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Abstract

Background: The prediction of successful weaning from mechanical ventilation (MV) in advance of intubation can facilitate
discussions regarding end-of-life care before unnecessary intubation.

Objective: We aimed to develop a machine learning–based model that predicts successful weaning from ventilator support
based on routine clinical and laboratory data taken before or immediately after intubation.

Methods: We used the Medical Information Mart for Intensive Care IV database, which is an open-access database covering
524,740 admissions of 382,278 patients in Beth Israel Deaconess Medical Center, United States, from 2008 to 2019. We selected
adult patients who underwent MV in the intensive care unit (ICU). Clinical and laboratory variables that are considered relevant
to the prognosis of the patient in the ICU were selected. Data collected before or within 24 hours of intubation were used to
develop machine learning models that predict the probability of successful weaning within 14 days of ventilator support. Developed
models were integrated into an ensemble model. Performance metrics were calculated by 5-fold cross-validation for each model,
and a permutation feature importance and Shapley additive explanations analysis was conducted to better understand the impacts
of individual variables on outcome prediction.

Results: Of the 23,242 patients, 19,025 (81.9%) patients were successfully weaned from MV within 14 days. Using the preselected
46 clinical and laboratory variables, the area under the receiver operating characteristic curve of CatBoost classifier, random
forest classifier, and regularized logistic regression classifier models were 0.860 (95% CI 0.852-0.868), 0.855 (95% CI 0.848-0.863),
and 0.823 (95% CI 0.813-0.832), respectively. Using the ensemble voting classifier using the 3 models above, the final model
revealed the area under the receiver operating characteristic curve of 0.861 (95% CI 0.853-0.869), which was significantly better
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than that of Simplified Acute Physiology Score II (0.749, 95% CI 0.742-0.756) and Sequential Organ Failure Assessment (0.588,
95% CI 0.566-0.609). The top features included lactate and anion gap. The model’s performance achieved a plateau with
approximately the top 21 variables.

Conclusions: We developed machine learning algorithms that can predict successful weaning from MV in advance to intubation
in the ICU. Our models can aid the appropriate management for patients who hesitate to decide on ventilator support or meaningless
end-of-life care.

(JMIR Form Res 2023;7:e44763) doi: 10.2196/44763
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Introduction

Acute respiratory failure can be caused by various conditions,
including pulmonary disease, cardiovascular disease, and
neuromuscular disorder, or required respiratory support after
major surgery [1]. Although invasive mechanical ventilation
(MV) is a life-maintaining intervention used to assist or replace
spontaneous respiration in patients with acute respiratory failure,
the procedure is associated with a risk of severe complications
such as ventilator-associated pneumonia, pulmonary edema,
and acute respiratory distress syndrome [2].

Inevitably, a proportion of patients will be unable to recover
rapidly from ventilator support, mandating the use of MV for
an extended period. The duration of MV is linearly associated
with poor outcomes, and the number of days of ventilation
support directly correlates with daily incremental costs and
unexpected medical conditions such as thromboembolic events
and posttraumatic stress disorder [3]. Prolonged MV
unavoidably accompanies tracheostomy and life-maintaining
care, which is not usually desired by patients [4,5]. Such a
decision is usually made within 14 days of MV [6].
Tracheostomy has its advantages in a lower frequency of
laryngeal ulcers, less airway resistance, and ease of management
[4,5]. However, prolonged MV and consequent tracheostomy
are unlikely to benefit chronically ill patients with an expected
dismal prognosis. It should only be performed if it aligns with
the patient’s goals and preferences. The possibility of
undergoing a tracheostomy can be a reason for hesitancy to
intubate older or chronically ill patients.

For these reasons, successful early predictions of whether a
patient will undergo prolonged MV can support clinical
decision-making in many clinical aspects. Several risk factors,
including underlying comorbidities, the site of intubation,
laboratory or blood gas results, functional parameters, and
critical care scoring systems, have been identified for successful
weaning from MV [7]. However, as the predictive power using
a single or a few variables was insufficient, there have been
efforts to create a predictive model by assigning weights to each
relevant variable.

Machine learning could potentially be a breakthrough in this
type of prediction, where various factors are involved in a
complex manner. Several studies have used machine learning
techniques to predict successful extubation using a combination
of multiple variables [8]. However, the models proposed to
predict successful weaning from MV did not reflect various

clinical situations requiring prediction before initiating MV,
because most models collected variables and predicted outcomes
at the time of MV progress, not before intubation. Other
previous models have been suggested to anticipate prolonged
MV or tracheostomy [9]. However, they were either short-term
predictive models or unrealistic models that only predicted
whether patients would receive prolonged MV but excluded
patients who died before MV day 14. Given this background,
we aimed to develop a thorough machine learning model that
can predict the possibility of successful weaning from MV
within 14 days after intubation, before undergoing intubation.

Methods

Data Source
Data on patients requiring MV were obtained from the Medical
Information Mart for Intensive Care IV (MIMIC-IV) version
1.0 database. MIMIC-IV is a well-known, large-scale,
single-center (Beth Israel Deaconess Medical Center), and
open-access database covering 524,740 admissions of 382,278
patients to the center from 2008 to 2019 [10]. The relevant
records include demographic data; International Classification
of Diseases, Ninth Revision, Clinical Modification codes; hourly
vital signs and input or output; laboratory tests and
microbiological culture results; imaging data, treatment
procedures; medication administration; and survival data. The
database also provides multiple severity-of-illness scores
generated from physiologic and laboratory variables on the first
day of each intensive care unit (ICU) admission. MIMIC-IV
has several advantages over its previous version, MIMIC-III.
The composing data are relatively homogenous, because
MIMIC-IV contains data entirely sourced from the clinical
information system MetaVision (iMDSoft); the information of
“procedure events,” one of the primary sources of clinical
information in ICU, is entirely present; and a substantial number
of patients is included.

Selection of Participants
For meticulous patient selection, patients with “Intubation” and
“Invasive ventilation” codes appearing at least once in the
“procedure event” or “chart event” files were selected.
Additionally, patients with “Ventilator type” and “Ventilator
mode” codes appearing 5 times or more within 24 hours after
the first code were also included (Figure S1 in Multimedia
Appendix 1). The exclusion criteria were as follows: (1) aged
<18 or >100 years, (2) previous tracheostomy, and (3) missing
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Sequential Organ Failure Assessment (SOFA) score and
Simplified Acute Physiology Score II (SAPS II).

Data Collection and Outcome Definition
We collected clinical and laboratory variables recorded before
and closest to the initiation of MV. For patients who did not
have the values before intubation, the nearest value was obtained
within 24 hours of intubation. To minimize the impact of
intubation on each variable, we selected variables that are less
likely to change dramatically after intubation. Clinical and
laboratory variables considered relevant to patient prognosis in
the ICU were selected by 2 clinicians (JK and HJK) from the
list of variables included in the MIMIC-IV database. Any
discrepancy was resolved by group discussion. They were as
follows: age, sex, height, weight, Glasgow Coma Scale (eye),
Glasgow Coma Scale (motor), hemoglobin, pH, lactate, albumin,
anion gap, total bilirubin, bicarbonate, blood urea nitrogen,
creatinine, platelet count, prothrombin time, neutrophil or
lymphocyte ratio, sodium, potassium, white blood cell count,
body temperature, type of admission (medical, scheduled
surgical, and unscheduled surgical), type of insurance (public
and other), primary language (English and other), marital status
(couple and single), race and ethnicity (Asian, Black, Hispanic,
White, and others), type of ICU (medical, surgery, and others),
and underlying comorbidities (myocardial infarction, congestive
heart failure, peripheral vascular disease, cerebrovascular
disease, dementia, chronic pulmonary disease, rheumatic
disease, peptic ulcer disease, mild liver disease, diabetes without
complication, diabetes with complication, paraplegia, renal
disease, malignancy, severe liver disease, metastatic solid tumor,
and acquired immune deficiency syndrome).

The missing values were imputed using multiple imputations
by chained equations for continuous variables and the k-nearest
neighbor method for categorical variables. The missing rates
are depicted in Figure S2 in Multimedia Appendix 1. As a
comparator, 2 severity-of-illness scores, that is, the SOFA and
SAPS II scores, were calculated using the codes from Google’s
BigQuery database [11]. The primary outcome was successful
weaning within 14 days of intubation, defined as documented
MV discontinuation without death.

Model Development
The development and validation of our model were performed
according to the “Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical Research”
[12]. The checklist is available in Table S1 in Multimedia
Appendix 1. Several machine learning algorithms were used to
develop predictive models, such as regularized logistic
regression classifier (RLRC) [13], random forest classifier
(RFC) [14], CatBoost classifier (CBC) [15], and voting classifier
(VC) ensembles [16]. Since the data set was imbalanced, we
used an algorithm-level approach to handle the imbalance.
Specifically, we used Cohen κ maximizing threshold of the
threshold-moving approach, cost-sensitive learning, and
ensemble method of VC to reduce bias or variance and improve
the stability of machine learning algorithms [17-19].

We used the 5-fold cross-validation method with a fixed random
seed to achieve reproducibility. The 5-fold cross-validation

divides the data into 5 equal partitions, training the model on 4
and testing it on the remaining 1. This process is repeated 5
times, with each partition used once as the test set. The
performance metric is the average performance across all 5
iterations. This method is a way to demonstrate a model’s
robustness in the absence of external data and avoids the risk
of model overfitting. Mean with 95% CIs of the area under the
receiver operating characteristic curve (AUROC), the area under
the precision-recall curve (AUPRC), Cohen κ, and F1-score of
the models were calculated using the 5-fold cross-validation.
The AUPRC and AUROC were used to verify the effectiveness
of our proposed model and compare it with other models.
AUROC can be used as a diagnostic test to discriminate between
actual positives and negatives. However, AUPRC is used as an
alternative to AUROC for tasks with highly skewed class
distribution [20,21]. Although AUROC can evaluate classifiers
when there is a class imbalance, it can present an overly
optimistic view of performance if there is a large skew in the
class distribution [22]. Thus, we showed both AUROC and
AUPRC to prove the superiority of our proposed model to other
models.

Cohen κ is a metric for evaluating the classification algorithm’s
consistency based on its predictions [22]. F1-score is also used
as an evaluation and comparison metric. F1-score is the measure
of the weighted average of 2 evaluation metrics of precision
and sensitivity. Therefore, we chose the F1-score to obtain
harmonic means between precision and sensitivity. Likewise,
the performance parameters for the SOFA and SAPS II scores
were calculated, and the AUROCs of each model were compared
using the DeLong test [23].

The VC model’s confusion matrix was presented using Cohen
κ maximizing threshold value. To determine the model’s
threshold, we performed a manual visual inspection with a graph
of the threshold versus Cohen κ [17]. After exploring the
threshold at which Cohen κ value can be maximized, we
presented this result in the confusion matrix by adjusting true
positives, true negatives, false positives, and false negatives
using the threshold at which this value can be maximized.

To determine the optimal hyperparameter setting, the
GridSearchCV library (version 0.22) was used to search multiple
optimal parameter values to fit estimators automatically. We
drew calibration plots for each algorithm (Figure S3 in
Multimedia Appendix 1) [24,25]. Finally, to better understand
how individual variables impact the outcome prediction, a
permutation feature importance and Shapley additive
explanations (SHAP) analysis on the best-performing model
was conducted [14,26]. For model development and validation,
Python (version 3.6.9; Python Software Foundation) and its
packages such as NumPy (version 1.19.5) [27], pandas (version
1.1.5) [28], scikit-learn (version 0.23.2) [29], Matplotlib (version
3.3.4) [30], seaborn (version 0.11.2) [31], rpy2 (version 3.4.5)
[32], SciPy (version 1.5.4; Enthought) [33], and SHAP (version
0.41.0) [26,34], as well as R (version 3.4.4; R Core Team) [35]
and its package pROC (version 1.18.0) [23], were used [36].
The codes used in this study are made available at GitHub [37]
for noncommercial use.
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Other Statistical Considerations
To compare the baseline characteristics, categorical variables
were presented as total numbers (percentages) and compared
using Fisher exact test. Continuous variables were presented as
means (SD) and compared using the Wilcoxon rank-sum test.
All statistical analyses in this study were performed using
Google BigQuery, Python (version 3.6.9), and R (version 3.4.4),
and P<.05 were considered statistically significant.

Ethical Considerations
The research resource, which includes the collection of patient
information, was assessed by the Institutional Review Board at
Beth Israel Deaconess Medical Center. They provided a waiver
of informed consent and endorsed the data-sharing initiative.
Furthermore, the study received approval from the Institutional
Review Board of Seoul National University Bundang Hospital
(B-2201-733-002).

Results

Baseline Characteristics
Out of the 24,379 patients screened, 23,242 were included in
the analysis, and 19,025 (81.9%) successfully weaned from MV

within 14 days (Figure 1). For those who successfully weaned
from MV, the duration of MV (mean 1.7, SD 2.7 vs mean 8.1,
SD 10.6 d; P<.001), age (mean 63.7, SD 15.9 vs mean 67.8,
SD 15.8 y; P<.001), blood urea nitrogen (mean 22.4, SD 17.2
vs mean 33.1, SD 25.4 mg/dL; P<.001), creatinine (mean 1.2,
SD 1.2 vs mean 1.7, SD 1.5 mg/dL; P<.001), anion gap (mean
13.7, SD 4.0 vs mean 17.3, SD 5.8 mEq/L; P<.001), SAPS II
(mean 37.5, SD 13.3 vs mean 51.6, SD 16.7; P<.001), and SOFA
score (mean 2.7, SD 2.5 vs mean 3.9, SD 3.5; P<.001) were
lower, whereas pH (mean 7.4, SD 0.1 vs mean 7.3, SD 0.1;
P<.001) and bicarbonate level (mean 23.4, SD 4.2 vs mean 21.1,
SD 5.9 mEq/L; P<.001) were higher than the other group of
patients (Table 1). The proportions of patients with public
insurance (56.5% vs 48.7%; P<.001), single marital status
(60.1% vs 51.2%; P<.001), and admission to a medical care
unit (36.3% vs 19.1%; P<.001) were lower for those who had
been weaned from MV within 14 days. Underlying
comorbidities were also less common in these patients (Table
S2 in Multimedia Appendix 1).

Figure 1. Flowchart of the patient selection process. Patients with evidence of endotracheal intubation were identified in the Medical Information Mart
for Intensive Care IV database. After careful selection, patients were divided into 2 groups according to whether they had been successfully weaned
from MV within 14 days of intubation or not. MV: mechanical ventilation; SAPS II: Simplified Acute Physiology Score II; SOFA: Sequential Organ
Failure Assessment.
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Table 1. Baseline characteristics of patients in the intensive care unit according to successful weaning from mechanical ventilation within 14 days.

P valueProlonged mechanical ventilation
or mortality (n=4217)

Successful weaning
(n=19,025)

All patients (N=23,242)Variables

<.00167.8 (15.8)63.7 (15.9)64.4 (15.9)Age (y), mean (SD)

<.0012339 (55.5)11,935 (62.7)14,274 (61.4)Male sex, n (%)

<.001168.7 (10.9)170 (10.8)169.7 (10.8)Height (cm), mean (SD)

<.00181.0 (25.4)83.8 (22.7)83.3 (23.2)Weight (kg), mean (SD)

<.00136.5 (1.6)36.7 (1.2)36.6 (1.3)Body temperature (°C), mean (SD)

<.00114.3 (9.8)12.7 (6.9)13.0 (7.5)WBCa count (per 109/L), mean (SD)

<.00112.3 (15.7)8.3 (9.3)9.1 (10.9)NLb ratio, mean (SD)

<.00110.6 (2.4)10.4 (2.1)10.4 (2.1)Hemoglobin (g/dL), mean (SD)

<.001197.4 (116.2)188.9 (97.1)190.4 (100.9)Platelet count (per 109/L), mean (SD)

<.00133.1 (25.4)22.4 (17.2)24.4 (19.4)BUNc (mg/dL), mean (SD)

<.0011.7 (1.5)1.2 (1.2)1.3 (1.3)Creatinine (mg/dL), mean (SD)

<.0013.1 (0.5)3.2 (0.4)3.2 (0.4)Albumin (g/dL), mean (SD)

<.0012.2 (5.2)1.1 (2.4)1.3 (3.1)Total bilirubin (mg/dL), mean (SD)

<.0011.7 (1.1)1.4 (0.6)1.5 (0.7)Prothrombin time (INRd), mean (SD)

<.0017.3 (0.1)7.4 (0.1)7.3 (0.1)pH, mean (SD)

.900138.9 (5.9)138.9 (4.3)138.9 (4.6)Sodium (mEq/L), mean (SD)

<.0014.3 (0.8)4.2 (0.7)4.2 (0.7)Potassium (mEq/L), mean (SD)

<.0013.7 (3.1)2.4 (1.5)2.6 1.9)Lactate (mmol/L), mean (SD)

<.00121.1 (5.9)23.4 (4.2)23.0 (4.7)Bicarbonate (mEq/L), mean (SD)

<.00117.3 (5.8)13.7 (4.0)14.4 (4.6)Anion gap (mEq/L), mean (SD)

<.0013.9 (3.5)2.7 (2.5)2.9 (2.8)SOFAe, mean (SD)

<.00151.6 (16.7)37.5 (13.3)40.0 (15.0)SAPS IIf, mean (SD)

<.0018.1 (10.6)1.7 (2.7)2.8 (5.7)Duration of MVg (days), mean (SD)

aWBC: white blood cell.
bNL: neutrophil or lymphocyte.
cBUN: blood urea nitrogen.
dINR: international normalized ratio.
eSOFA: Sequential Organ Failure Assessment.
fSAPS II: Simplified Acute Physiology Score II.
gMV: mechanical ventilator.

Development of the Prediction Models
The AUROC and AUPRC values resulting from 5-fold
cross-validation are shown in Figure 2. The AUROC values
(Figure 2A) of the VC, CBC, RFC, and RLRC models for the
prediction of successful weaning were 0.861 (95% CI
0.853-0.869), 0.860 (95% CI 0.852-0.868), 0.855 (95% CI
0.848-0.863), and 0.823 (95% CI 0.813-0.832), respectively.
The 2 conventional scoring models showed AUROC values of
0.749 (95% CI 0.742-0.756) for SAPS II and 0.588 (95% CI

0.566-0.609) for the SOFA score. Figure 2B presents the
positive predictive value against sensitivity, with AUPRC values
of 0.589 (95% CI 0.564-0.614), 0.590 (95% CI 0.570-0.610),
0.577 (95% CI 0.551-0.603), and 0.497 (95% CI 0.470-0.525),
respectively, in each machine learning model. Detailed
descriptions of various performance metrics are presented in
Table 2. We also generated a confusion matrix for the
cross-validation of the VC model (Figure S4 in Multimedia
Appendix 1).
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Figure 2. (A) Receiver operating characteristic curves and (B) precision-recall curves of the developed machine learning models to predict successful
weaning from mechanical ventilation within 14 days of intubation. The area under receiver operating characteristics curves (AUROCs) and area under
precision-recall curves (AUPRCs) and their 95% CIs for all 6 models are shown in the legends. For comparability, the random classifier is indicated
by a black dashed-dotted line. CBC: CatBoost classifier; RFC: random forest classifier; RLRC: regularized logistic regression classifier; SAPS II:
Simplified Acute Physiology Score II; SOFA: Sequential Organ Failure Assessment; VC: voting classifier.

Table 2. Performance metrics of the developed machine learning models, along with SOFAa score and SAPS IIb,c.

F1-score, mean (95% CI)Cohen κ, mean (95% CI)AUPRCe, mean (95% CI)AUROCd, mean (95% CI)Model

0.554 (0.550-0.558)0.413 (0.404-0.421)0.589 (0.564-0.614)0.861 (0.853-0.869)g,hVCf

0.546 (0.536-0.557)0.400 (0.383-0.417)0.590 (0.570-0.610)0.860 (0.852-0.868)g,hCBCi

0.540 (0.534-0.547)0.392 (0.380-0.404)0.577 (0.551-0.603)0.855 (0.848-0.863)g,hRFCj

0.515 (0.509-0.521)0.359 (0.348-0.369)0.497 (0.570-0.525)0.823 (0.813-0.832)g,hRLRCk

0.451 (0.440-0.462)0.280 (0.263-0.297)0.438 (0.414-0.462)0.749 (0.742-0.756)gSAPS II

0.330 (0.311-0.349)0.121 (0.096-0.147)0.284 (0.264-0.304)0.588 (0.566-0.609)hSOFA

aSOFA: Sequential Organ Failure Assessment.
bSAPS II: Simplified Acute Physiology Score II.
cValues were calculated from 5-fold cross-validation. Hypothesis tests were conducted to determine whether the AUROC values of the models using
machine learning algorithms were equal to those of conventional scores.
dAUROC: area under the receiver operating characteristics curve.
eAUPRC: area under the precision-recall curve.
fVC: voting classifier.
gP<.001 compared to SOFA score.
hP<.001 compared to SAPS II.
iCBC: CatBoost classifier.
jRFC: random forest classifier.
kRLRC: regularized logistic regression classifier.

Feature Importance of Each Variable
We chose the VC model as our representative model. The
included variables in the model were ranked according to their
information gain, and the top 3 features were lactate
concentration, anion gap, and body temperature (Figure 3). To
better understand the direction of influence each feature has on

this model, the SHAP algorithm was implemented for this model
to explain for each feature the magnitude and direction of its
impact on the outcome prediction. The top risk features included
anion gap, age, presence of cerebrovascular disease, and blood
urea nitrogen concentration. Specifically, a higher value or the
presence of a variable indicates a higher chance of failure to
wean from MV within 14 days (Figure 4).
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Figure 3. Important explanatory variables for the ensemble voting classifier model. The means and SD of the top 21 important explanatory variables
for the voting classifier model using 5-fold cross-validation and test set permutation are indicated by bars and error bars, respectively. BUN: blood urea
nitrogen; GCS: Glasgow Coma Scale; ICU: intensive care unit; NL: neutrophil-to-lymphocyte; WBC: white blood cell.
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Figure 4. The Beeswarm summary plot in the SHAP package with a randomly selected test set among a 5-fold cross-validation. This figure indicates
which explanatory variables have the most significant influence on the model’s predicted value and the tendency of the model’s outcome probability
as a function of the original value of an explanatory variable simultaneously. Each colored dot represents one variable value for a patient, for which
larger values are presented in red and smaller values in blue. The SHAP value, a simplified and computer-friendly Shapley value, is shown on the
horizontal axis and is a surrogate of the contribution of a variable value to the model output. BUN: blood urea nitrogen; GCS: Glasgow Coma Scale;
SHAP: Shapley additive explanations.

Change of Model Performance With Variables
We assessed the performance metrics (Cohen κ, AUROC,
F1-score, and balanced accuracy) of the VC model according
to the number of features included (Figure 5). Each metric’s

performance was calculated as the variables with the highest
feature importance were sequentially added. The model reached
its plateau performance in all 4 metrics with approximately 21
variables.
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Figure 5. Performance metrics of the ensemble voting classifier model according to the addition of explanatory variables. (A) Cohen κ, (B) AUROC,
(C) F1-score, and (D) balanced accuracy of the ensemble voting classifier are shown as the number of explanatory variables in the training sets in
descending order of feature importance coefficients. Mean (dot) and SD (error bar) were computed from the data sets by 5-fold cross-validation. The
model reached its plateau performance in all 4 metrics with approximately 21 variables. AUROC: area under the receiver operating characteristics
curve; RFI: relative feature importance.

Discussion

Principal Findings and Clinical Implications
Within the context of the ICU, physicians often rely on clinical
presentations to gauge the likelihood of a patient's successful
weaning from MV prior to endotracheal intubation. Translating
these clinical intuitions into quantifiable metrics, however,
presents a challenge. To address this, our study meticulously
developed and validated machine learning–based models
designed to predict successful weaning from MV either before
or immediately postintubation in critically ill patients on
ventilator support. Notably, our model's predictive accuracy
surpassed that of traditional prognostic scoring systems
commonly used for ICU patients.

The practical use of our model is underscored by its ability to
harness readily available data from electronic health records,
including vital signs, foundational laboratory results, and patient
medical histories. This facilitates the identification of patients
at an elevated risk of extended MV reliance. The advantages of
using our model are multifaceted. Prompt identification of
high-risk patients allows for the timely initiation of therapeutic
interventions, potentially curtailing the duration of MV. Such

early identification ensures a judicious allocation of resources,
optimizing the use of specialized equipment and expert
personnel, leading to enhanced patient outcomes and
cost-effectiveness. Additionally, it paves the way for proactive
discharge planning, bolstering patient satisfaction, and
alleviating pressures on the health care infrastructure.

Comparison With Prior Work
This is the first study to develop a prognostic model that predicts
relatively long-term outcomes (14 days) based on variables
within a day of intubation. The model characteristics render it
clinically pragmatic and facilitate improved discussions about
end-of-life care or prolonged MV with a tracheostomy. Previous
efforts to predict the prognosis of patients undergoing MV in
ICUs have shown several drawbacks. Clark et al [9,38]
suggested a model consisting of clinical variables (intubation
in the ICU, tachycardia, renal dysfunction, acidemia, elevated

creatinine, and decreased HCO3
– concentration) to identify

individuals who may need prolonged MV at the time of
intubation. However, their model was derived from and
validated in relatively small patient populations (99 and 225
patients, respectively), and the AUROC value for prolonged
MV prediction was about 0.75. Moreover, patients who died
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within 2 weeks of starting MV were excluded from the analysis,
leading to a selection bias. Several other studies exist but only
predicted mortality [39] and short-term outcomes [40], or they
did not consider death in model building [41].

Numerous clinical factors have been proposed in predictive
models for patients with MV. The I-TRACH (Intubation in the
ICU, Tachycardia, Renal Dysfunction, Acidemia, Creatinine,
and Decreased HCO3) model previously extracted tachycardia,

renal dysfunction, acidemia, and a decreased HCO3
–

concentration as the main variables for constructing a scoring
system [38]. In another study that reported the prediction of
30-day mortality, the essential features in the models were Acute
Physiology and Chronic Health Evaluation II score, Charlson
Comorbidity Index, use of norepinephrine, and base excess [39].
In our study, lactate level and anion gap were the 2 most
important predictors in the final VC model. Per the findings of
this study, several prior reports have emphasized the prognostic
importance of lactate level and anion gap. The efficacy of early
lactate-guided therapy in ICU patients has been reported [42].
The anion gap, a surrogate for levels of unmeasured anions, has
been reported in a meta-analysis as an indicator of mortality in
critically ill patients [43].

Strengths
We proposed the VC ensemble comprising RLRC, RFC, and
CBC as our representative model. Historically, logistic and
linear regression models have been used for prognosis tasks in
clinical decisions concerning ICU-admitted patients [44]. Still,
they are not fit for predictor variables with skewed distributions
and tend to overfit. To avoid these shortcomings, more complex
modeling approaches have been proposed [45]. First, RLRC
does not rely on multivariate normality and equal within-group
covariance matrices, but predictions require large-scale sample
data for stable outcomes [13,46]. Second, RFC works well on
data with several input variables and improves its classification
accuracy because it keeps bias low and reduces variance. Still,
the interpretation is complex, and evaluation is slow [14]. Third,
CBC requires lower computational costs but shows better
accuracy than other tree-based models and support vector
machines [15,47]. The 3 models (RLRC, RFC, and CBC)
showed a tradeoff between precision and recall [48]; therefore,
the use of the VC ensemble method improves performance by
reducing the variance component of prediction errors made by
the contributing models [16].

Apart from the thorough development of the ensemble model,
our study has its strength due to the relatively high number of

included patients (n=23,242) provided by the MIMIC-IV
database, which is a well-established open database derived
from an ICU in the United States. This is the first study to
establish a machine learning model to predict the weaning
probability based on MIMIC-IV data. Moreover, precise search
terms such as “intubation/invasive ventilation” and “ventilator
type/mode” were used to establish a more stringent patient
selection and outcome definition. Such criteria can provide an
example for the selection processes of intubated patients for
future studies using the MIMIC-IV database.

Limitations
Despite our meaningful findings, there are some inherent
limitations to our study. First, some imbalance in patient
numbers was noted between those with and without successful
weaning from MV (81.9% vs 18.1%, respectively). Therefore,
we used an algorithm-level approach to handle the imbalance
and presented various performance metrics such as AUPRC
and Cohen κ. Second, some variables had a considerable
proportion of missing data or were collected after intubation.
Although small, 915 patients with missing SOFA and SAPS II
scores were also excluded from our analysis, leading to concerns
of selection bias (Table S3 in Multimedia Appendix 1).
However, the presence of missing data reflects our real-world
medical practice, and we used variables not likely to change
dramatically according to intubation (eg, body temperature,
blood urea nitrogen, and underlying diseases). Third, our model
lacks external validity due to its innate nature as a single-center
study. However, our model is grounded on universally
recognized variables, including vital signs, underlying
comorbidities, and laboratory findings. The open nature of our
data set, combined with the web-based availability of our code,
simplifies validation efforts for other researchers. Future studies
for external validation can strengthen our models.

Conclusions
In conclusion, we developed and validated a VC ensemble
machine learning model that can effectively predict successful
weaning from MV within 14 days before or immediately after
intubation. Our study indicates that machine learning algorithms
may facilitate clinical decision-making, such as identifying
patients more likely to benefit from MV before or immediately
after endotracheal intubation. This information can relieve the
burden and aid doctors in suggesting appropriate management
for patients at risk of endotracheal intubation in the ICU, notably
for those who hesitate to decide on ventilator support or
meaningless end-of-life care due to advanced age or the presence
of several comorbidities.
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