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Abstract

The onset of puberty is a pivotal developmental milestone, and the release of gonadotropin-releasing hormone

(GnRH) and luteinizing hormone is a key factor in the initiation of puberty. Both kisspeptin and its receptor

(KISS1) and KISS1 receptor (KISS1R) play significant roles in regulating GnRH release, and consequently, the

initiation of puberty. Central precocious puberty (CPP) is a condition in which the development of puberty is

driven by the premature activation of the hypothalamic-pituitary-gonadal axis. In girls, CPP is primarily

idiopathic, and genetic and epigenetic aspects of KISS1 and KISS1R have been implicated in its etiology. This

review aimed to provide an overview of the current knowledge regarding mutations and polymorphisms in KISS1

and KISS1R associated with CPP. Additionally, this study provides a comprehensive review of the epigenetic

regulation of the KISS1 gene in the context of puberty onset and CPP.
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INTRODUCTION

Puberty is a biological maturation process that signifies the physical, hormonal, and

psychological shifts from childhood to adulthood, culminating in the development of secondary

sexual characteristics and the attainment of reproductive capability [1]. Precocious puberty is

delineated by the initiation of puberty occurring 2 to 2.5 standard deviations ahead of the

mean, and is defined as the manifestation of secondary sexual characteristics, such as breast

development before the age of 8 in girls and testicular enlargement before the age of 9 in boys

[2-4]. The precocious puberty can be categorized as central precocious puberty (CPP) and

peripheral precocious puberty. The CPP occurs because of the premature reactivation of

pulsatile hypothalamic gonadotropin-releasing hormone (GnRH) secretion, while peripheral

precocious puberty is caused by excessive sex hormone secretion originates from a tumor or

exogenous source independent of gonadotropin secretion and benign pubertal variants [5-7].

CPP accounts for 80% of precocious puberty cases [8], and the measurement of serum

gonadotropins is essential. To exclude CPP, basal luteinizing hormone (LH) levels are utilized,

with thresholds ranging from 0.1 to 1 IU/L being used variably [1]. Moreover, to confirm the

activation of the hypothalamic-pituitary-gonadal (HPG) axis during puberty and diagnose CPP

more accurately, the GnRH stimulation test is recognized as a definitive method [9]. For a more

concise diagnostic approach, the use of a single LH measurement taken within 30 minutes of

GnRH stimulation testing [10] or a single random measurement of urinary gonadotropin

concentration has been suggested [11]. The standard treatment for CPP involves the use of

long-acting GnRH agonists. The mechanism of action of GnRH agonists depends on the

maintenance of elevated GnRH levels, which paradoxically leads to the downregulation and

subsequent suppression of the HPG axis, thereby inhibiting gonadotropin secretion [12-14].

Various preparations are available, including intramuscular depots administered every 4 weeks,
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12 weeks, or 6 months; subcutaneous injections administered every 6 months; and

subcutaneous implants [15,16]. Diverse GnRH agonist preparations have been demonstrated to

effectively suppress pubertal hormones and arrest or cause the regression of pubertal

advancement [17-19].

CPP etiologies can be broadly categorized into two groups: those associated with central

nervous system (CNS) lesions and those without CNS lesions. In cases with CNS lesions, the

causes can include tumors such as hypothalamic hamartomas, congenital malformations like

arachnoid cysts or hydrocephalus, and acquired lesions such as encephalitis or radiation

exposure [1,6,20-22]. However, cases without CNS lesions are more common. CPP can also be

secondary to chronic exposure to sex steroid hormones or endocrine disruptors [1,6].

Moreover, though still contentious, air pollution is also being considered a potential cause of

precocious puberty [23]. The nutritional status and elevated serum leptin levels in overweight

are believed to contribute, at least in part, to the earlier onset of puberty in overweight

children [24]. While environmental and nutritional influences play a role in the development of

CPP, it’s equally crucial to consider the underlying genetic factors that might predispose

certain individuals to this condition [6]. This is supported by the fact that CPP occurs

approximately five to 15 times more frequently in girls than in boys, suggesting that genetic

differences between males and females play a significant role in the occurrence of CPP [6,14]. In

addition, syndromic CPP combined with multiple anomalies, such as Temple syndrome,

Xp11.23–p.11.22 duplication syndrome, and Williams-Beuren syndrome, also suggests a genetic

etiology [2,6]. The fact that approximately one-third of idiopathic central precocious puberty

(ICPP) cases are familial CPP also implies the significance of genetic factors in CPP occurrence

[25].

The elucidation of neuromodulators such as kisspeptin has contributed to the comprehension

of pubertal developmental processes [26]. Mutations in makorin ring finger protein 3 (MKRN3)

and delta like non-canonical Notch ligand 1 (DLK1) have been identified in individuals with

familial CPP over the past decade [27]. These findings highlight the significant role of genetic

factors in the underlying pathophysiology of CPP and stimulate ongoing research on the

connections between genes associated with puberty and CPP. However, distinct variations in

the timing of puberty are evident, even among genetically identical individuals [28], and

research findings indicating the association of imprinted regions with menarche [29] suggest

that genetic factors as well as epigenetic mechanisms influence the occurrence of CPP.

Understanding the genetic causes of CPP has had a significant impact, enabling more accurate

and earlier diagnosis, facilitating familial counseling, and establishing potential avenues for

future treatment targets. This review provides a comprehensive exploration of the three

representative genetic causes of CPP and epigenetic dysregulation that contributes to CPP.

GAIN-OF-FUNCTION MUTATIONS IN KISS1 AND KISS1R

The kisspeptin system is primarily made up of the kisspeptin and its receptor (KISS1) gene,

which encodes the neuropeptide kisspeptin, and its specific receptor, KISS1R, found on GnRH

neurons [30,31]. KISS1 and KISS1R are widely distributed, with notable expression levels in

various organs, including the placenta, ovaries, and specific regions of the hypothalamus, such

as the arcuate nucleus (ARC) and anteroventral periventricular nucleus/periventricular nucleus

continuum (AVPV) [32,33]. The discovery of KISS1R loss-of-function mutations and rare

inactivation KISS1 mutations in patients with congenital hypogonadotropic hypogonadism

emphasizes the significance of the kisspeptin system in human puberty and reproduction

[30,31,34]. In addition, an elevation in serum kisspeptin levels has been observed in patients

with CPP [35,36]. Moreover, the administration of kisspeptin triggers LH release in healthy

individuals [37,38], whereas the LH increase following kisspeptin administration is diminished

in men with congenital hypogonadotropic hypogonadism despite the preserved LH response to

GnRH [39]. This suggests that the kisspeptin system is a critical regulator preceding GnRH

release [40,41]. Specifically, kisspeptin neurons in the ARC contribute to pulsatile GnRH and LH
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secretion [42,43], whereas those in the AVPV/periventricular nucleus continuum participate in

the positive feedback of sex steroids, ultimately triggering a pre-ovulatory LH surge [43,44].

The significant role of the kisspeptin system in GnRH regulation and the discovery of loss-of-

function mutations in KISS1 and KISS1R associated with congenital hypogonadotropic

hypogonadism suggest, conversely, that gain-of-function mutations could lead to the onset of

precocious puberty. Nevertheless, only two rare mutations have been reported in KISS1 and

one in KISS1R in individuals with CPP. Two novel KISS1 missense mutations, p.P74S and p.H90D,

have been identified in patients with ICPP. Among them, the p.P74S variant exhibited increased

resistance of kisspeptin to degradation compared to the wild-type, suggesting that this

mutation could be a contributing factor to the development of precocious puberty [45]. In

addition, an activating heterozygous mutation in KISS1R (p.R386P) was discovered in patients

with CPP [46]. The p.R386P mutation induces prolonged activation of intracellular signaling

pathways through kisspeptin owing to reduced degradation and internalization of KISS1R

[46,47]. However, all three mutations are currently classified as either likely benign or variants

of uncertain significance, according to the 2015 American College of Medical Genetics and

Genomics Association for Molecular Pathology guidelines [48]. Therefore, the association

between KISS1 and KISS1R gain-of-function mutations and CPP is still not well established.

Further reinforcement in the form of additional patient data or results from functional studies

is necessary to elucidate the association between these mutations and CPP.

SINGLE NUCLEOTIDE POLYMORPHISMS ASSOCIATED WITH CPP IN KISS1 AND

KISS1R

Several single nucleotide polymorphisms (SNPs) in KISS1 and KISS1R are associated with CPP

(Table 1) [49-55]. The 54650055 G/T polymorphism (p.P110T, rs192636495) [49,50] and the

55648176 T/G polymorphism [51] in the KISS1 are suggested to have a protective effect against

CPP. In addition, the haplotype GGGC-ACCC, comprising the G allele of SNP 55648176 T/G and

the wild-type alleles of SNP 55648184 and SNP 55648186, along with the GGA haplotype,

consisting of all the wild-type alleles of rs1132506 G/C, rs4889 G/C, and rs5780218 A/-, are

suggested to have a protective effect against CPP [51,52]. On the contrary, three SNPs

(rs1132506, rs35128240, and rs5780218) in the untranslated region of KISS1 have been linked to

an increased risk of CPP [51,52].

Table 1.

SNPs in KISS1 and KISS1R found to have association with CPP

Gene
Polymorphism

position
dbSNP ID Location

Major/Minor

allele
Expression

Allele frequency Risk of

CPP
Reference

Case Control

KISS1 54650055 rs192636495 Exon 3 G/T p.P110T G:

0.961a)

G:

0.931a)

Protect [49]

T:

0.039a)

T:

0.069a)

G: 0.970 G:0.922 Protect [50]

T: 0.030 T: 0.078

55648176 - Exon 3 T/G - T: 0.979 T: 0.941 Protect [51]

G: 0.021 G: 0.059

55648184 rs1132506 Exon 3 C/G - C: 0.448 C: 0.559 Increase [51]

3′ UTR G: 0.552 G: 0.441

C:

0.573b)

C: 0.624 Increase [52]

G:

0.427b)

G: 0.376

55648186 rs35128240 Exon 3 -/T - -: 0.476 -: 0.569 Increase [51]

3′ UTR T: 0.524 T: 0.431

204196482 rs5780218 5′ UTR A/- - A:

0.466b)

A: 0.539 Increase [52]

-: 0.534b) -: 0.461

KISS1R 855765 - Promoter

region

A/G A: 0.963 A: 0.984 Increase [53]

5′ UTR G: 0.037 G: 0.016
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Gene
Polymorphism

position
dbSNP ID Location

Major/Minor

allele
Expression

Allele frequency Risk of

CPP
Reference

Case Control

c.738+64 rs350131 Intron 4 G/T G: 0.456 G: 0.359 Increasec) [54]

T: 0.544 T: 0.641

c.1091 rs350132 Exon 5 T/A p.L364H T: 0.307 T: 0.222 Increasec) [54]

A: 0.693 A: 0.778

SNP, single nucleotide polymorphism; KISS1, kisspeptin and its receptor; KISS1R, KISS1 receptor; CPP, central

precocious puberty; G, guanine; T, thymine; C, cytosine; UTR, untranslated region; A, adenine.

a) Allel frequency among Chinese subjects only;

b) The participants included individuals with CPP and early puberty;

c) The authors reported an increased risk of CPP; however, the allele frequency results are contradictory. The table

presents the data reported in this study.

Several SNPs have been reported in the KISS1R as well, but to date, only three have been

reported to be associated with the risk of CPP (Table 1) [53,54]. Among them, rs350131 G> T and

rs350132 T>A have been reported to increase the risk of CPP [54]; however, the allele frequency

reported in the study showed that the minor allele frequency was lower in patients with CPP

compared than in controls [54]. Considering that minor SNPs have also been reported in other

studies among patients with CPP [55,56], reanalysis of the effect of this polymorphism on CPP

is necessary.

EPIGENETIC MECHANISMS OF THE KISS1 GENE IN PUBERTAL DEVELOPMENT AND

PRECOCIOUS PUBERTY

Mechanisms of epigenetic control

Epigenetic modifications, which entail alterations in gene expression without modifying the

DNA sequence, are widely acknowledged for their crucial role in the proper development and

differentiation of various cell lineages within an organism. Presently, three acknowledged

epigenetic mechanisms include: (1) chemical changes in DNA through DNA methylation and

hydroxymethylation; (2) alterations in chromatin structure via post-translational modifications

(PTMs) of histones, the protein components of nucleosomes; and (3) provision of epigenetic

information by noncoding RNAs (ncRNAs), which can be microRNAs (miRNAs) or long intergenic

noncoding RNAs (lincRNAs) [57].

Primary epigenetic modification of DNA involves the addition of a methyl group to cytosine

residues, specifically at 5´-cytosine-phosphate-guanine-3´ (CpG) dinucleotide sequences

[58,59]. DNA methylation is performed by DNA methyltransferases (DNMTs) and leads to 5-

methylcytosine (5-mC) formation. Conversely, enzymes from the ten-eleven translocation (TET)

family oxidize 5-mC to 5-hydroxymethylcytosine (5-hmC) [60,61]. Generally, increased levels of

5-mC are associated with transcriptional repression, whereas hypomethylation, characterized

by reduced 5-mC and 5-hmC, is linked to the activation of gene transcription [62,63]. Both 5-

mC and 5-hmC coexist throughout the genome. The 5-mC is more prevalent in silenced genes

and in compacted chromosomal regions associated with heterochromatin (closed or condensed

chromatin). In contrast, 5-hmC is found in more accessible regions or euchromatin (open or

exposed chromatin), and is enriched in the promoter and enhancer regions of active genes [62].

Secondly, histones undergo various PTMs to reshape their chromatin structure, primarily on

the N-terminal tails of core histones (H2A, H2B, H3, and H4) [64,65]. These tails are the most

accessible regions for PTMs, including acetylation, methylation, phosphorylation,

ubiquitination, and sumoylation [64]. Acetylation and methylation of lysine residues on histone

tails are the most common PTMs and exhibit distinct patterns in heterochromatin and

euchromatin [66]. Generally, acetylation by histone acetyltransferase enzymes (HATs) activates

gene transcription, while deacetylation by histone deacetylases (HDACs) represses it [64,67,68].

Acetylation reduces the positive charge of lysine residues, weakening–histone interactions, and
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allows easier access to the transcription machinery [67]. In contrast, histone methylation can

either activate or repress transcription depending on the specific lysine residue and degree of

methylation [66]. In particular, the polycomb group (PcG) and trithorax group (TrxG) are

associated with alterations in chromatin structure through PTMs of histones and are pivotal

regulators of numerous developmental genes. They operate in an antagonistic manner: PcG

proteins induce repression by introducing repressor marks, such as H3K27Me3 and H2AK119Ub,

whereas TrxG proteins activate gene expression by depositing activating marks, such as

H3K4Me, H3K4Me2, and H3K4Me3, in the regulatory regions of genes [69,70].

ncRNAs also play a role in modulating epigenetic mechanisms. Contrary to previous beliefs,

recent research has revealed that most of the human genome is transcribed into ncRNAs rather

than protein-encoding mRNAs [71,72]. These ncRNAs have diverse biological roles, including

regulation of gene expression at the transcriptional, RNA processing, and translation levels [73].

They are broadly categorized into two groups: small RNAs (sRNAs), typically 20 to 30

nucleotides long, and long noncoding RNAs (lncRNAs), which exceed 200 nucleotides in length

[72,74]. miRNAs, endo-small inhibitory RNAs (endo-siRNAs), and piwiRNAs (piRNAs) are involved

in epigenetic silencing [71,74,75]. In contrast, lncRNAs make more complex epigenetic

contributions. Although lincRNAs do not encode proteins, they undergo polyadenylation and

often originate from gene-free (intergenic) regions within the genome, which are referred to as

lincRNAs. LincRNAs interact with chromatin-modifying complexes, guiding them to genomic

regions that control gene expression [72,76].

Epigenetic mechanisms of the KISS1 gene in pubertal development

During pubertal development, epigenetic regulation ensures coordinated gene expression

within an organism both temporally and in specific tissues. This function makes epigenetics a

fundamental mechanism for gene-specific gatekeeper functions and provides the flexibility

required for temporary modification of gene expression [77]. Specifically, GnRH secretion at the

onset of puberty is influenced by the epigenetic regulation of the KISS1 gene. Puberty initiation

is marked by the removal of the central inhibitory mechanism regulating GnRH release [78].

During the prepubertal and infantile periods, GnRH neuronal secretion is primarily controlled

by transsynaptic inhibition. However, as soon as puberty begins, this inhibitory control relaxes,

resulting in a simultaneous increase in excitatory inputs to the GnRH network [79]. The

relaxation of inhibitory control and the concurrent increase in excitatory neurotransmission

are now widely accepted as crucial opposing mechanisms that collectively initiate the pubertal

process [80-83]. Ultimately, this leads to an increase in the release of GnRH, which marks the

onset of puberty. Recent findings indicate that the intercellular balance between excitatory and

inhibitory mechanisms is reflected at the genomic level [57]. This is evident from the

emergence of three gene groups: puberty inhibitor genes, puberty-activating genes, and genes

that exhibit dual effects depending on the hormonal environment and cellular identity [57].

Among these groups, the KISS1 gene is included among the puberty-activating genes.

During the transition from the prepubertal period to puberty in the hypothalamus, KISS1

expression is intricately regulated through a complex interplay of epigenetic modifications and

enzymatic processes, orchestrating the shift from repression in the prepubertal phase to

activation during puberty. Within the KISS1 promoter is a bivalent region in which both

repressive and activating marks coexist, enabling the promoter to be in a poised state of

activation in response to various incoming signals [84]. During the prepubertal period, the

KISS1 gene is repressed by a series of epigenetic modifications in its promoter region.

Specifically, CpG islands in the promoter region undergo methylation and a repressive histone

mark, H3K27me3, is added. These modifications are catalyzed by PcG enzymes, specifically

embryonic ectoderm development (EED) and chromobox protein homolog 7 (CBX7) [57,64,77]. In

a study involving female rats, the presence of two critical PcG members, Eed and Cbx7, within

ARC kisspeptin neurons and their protein products were observed to interact with the Kiss1

promoter during prepubertal development [77]. Transcriptional repressors of the PcG prevent

early onset of puberty by suppressing KISS1 transcription in kisspeptin, neurokinin B, and



dynorphin (KNDy) neurons located within the ARC [77]. Reinforcing the repressive effect on

KISS1, the sirtuin type 1 (SIRT1) enzyme interacts with PcG proteins and removes histone

acetylation [85]. Furthermore, KISS1 expression undergoes additional repression through the

action of enzymes such as GATA zinc finger domain containing 1 (GATAD1) and KDM1A, which

function as histone demethylases. These enzymes have distinct roles: GATAD1 serves as a

chromatin reader that recruits the histone eraser KDM1A [57,86]. In vitro studies demonstrated

that KDM1A recruitment increases with the overexpression of GATAD1, leading to a significant

reduction in the loss of activating H3K4me3/2 marks in the regulatory regions of the KISS1

gene [87]. These findings support the notion that GATAD1 contributes to the attenuation of

KISS1 activity partly by facilitating the removal of the H3K4me2 mark from the promoter of the

gene through the recruitment of KDM1A [57].

In contrast, to initiate the transition to puberty, KISS1 undergoes changes in its regulatory

regions, shifting from a repressed to an activated state. This transformation begins with the

removal of the repressor enzymes, EED, CBX7, and SIRT1, from the KISS1 promoter. As puberty

nears completion, there is a simultaneous increase in methylation within the promoter regions

of Eed and Cbx7 in the ARC, along with a significant reduction in the expression of both genes,

independent of estrogen influence [57,77]. Crucially, the removal of PcG components, EED and

CBX7, from the promoter is accompanied by reorganization of the chromatin state, marked by

increased levels of epigenetic modifications, such as H3K9ac, H3K14ac, and H3K4me3, which

are associated with gene activation. This activation is likely mediated by members of the TrxG

complex because of their well-established antagonistic activity against PcG [88]. Mixed lineage

leukemia 1 (MLL1) and MLL3, two components of the TrxG complex, exert their

transactivational influence on the promoter and enhancer regions of the Kiss1 gene,

respectively, during a period when the inhibitory effects of the PcG complex diminish [89].

Additionally, the TrxG member ubiquitously transcribed tetratricopeptide repeat, X

chromosome (UTX) may aid in PcG removal by demethylating the repressive histone H3K27me3

mark, thereby allowing for an increase in H3K27ac, a characteristic feature of an active

enhancer [89,90]. Additionally, other activating enzymes such as HAT and p300/CBP

participate in this activation process, catalyzing the addition of acetylations, such as H3K9ac,

H3K14ac, and H3K27ac, in both the promoter and enhancer regions of KISS1 to promote its

expression [57,77]. Furthermore, KISS1 mRNA expression increased, whereas GATAD1

expression decreased in the medial basal hypothalamus (MBH) of ovary-intact females during

the transition from juvenile to puberty. The decline in the association of GATAD1 and KDM1A

with KISS1 promoters, along with the simultaneous increase in H3K4me2 levels observed in

monkey MBH at the onset of puberty, strongly supports the presence of an epigenetic

repression mechanism that is alleviated during the re-establishment of GnRH pulsatility during

the transition from infancy to juvenility in monkeys [57]. Consequently, in line with these

crucial histone PTMs, the epigenetic regulation of Kiss1 shifts from a repressive to an active

state around the time of puberty, and there is an upregulation of Kiss1 mRNA expression in the

ARC [57,77].

The regulatory response of kisspeptin neurons to estradiol (E2) differs depending on their

location, with distinct reactions observed in the ARC versus the AVPV. E2 inhibits Kiss1

expression in ARC KNDy neurons, but enhances it in AVPV kisspeptin neurons; however, the

specific mechanisms underlying this difference remain unknown. In AVPV, E2 plays an

epigenetic role by promoting the acetylation of H3 in the Kiss1 promoter region, leading to its

increased expression [91]. E2 also induces estradiol receptor alpha (ERα) binding to the Kiss1

promoter exclusively in the AVPV. Conversely, H3 acetylation is reduced in the ARC, resulting in

decreased Kiss1 expression [91]. Furthermore, an estrogen-responsive enhancer region in the

intergenic 3′ region of the Kiss1 gene was identified in AVPV kisspeptin neurons but not in ARC

[91]. Therefore, these findings have unveiled an epigenetic role in E2 positive feedback within

the AVPV; however, it is still unclear whether a similar epigenetic mechanism is involved in the

inhibitory effect of estrogen on ARC Kiss1 expression.



Epigenetic mechanisms of the KISS1 gene in precocious puberty

Despite numerous studies indicating the importance of the kisspeptin system in pubertal

development and the initiation of puberty, which depends on the epigenetic control of the

KISS1 gene’s repression or expression, there is still insufficient research on the association

between precocious puberty and the epigenetic mechanisms of KISS1. Current research has

predominantly focused on correlations with delayed puberty or hypogonadism. For instance,

downregulation of Mll1 expression in the ARC using siRNA results in inhibited Kiss1 expression,

thereby delaying puberty [89], and clustered regularly interspaced short palindromic repeats-

associated protein 9 (CRISPR-Cas9) system epigenetic remodeling approach that hinders Mll3

action on the Kiss1 enhancer region also postpones the peripubertal increase in Kiss1

expression and the onset of puberty [89]. Additionally, inactive mutations in chromodomain

helicase DNA binding protein 7 (CHD7), which normally antagonizes PcG activity by binding to

activating marks H3K4me2/me3 via its chromodomain, lead to hypothalamic hypogonadism in

humans, suggesting a translational perspective on the role of TrxG in puberty control [92].

Furthermore, GATAD1 overexpression in the ARC of immature rats significantly delays the onset

of puberty and disrupts estrous cyclicity [93]. On the contrary, it has been observed that the

elimination of EED and SIRT1 repressor enzymes from the KISS1 promoter to initiate puberty

can be accelerated depending on nutritional status, potentially causing either precocious

puberty or delayed puberty [77].

CONCLUSION

The genetic basis of CPP has been widely discussed, with particular emphasis on the kisspeptin

system because of its central role in pubertal onset. Studies have examined multiple genetic

mutations and polymorphisms in KISS1 and KISS1R, some of which have been correlated with

CPP. Additionally, given the importance of epigenetic regulation in determining the onset of

puberty through the expression/repression of the KISS1 gene, active research on the

epigenetic alterations of the KISS1 gene and its relationship with puberty onset is ongoing.

However, studies on the epigenetic alteration of the KISS1 gene as a cause of CPP remain

limited. Instead, epigenetic alterations have been identified in other genes such as MKRN3,

DLK1, tachykinin precursor 3 (TAC3), GNRH, and more. It is crucial to consider the epigenetic

regulation of various genes related to pubertal onset as a potential cause of CPP. Understanding

the genetic causes of CPP has significant implications, allowing for a more precise and earlier

diagnosis, supporting familial counseling, and paving the way for potential future treatment

targets.
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