.

Survey questions and acceptance level of DeepCADCR by
participants are presented in Table 2. When scores were
converted to acceptability, the total average acceptance was
86.0%.
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FIGURE 1. Implementation of computer-aided detection system on chest radiograph into emergency department
workflow. PACS, picture archiving and communication system; EMR, electronic medical records; CXR, chest Xray.

Lunit INSIGHT

FIGURE 2. Example images of the computer aided detection system on chest radiograph. Heat map on abnormal findings.
The system provided abnormality score below the chest radiograph with probability score. When probability score as 15% or

greater, the system interpreted a chest radiograph as an abnormal.

radiograph
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23 emergency physicians were enrolled in the study

FIGURE 3. Flow diagram of study participants. Al artificial intelligence.
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TABLE 1. Baseline characteristics of the study participants.

. Participants
Variables (N =23)
Age, mean (SD) 33.2(7.4)
Sex, n (%)

Male 11 (47.8)

Female 12 (52.2)
Physician experience, n (%)

Resident 15 (65.2)

Specialist 8 (34.8)
Work years, n (%)

<5 13 (56.5)

>5 10 (43.5)
Experience with Al clinical decision support system, n (%)

Yes 11 (47.8)

No 12 (52.2)
Experience with attending a lecture or seminar regarding medical AL n (%)

Yes 9(39.1)

No 14 (60.9)

Al artificial intelligence; SD, standard deviation.

TABLE 2. Acceptability of DeepCADCR for chest radiograph interpretation.
Survey questions
Effectiveness
Q1. My chest CR interpretation improved after CADCR implementation.
Q2. DeepCADCR helped plan future diagnoses and treatment of ER patients.
Q3. DeepCADCR made me more confident in my reading.
Q4. Overall, CADCR helped me interpret chest images of ER patients.
Efficiency
Q5. It is convenient that the DeepCADCR reading is shown along with the image.
Q6. It took more time to read the CR after DeepCADCR implementation.
Q7. Due to DeepCADCR, I was able to reduce the number of requests for CR readings by radiologists.
Q8. DeepCADCR improved the effectiveness of care overall.
Safety
Q9. 1 was able to recommend appropriate outpatient follow-up for abnormal findings incidentally
discovered by CADCR.
Q10. DeepCADCR readings may lead to additional tests for patients that they would not have undergone
without CADCR.
Q11. DeepCADCR may delay patient care.
Q12. DeepCADCR can cause unnecessary confusion.
Q13. DeepCADCR was able to reduce the number of missed cases requiring emergency treatment.
Q14. Implementation of DeepCADCR in the ER could increase patient safety overall.
Satisfaction
QI15. The benefit of the DeepCADCR system is worth the cost.
Q16. I am willing to continue using the DeepCADCR reading system.
Q17. I would recommend DeepCADCR use to my colleagues and other EPs.
Q18. Overall, I am satisfied with the performance of the DeepCADCR reading system.
Reliability
Q19. I have a good understanding of the DeepCADCR reading algorithm.
Q20. DeepCADCR readings were easy to interpret.
Q21. I trust the DeepCADCR readings.
Q22. DeepCADCR readings were mostly consistent with my readings.
Average
DeepCADCR, deep learning-based computer-aided detection system for chest radiographs.
Scores over 4 were regarded as acceptance of DeepCADCR.
06, 011, Q12 were negative items. The 100-value was used for average acceptability.
CR, chest radiography; EPs, emergency physicians; ER, emergency room.
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Acceptability (%)
80.4
69.6
78.3
91.3
82.6
72.8
91.3
26.1
435
82.6
69.5
69.6

60.9

43.5
26.1
69.6
87.0
85.9
82.6
87.0
87.0
87.0
76.1
34.8
95.7
82.6
91.3
86.0
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FIGURE 4. Summary of user experience responses.

3.3.1 Effectiveness and efficiency

Effectiveness of DeepCADCR was 80.4%, and efficiency was
72.8%. In terms of effectiveness, the statement “DeepCADCR
made me more confident in my reading” (Q3) received the
highest acceptance. In the efficiency subscale, participants
were least likely to agree with DeepCADCR to not request a
CR reading by a radiologist (Q7, 43.5%).

3.3.2 Safety, satisfaction and reliability

Safety of DeepCADCR was 69.5%, satisfaction was 85.9%,
and reliability was 76.1%. Acceptance of safety was low-
est among all subscales, indicating that participants were not
convinced that DeepCADCR would improve patient safety.
Nevertheless, participants were largely satisfied with Deep-
CADCR and intended to use (Q16, 87.0%) and recommend it
to their colleagues and other EPs (Q17, 87.0%). Most partici-
pants were satisfied with DeepCADCR presentation of results
(Q22, 95.7%) but did not understand the model algorithm
(Q19, 34.8%).

3.3.3 Subgroup analysis

We analyzed the results of user experience in terms of EP
experience. Average scores were higher in the resident group
than in the specialist group for all subscales; however, the
difference in reliability was not significant (Supplementary
Fig. 3). The mean (SD) for all questions was 4.7 (SD
1.3) in the resident group and 3.9 (SD 1.6) in the specialist
group. The largest difference was in perceived effectiveness
of DeepCADCR (5.3 (SD 1.0) in the resident group vs. 3.7
(SD 1.6) in the specialist group, p < 0.001), and the smallest
difference was in perceived reliability (4.5 (SD 1.4) in the
resident group vs. 4.2 (SD 1.5) in the specialist group, p =
0.308).

We calculated Cronbach’s alpha for the five-subscale ques-
tionnaire. The effectiveness subscale of four questions had an
« value of 0.94, the efficiency subscale of 4 questions had an
« value of 0.78, the safety subscale of 6 questions had an «
value of 0 .74, the satisfaction subscale of 4 questions had an
a value of 0.96, and the reliability subscale of 4 questions had
an « value of 0.84.

T T T
Satisfaciton Reliability Overall

category

3.4 System usability scale of DeepCADCR

The mean (SD) SUS score was 64.5 (7.7). Table 3 provides
details of each statement. Of all statements, “the system was
easy to use” received the best evaluation from participants,
with the highest mean score and lowest SD. Other statements
such as “ease of learning the system” (mean 4.0, SD 0.6),
“confident in the system” (mean 3.4, SD 0.8), and “intend to
use the system” (mean 3.4, SD 0.8) obtained relatively high
scores.

3.5 Survey results by specific abnormal
findings

Participants showed the highest agreement with the Deep-
CADCR interpretation for pleural effusion (mean 5.5, SD
0.5) and pneumothorax (mean 5.5, SD 0.8). Areas of lower
agreement were atelectasis (mean 4.3, SD 1.0) and fibrosis
(mean 4.4, SD 1.1). DeepCADCR had the greatest impact
when participants were diagnosed or required further treatment
for pneumothorax (mean 4.7, SD 1.8) and pneumoperitoneum
(mean 4.5, SD 1.8) (Supplementary Table 1).

3.6 Future DeepCADCR application

Seven questions about the one-year use of DeepCADCR were
answered by participants. The results are described in Table 4.
Although patient safety received the lowest score based on
user evaluation, participants felt that continuous use of Deep-
CADCR would help improve patient safety (mean 4.9, SD 1.2).
Other questions such as “help in chest radiograph interpre-
tation” (mean 4.6, SD 1.3), “satisfaction with performance”
(mean 4.6, SD 1.4), and “trust the CADCR interpretation”
(mean 4.6, SD 1.4) obtained relatively high scores.

4. Discussion

This is the first study to evaluate user experience with Deep-
CADCR in the workflow of an ED. The study showed high
acceptance of CADCR among EPs; its acceptance level varied
from 69.5% (patient safety category) to 85.9% (satisfaction
category) (Table 2). Residents were more positive toward
DeepCADCR than were board-certified ED specialists.
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TABLE 3. System usability scale results.

Standard questions
I think that I would like to use this system frequently
I found the system unnecessarily complex

I thought the system was easy to use

I think that I would need the support of a technical person to be able to use this system

I found that the various functions in this system were well integrated

I thought there were too many inconsistencies in this system

I imagine that most people would learn to use this system very quickly

I found the system very cumbersome to use

I felt very confident using the system

I needed to learn a lot of things before I could start using the system

Mean (SD)
3.4(0.8)
1.0 (0.5)
4.1(0.5)
2.0(0.7)
3.3(0.9)
1.9 (0.7)
4.0 (0.6)
1.8 (0.7)
3.4(0.8)
1.8 (0.6)

Range 1-5; 1, strongly disagree and 5, strongly agree. SD, standard deviation.

TABLE 4. Perceptions of DeepCADCR use in the future.

Survey Questions

After using DeepCADCR for a year, my ability to read chest radiographs will have improved
After using DeepCADCR for a year, I will use it to help read chest radiographs

After using DeepCADCR for a year, the efficiency of treatment will have improved

After using DeepCADCR for a year, patient safety will have improved

After using DeepCADCR for a year, I will be satisfied with the performance of the Al reading

system

After using DeepCADCR for a year, [ will trust the Al readings
After using DeepCADCR for a year, I will use the Al reading system frequently

Scores, mean (SD)
4.3 (1.5)
4.6 (1.3)
4.5(1.3)
49 (1.2)
4.6 (1.4)

4.6 (1.4)
4.5(1.5)

Range 1-7; 1, strongly disagree and 7, strongly agree. DeepCADCR, deep learning-based computer-aided detection system for
chest radiographs; Al, artificial intelligence, SD, standard deviation.

In previous works, DeepCADCR was only evaluated in sim-
ulation settings or in general wards or outpatient departments.
This is the first study to evaluate DeepCADCR implementation
in clinical practice in the ED. Simulation-based studies have
previously been used to evaluate the performance of EPs with
or without DeepCADCR [6, 19]. Because CR interpretation is
influenced by various factors such as severity of disease, ED
crowding, and EP workload, it is unclear whether the results
of simulation studies are generalizable to real-world clinical
practice. Moreover, when implementing machine learning-
based CDSS, user acceptance needs to be high in addition to
acceptance of the system [22].

We also provided evidence that CAD systems can positively
impact non-radiologists in a clinical setting. The effect of
DeepCADCR on clinical decision-making is unclear. Most
studies have targeted radiologists in related fields rather than
non-radiologists; however, radiologists do not interact with
patients directly or make decisions regarding care. We believe
that DeepCADCR can improve patient treatment and progno-
sis [23, 24]. We implemented DeepCADCR into clinicians’
workflows and found that EPs made most use of the system
when they had to make a diagnosis or develop a treatment plan.

Residents were more satisfied and influenced by DeepCADCR
than were board-certified ED specialists.

Generally, a resident’s ability to interpret radiology im-
ages is lowest when they are in Post graduate year (PGY1)
and improves as they become more advanced residents and
board-certified specialists [25]. Novice residents typically lack
knowledge to interpretate radiology images and time to assess
images, which are possible reasons why higher satisfaction
was reported in the resident group. DeepCADCR can assist
residents not only in terms of interpretation accuracy, but also
aid in visualization to result in higher satisfaction and usability.

Only 34.8% of participants said they had a good under-
standing of the DeepCADCR algorithm. Before implement-
ing this system in our ED, we described the function and
instructions to our participants. However, we did not cover all
knowledge and mechanisms of the deep learning algorithms
because the participants had various backgrounds in medical
artificial intelligence (AI). According to one study, education
has a positive influence on physician acceptance of Al [26].
However, less than half of the participants in our study had
prior experience with medical AI. We suggest that aggressive
medical Al education can improve physicians’ acceptance,
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especially with regard to safety and reliability.

User acceptance could vary by work environment [27].
Because DeepCADCR does not differentiate interval changes
between abnormal CRs, it is less useful for chronic diseases.
The proportions of normal and abnormal interpretations by
DeepCADCR would likely impact EP acceptance; a multicen-
ter prospective study should be performed to assess this.

EPs provided high scores for DeepCADCR for abnormal
findings requiring emergent management such as pneumoth-
orax, pneumoperitoneum, and pleural effusion. One study
reported similar results to our study; when a CAD system
was used to detect pneumothorax in CR after lung biopsy,
physicians gave a high rating to the interpretation perfor-
mance. Additional significant factors should be discovered
and investigated to implement and maximize the usability of
DeepCADCR.

First, we conducted this study in a single-center ED. Mul-
ticenter prospective studies are recommended to evaluate the
generalizability of our findings. Second, we used only one
type of DeepCADCR; the results could differ with another type
of DeepCADCR with a different user interface and display.
Third, we only conducted the survey once, so we were not
able to analyze outcomes over time. Changes in learning,
acceptance, and user experience over time should be evaluated
in future studies. Fourth, we evaluated the user experience
and the impact of DeepCADCR through a survey. However,
in real-world clinical settings, many confounding factors can
affect the interpretation of chest radiographs and therapeutic
procedures. Finally, we did not directly investigate the effec-
tiveness of DeepCADCR in the ED setting.

5. Conclusions

DeepCADCR implemented in the ED workflow was well
accepted by EPs. They were highly satisfied with the system,
with residents being more positive toward DeepCADCR than
board-certified ED specialists.
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