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ABSTRACT

Background: An imbalance between model-based and model-free decision-making systems is a
common feature in addictive disorders. However, little is known about whether similar decision-making
deficits appear in internet gaming disorder (IGD). This study compared neurocognitive
features associated with model-based and model-free systems in IGD and alcohol use disorder (AUD).
Method: Participants diagnosed with IGD (n 5 22) and AUD (n 5 22), and healthy controls (n 5 30)
performed the two-stage task inside the functional magnetic resonance imaging (fMRI) scanner. We used
computational modeling and hierarchical Bayesian analysis to provide a mechanistic account of their
choice behavior. Then, we performed a model-based fMRI analysis and functional connectivity analysis
to identify neural correlates of the decision-making processes in each group. Results: The computational
modeling results showed similar levels of model-based behavior in the IGD and AUD groups. However,
we observed distinct neural correlates of the model-based reward prediction error (RPE) between the two
groups. The IGD group exhibited insula-specific activation associated with model-based RPE, while the
AUD group showed prefrontal activation, particularly in the orbitofrontal cortex and superior frontal
gyrus. Furthermore, individuals with IGD demonstrated hyper-connectivity between the insula and brain
regions in the salience network in the context of model-based RPE. Discussion and Conclusions: The
findings suggest potential differences in the neurobiological mechanisms underlying model-based
behavior in IGD and AUD, albeit shared cognitive features observed in computational modeling analysis.
As the first neuroimaging study to compare IGD and AUD in terms of the model-based system, this
study provides novel insights into distinct decision-making processes in IGD.
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INTRODUCTION

Internet gaming disorder (IGD) encompasses a dysfunctional pattern of gaming character-
ized by impaired control and elevated priority given to gaming, leading to interference with
occupational, social, and academic functions. Previous studies have established similarities
between IGD and substance use disorders (SUDs) or gambling disorder in terms of cognitive
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functioning, neural activities, and other clinical features (for
a review, see Vaccaro & Potenza, 2019). Consequently, the
World Health Organization officially recognized gaming
disorder as a medical condition in the International Classi-
fication of Disease-11 (World Health Organization, 2018).
However, ongoing debate persists regarding the classifica-
tion of IGD as an addictive disorder in the same category as
SUDs (Kuss, Griffiths, & Pontes, 2017; Saunders et al., 2017;
Starcevic, 2017). This debate arises from the distinct clinical
aspects of IGD compared to SUDs (Dowling, 2014;
Starcevic, 2017), such as less prominent physiological
withdrawal and tolerance, which can be attributed to the
absence of pharmacological effect in IGD (King, Herd, &
Delfabbro, 2017; Yen, Lin, Wu, & Ko, 2022). Therefore, it is
critical to identify shared and distinct neurobiological
mechanisms of IGD and other substance-related addictive
disorders.

According to the reinforcement learning model of
addiction, addiction is a transition from goal-directed be-
haviors into stimulus-driven habitual behaviors (Everitt &
Robbins, 2005; Lüscher, Robbins, & Everitt, 2020). Goal-
directed behaviors are regulated by the “model-based” sys-
tem, in which the agent computes and compares possible
actions based on the outcomes of each action (Daw, Niv, &
Dayan, 2005; Dayan & Niv, 2008). In contrast, habitual
behaviors depend on “model-free” system, which relies on
previously learned associations between reward and
outcome (Daw et al., 2005; Dayan & Niv, 2008; Schultz,
Dayan, & Montague, 1997). Thus, model-free decision-
making is usually faster and more efficient compared to
model-based decision-making but, at the same time, rigid
and inflexible. While the model-based and model-free sys-
tems cooperatively and competitively arbitrate to make
optimal decisions maximizing cumulative rewards (Daw
et al., 2005; Drummond & Niv, 2020; Lee, Shimojo, &
O’Doherty, 2014), numerous literatures demonstrated im-
pairments in the model-based system and an overreliance on
the model-free system in individuals with addiction (Gro-
man, Massi, Mathias, Lee, & Taylor, 2019; Lucantonio,
Caprioli, & Schoenbaum, 2014; Voon, Reiter, Sebold, &
Groman, 2017). For example, individuals with alcohol use
disorder (AUD) and binge drinkers exhibited deficits in
model-based control (Chen et al., 2021; Doñamayor, Strel-
chuk, Baek, Banca, & Voon, 2018; Sebold et al., 2014, 2017;
Voon et al., 2015), and severity of alcohol addiction was
negatively correlated with model-based behavior in the
general population (Gillan, Kosinski, Whelan, Phelps, &
Daw, 2016). Furthermore, individuals with gambling disor-
der, a behavioral addiction without the confound of sub-
stance’s neurotoxicity, also showed impaired model-based
control (Wyckmans et al., 2019).

While these findings indicate impaired model-based
systems as a common psychopathology in addiction, other
studies did not report such impairments in individuals with
AUD (Voon et al., 2015), high familial AUD risk groups
(Reiter, Deserno, Wilbertz, Heinze, & Schlagenhauf, 2016),
and young social drinkers (Nebe et al., 2018). Moreover, to
the best of our knowledge, the model-based system related to

IGD has not been investigated yet. This represents a critical
gap in understanding IGD, as applying reinforcement
learning models in other addictive disorders have effectively
captured the aberrant decision-making processes that could
reveal essential features of addiction (Groman, Thompson,
Lee, & Taylor, 2022; Gueguen, Schweitzer, & Konova, 2021).
Therefore, to examine whether IGD has similar alterations
in model-based systems, it is crucial to compare neuro-
cognitive mechanisms of IGD with those of other substance-
related addictive disorders in terms of model-based control.
As model-based behavior could be influenced by various
factors such as task structure, task instruction, and partici-
pants’ cognitive capability (Schad et al., 2014; Silva & Hare,
2020), neuroimaging studies that simultaneously compare
different types of addiction are required.

In this study, we investigated model-based and model-
free systems in individuals with IGD, individuals with AUD,
and healthy controls (HC) using a two-stage task that can
assess the balance between the two systems. By applying
computational modeling, we aimed to compare latent
cognitive processes regarding model-based control in IGD
and AUD. Additionally, we used model-based functional
magnetic resonance imaging (fMRI) analysis to compare
neural activities associated with model-based and model-free
systems in IGD and AUD.

METHODS

Participants

Participants were recruited through community and uni-
versity-based advertisements in Seoul, Korea, and classified
by a board-certified psychiatrist into three distinct groups
based on DSM-5 criteria for AUD and IGD. Following the
inclusion process (Fig. 1), a total of 74 participants were
included in the behavioral and computational modeling
analyses (HC, N 5 30; IGD, N 5 22; AUD, N 5 22), and
fMRI analysis was conducted on 69 participants after data
quality check (HC, N 5 28; IGD, N 5 20; AUD, N 5 21).

Measures

Two-stage task. Participants completed the two-stage task
(Fig. 2), which was developed to assess a balance between
model-based and model-free behavior (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011), inside the fMRI scanner.
The task consists of two stages. In the first-stage, participants
made a choice between two options, which determined the
subsequent second-stage room (blue or yellow). Transitions
from the first to the second stage occurred with fixed
probabilities: common transitions with a probability of
0.7 and rare transitions with a probability of 0.3. In the
second stage, participants made another choice between two
options, followed by a feedback stage where monetary
rewards were given probabilistically. A hypothetical partic-
ipant who only uses a model-based strategy (model-based
agent) makes choices based on the task structure, specifically
the transition probabilities. On the other hand, a participant
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using a model-free strategy (model-free agent) makes
choices solely based on the outcome of the previous trial.
In the following analyses, we removed non-response trials
(Fig. S1). We performed one-way ANOVA with group
factors (i.e., HC, IGD, AUD), revealing no significant
group difference in the number of non-response trials
(F(2, 66) 5 0.980, p 5 0.381).

Psychometric measures. Game addiction and alcohol addic-
tion were estimated using modified versions of Young Internet
Addiction Test (IAT; Young, 1998) and the Korean version of
alcohol use disorder identification test (AUDIT; Saunders,
Aasland, Babor, Fuente, & Grant, 1993), respectively. The
severity of depressive symptoms and anxiety symptoms were
measured using the Beck Depression Inventory (BDI; Beck,
Steer, Ball, & Ranieri, 1996) and the Beck Anxiety Inventory
(BAI; Beck, Epstein, Brown, & Steer, 1988). For details on
other psychometric measures, group differences for each
measure (Table S1), and correlations between each measure
(Fig. S2), please refer to the Supplementary materials.

Procedure

Participants first completed assessments for the psycho-
metric measures. Then they received instructions for the task
and completed the two-stage task inside the fMRI scanner.
Lastly, participants underwent an interview with a psychia-
trist. Additional details on task instruction, fMRI data
acquisition and preprocessing can be found in the
Supplementary materials.

Statistical analysis

Behavioral analysis. We conducted a factorial analysis of
choice behavior, as replicated from Daw et al. (2011), to
calculate stay proportions of first-stage choices at the pop-
ulation level for each group. Linear mixed-effects logistic
regression was performed using lme4 package (Bates,
Mächler, Bolker, & Walker, 2015) in R to estimate the effects
of preceding reward, transition probability, and their inter-
action on choice behavior. The model included random
intercepts and random slopes for the effect of reward and
transition probability, with participants as the random fac-
tor. We additionally examined the presence of group dif-
ference by adding the group factor as covariates in the
regression model using the entire participants. Anxiety and
depression scores were also included as covariates to control
for the effects of psychiatric symptoms.

Computational modeling. We applied a computational
model to the choice behavior based on the hybrid algorithm
developed by Gläscher, Daw, Dayan, and O’Doherty (2010),
referring to Daw et al. (2011). This model incorporated both
model-based reinforcement learning and model-free temporal
difference learning. The model-based weight parameter (ω)
determined the weight given to the model-based learning.
Learning rate parameter (α) determines how quickly an agent
updates its expected values based on reward prediction
errors (RPEs), with higher α indicating faster updates. The
perseverance parameter (π) reflects an individual’s tendency
to persist with a previously chosen option, regardless of the

Fig. 1. Participant recruitment and inclusion process
Participants were recruited from September 2018 to August 2019 through community and university-based advertisements in Seoul, Korea.
Initially, 77 participants were enrolled, but three of them were subsequently excluded: one participant did not complete data collection, one
participant was excluded due to moderate depression and anxiety disorder diagnosed by psychiatrists, and one participant was excluded due
to the presence of comorbidity between alcohol use disorder (AUD) and internet gaming disorder (IGD). Consequently, a final sample of 74
participants were included in the behavioral analyses and computational modeling. Participants underwent evaluation by a board-certified
psychiatrist using a semi-structured interview based on the Structured Clinical Interview from the DSM-IV (SCID; Kübler, 2013) to assess
major psychiatric disorders. Additionally, two psychiatrists classified participants into three distinct groups based on DSM-5 criteria for
AUD and IGD (HC, N 5 30; IGD, N 5 22; AUD, N 5 22). The DSM-5’s provisional diagnosis of IGD, outlined in the section recom-
mending conditions for further research, was utilized in this study. For the functional magnetic resonance imaging (fMRI) analysis, par-
ticipants with an average framewise displacement value higher than 0.5 (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) were excluded
from the analysis (N5 4). Additionally, one participant was excluded from the analysis due to signal loss in the frontal regions. This resulted

in a total of 69 participants included in the fMRI analysis (HC, N 5 28; IGD, N 5 20; AUD, N 5 21).
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expected values, with higher π indicating a greater inclination
to repeatedly choose the same option consecutively. For
each trial, we computed model-free and model-based RPEs,
where RPE represents the difference between the actual
reward received and the expected reward (Schultz, 2016).
We used hierarchical Bayesian analysis for estimating model
parameters and group comparisons (Ahn, Krawitz, Kim,
Busemeyer, & Brown, 2011; Kruschke, 2014). Additional

information regarding the complete equations and details on
the computational model and group comparison method can
be found in the Supplementary materials.

Model-based fMRI analysis. In the first-level analysis, we
performed a model-based fMRI analysis (O’Doherty,
Hampton, & Kim, 2007) to identify voxels of which blood
oxygenation level dependent (BOLD) activity is correlated

Fig. 2. Schematic representation of the Two-stage task
(A) Thick arrows represent common transitions (70%) and thin arrows indicate rare transitions (30%). For example, choosing the left option
in the first stage has a 70% chance of transitioning to the blue room in the second stage, and a 30% chance of transitioning to the yellow
room. The same probabilities apply in reverse for choosing the right option. After making a choice between the two options in one of the
second stages, rewards were given based on slowly varying probabilities ranging from 0.25 to 0.75. Four distinct reward probability dis-
tributions were counterbalanced within each group. In the feedback stage, the chosen stimulus from the second stage remained on the screen
as a reminder, and outcomes were represented by images of ‘þ1000 W’ on coins (indicating a reward) or a red ‘X’ (no reward). The value of
1000 won (Korean currency) is approximately 0.76 USD. A hypothetical participant who only uses a model-based strategy (model-based
agent) makes choices based on the task structure, specifically the transition probabilities. If a choice in the first stage resulted in a reward
through a common transition (70%), the model-based agent repeats the same choice in the next trial. However, if the reward was obtained
through a rare transition (30%), the agent switches the choice. On the other hand, a participant using a model-free strategy (model-free
agent) makes choices solely based on the outcome of the previous trial; selecting the same option if rewarded and selecting the opposite if

not, irrespective of the transition structure. (B) Process of a single task trial with time points. Inside the fMRI scanner, participants
completed 201 task trials, divided into three runs (7.5 seconds per trial, 8.38 minutes per run).
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with model-free and model-based RPEs. Time series of
standard RPE estimates were extracted as a model-free re-
gressor. For a model-based regressor, we computed differ-
ence regressor representing the residual prediction error not
accounted for by model-free RPE values (Daw et al., 2011).
The difference regressor was computed by subtracting the
model-free RPE values from the hypothetical RPE values
that would have occurred if the participant solely used a
model-based strategy during the task. Both the model-free
and model-based regressors were included as parametric
modulators in the design matrix at the onset of second stage
and feedback stage. We did not orthogonalize the regressors
to control the effects of each other, and also to enhance the
interpretability of the activation maps (Mumford, Poline, &
Poldrack, 2015). Additional regressors include timepoints of
choice response in the first and second stage, as well as the
onset of fixation and first stage. Six motion regressors esti-
mated by fMRIPrep were also added as nuisance regressors
to account for head movement. In summary, there were
twelve regressors in the GLM: two parametric regressors
(model-free RPE and model-based RPE), four nuisance re-
gressors indicating timepoints to be regressed out (choice
time in the first and second stage, fixation onset, and first
stage onset), and six motions regressors. By using the two
parametric regressors of interest, two contrasts were ob-
tained for each participant: one for identifying voxels
showing BOLD activity correlated with the model-free re-
gressor, and the other with the model-based regressor.

In the second-level analysis, first-level contrast images
were entered into random effects analysis to generate sec-
ond-level contrasts. Depression and anxiety scores were
included as covariates to control for the effect of psychiatric
symptoms. The results were thresholded at p < 0.001 (un-
corrected for multiple comparisons) with an extent
threshold of k ≥ 10 voxels. This criterion was adopted to
discern potentially meaningful neural activations between
the groups, given the exploratory nature of the investigation.

We then examined correlations between the neural
correlates showing significant group differences and the
model-based weight parameter (ω). This analysis aimed to
explore the relationship between model-based behavior and
the strength of the neural correlates associated with the
model-based and model-free systems, capturing how the
strength of each neural correlate varied based on the degree
of model-based control. Mean beta values of peak voxels
(3 mm sphere) in each significant brain region were
extracted for each individual, and Pearson correlations were
computed with individual estimates of ω.

Functional connectivity analysis - psychophysiological
interaction analysis. In the model-based fMRI analysis,
we found that the insula played a critical role in model-based
learning, particularly in the IGD group. To examine how the
insula interacts with other brain regions in the context of
model-based learning, we conducted a psychophysiological
interaction (PPI) analysis (Friston et al., 1997). As insular
cortices are known as cortical hubs of the salience network
(Seeley, 2019; Seeley et al., 2007), we examined functional

connectivity between the bilateral insula and other brain
regions related to the salience network (see Supplementary
materials). In the first-level analysis, the left and right insula
(i.e., 3 mm sphere centered on peak voxels from the second-
level model-based fMRI analysis) were used as seed regions,
and the model-free and model-based RPEs were included as
parametric modulators. Four nuisance regressors and six
motion regressors used in the model-based fMRI were also
included. In the second-level analysis, one-sample t-tests
were conducted within each group to examine connectivity
patterns. We also conducted two-sample t-tests (HC vs.
IGD; IGD vs. AUD; HC vs. AUD) to examine group dif-
ferences. To mitigate the influence of psychiatric symptoms,
depression and anxiety scores were integrated as covariates.
The results were thresholded at p < 0.001 (uncorrected) with
an extent threshold of k ≥ 10 voxels and were small-volume-
corrected using the brain mask of the salience network.

Ethics

The study was conducted in accordance with the Institu-
tional Review Board at Severance Hospital, Seoul, Korea
(IRB No. 40-2014-0745). All participants were provided with
detailed information about the study protocol and provided
written informed consent before participating.

RESULTS

Behavioral results

The observed stay probability (Fig. 3) demonstrates a com-
bination of model-based and model-free learning in all three
groups, which is further supported by the results of linear
mixed effects logistic regression (Table S3). The main effects
of reward (HC, p < 1e-4; IGD, p < 1e-10; AUD, p < 1e-06)
and transition probability (HC, p < 1e-9; IGD, p < 9e-10;
AUD, p 5 0.001) were significant in all three groups, indi-
cating that all groups accounted for both rewards (i.e.,
model-free learning) and the transition structure
(i.e., model-based learning) when making decisions. Addi-
tionally, the interaction between reward and transition
probability also showed a significant effect, supporting the
presence of a mixture of model-based and model-free stra-
tegies across the groups (HC, p < 2e-16; IGD, p < 2e-16;
AUD, p < 2e-16). However, the regression model did not
reveal a significant main effect of the group, even with the
inclusion of anxiety and depression as covariates (p > 0.1).”

Modeling results

We found significant group differences in the second-stage
learning rate parameter α2; and perseverance parameter π
(Fig. 4). Both the IGD and AUD groups exhibited higher α2
(α2;IGD − α2;HC 95% highest density interval (HDI) 5 [0.072,
0.359]; α2;AUD − α2;HC 95% HDI5 [0.011, 0.313]) and higher
π estimates (πIGD − πHC 95% HDI 5 [0.100, 1.059];
πAUD − πHC 95% HDI 5 [0.010, 1.021]) compared to the HC
group. However, no credible group differences were
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observed in the other four parameters including the model-
based weight parameter ω. See Fig. S4 for the distributions of
group differences in the model parameter estimates.

Model-based fMRI results

The model-based fMRI analysis revealed significant group
difference between the HC, IGD, and AUD groups, when
the model-based RPE was employed as a parametric
modulator (Fig. 5A and B). Specifically, the activation of
the right orbitofrontal cortex (OFC) in the AUD group
was greatly correlated with the model-based RPE,
compared to the IGD group (t 5 4.22, k 5 13, p < 0.001).
Furthermore, the bilateral insular activation of the IGD
group showed greater correlation with the model-based
RPE, compared to the HC group (left: t 5 4.20, k 5 17,
p < 0.001; right: t 5 4.71, k 5 33, p < 0.001). Lastly,
activation of the left superior frontal gyrus (SFG) of the
AUD group was greatly correlated with the model-based
RPE, compared to the HC group (t 5 4.18, k 5 26,
p < 0.001). However, no significant group differences were
observed when utilizing the model-free RPE as a para-
metric modulator. See Table S4 for the second level results
of each group.

Further analysis examined correlation between the sig-
nificant results of the model-based fMRI analysis (i.e., cor-
relation of each region with model-based RPE) and the level
of model-based control (e.g., individual estimates of ω). We
found a negative correlation between the beta value of the
right insula and ω in the IGD group (r 5 �0.45, p < 0.05),
but not in the AUD group (r5 �0.09, p 5 0.709) or the HC
group (r 5 �0.19, p 5 0.334) (Fig. 5C). In other words, the
coupling between the right insula and the model-based RPE
was stronger in individuals with lower model-based weight
parameter estimates, only in the IGD group. No significant
correlations were found for the left insula.

PPI results

The PPI analysis revealed significant correlations between
the insula and other brain regions in the salience network,
only in the IGD group (Fig. 6 & Table S5). The right insula
was correlated with the right putamen (t 5 5.23, p < 0.001),
left insula (t 5 5.75, p < 0.001), and occipital lobe (t 5
4.23–4.37, p < 0.001) in the context of model-based RPE.
Similarly, the left insula was correlated with the anterior
cingulate cortex (ACC; t 5 4.24, p < 0.001), right superior
temporal gyrus (STG; t 5 3.67, p < 0.001), and occipital lobe
(t 5 3.72–5.14, p ≤ 0.001). Group comparisons indicated
distinctive connectivity patterns in the IGD group
(Table S6). Connectivity between the right insula and the
left insula was greater in the IGD group compared to HC
(t 5 3.89, p < 0.001). Furthermore, connectivity between the
insula and occipital lobe was greater in the IGD group
compared to the AUD (right insula as seed: t 5 3.52–4.41,
p < 0.001; left insula as seed: t 5 3.52–3.57, p < 0.001) and
HC (left insula as seed: t 5 3.41–3.79, p < 0.001). Overall,
our findings demonstrate that IGD is associated with
distinctive patterns of hyper-connectivity in the insula and
its interactions with the salience network, suggesting a po-
tential link to ongoing reward processes unique to the IGD
group during model-based learning.

DISCUSSION

In this study, we compared neurocognitive features related
to model-based learning in individuals with IGD and AUD.
The main findings are as follows: (1) Both the IGD and
AUD groups showed higher learning rate and perseverance
parameter estimates compared to the HC group, contrary to
our initial hypothesis. (2) We found an IGD-specific role of
the insula in processing model-based behavior. Model-based

Fig. 3. Stay probability of each group
The figure displays the actual stay proportion of each group (HC, healthy control; IGD, internet gaming disorder; AUD, alcohol use
disorder) based on reward and transition probability. Each data point represents the individual participant’s data, connected by lines.

The error bars represent the standard error of the mean.
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RPE was strongly correlated with bilateral insula activation
in the IGD group, while it showed correlation with the
activation of the frontal regions (i.e., right OFC and left
SFG) in the AUD group. Notably, only the IGD group
exhibited hyper-connectivity between the bilateral insula
and other brain regions in the salience network, including
the putamen, ACC, STG, and occipital lobe, in the context of
model-based RPE. In addition, we observed that the corre-
lation between the right insula and model-based RPE was
particularly stronger in individuals who showed lower
model-based behavior (i.e., lower ω).

The finding of similarly high model-based behavior
across the groups was consistently observed in both behavior
and computational modeling analyses. While previous
studies have yielded mixed findings regarding the impair-
ment of model-based behavior in individuals with AUD
(Chen et al., 2021; Doñamayor et al., 2018; Gillan et al.,

2011; Reiter et al., 2016; Sebold et al., 2014; Voon et al.,
2015), a recent study by Silva and Hare (2020) suggested that
humans predominantly rely on model-based inference when
they have an accurate conception of the task. In our study,
we implemented several procedures recommended by Silva
and Hare (2020) to ensure a clear understanding of the two-
stage task (see Methods). Additionally, participants in our
study exhibited above-normal working memory and pro-
cessing speed, surpassing those reported in previous studies.
These higher cognitive capabilities may have contributed to
the enhanced model-based behavior observed in our par-
ticipants (Schad et al., 2014). In essence, accurate under-
standing of the task along with higher cognitive capabilities
of the participants could account for the preserved model-
based behavior of IGD and AUD when compared to
HC. Nevertheless, it is imperative to note that these specu-
lative interpretations require validation through further

Fig. 4. Group comparison of parameter estimates
Each point is a group-wise mean of the estimates of six model parameter (HC, healthy control; IGD, internet gaming disorder; AUD, alcohol
use disorder). The model-based weight parameter ω represents the degree of model-based control, with higher ω values indicating greater
emphasis on model-based learning. Learning rate parameters (α1; α2) indicate how quickly reward prediction errors are updated in the
temporal difference learning, independently for stage1 and stage2, with higher values indicating faster updates. The perseverance parameter
(π) represents whether the participant has a tendency to choose the same option as on the previous trial, with higher π indicating a greater
tendency to repeat choices. Inverse temperature parameters (β1, β2) determine the level of stochasticity in the participant’s choice, with
higher values indicating more deterministic choices. Each error bar represents the 95% highest density interval (HDI) of the parameter

estimates. Asterisks indicate significant group differences. See Figure S4 for the distributions of the group differences.
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Fig. 5. Group differences in model-based fMRI analysis
(A) Brain regions exhibiting significant group differences in the second-level two-sample comparisons using model-based reward prediction
error (RPE) as parametric modulators (p < 0.001, uncorrected; cluster size, k ≥ 10). Significant group differences indicate that one group’s
brain activation is significantly correlated with the model-based RPE compared to the other group. The color bar indicates t-statistics from
the results of two-sample t-tests. (B) Group-wise average beta value extracted from 3mm spheres at peak MNI coordinates (R OFC:

35, 55, �8; L Insula: �40, 2, �8; R Insula, 46, 2, 2; L SFG: �6, 25, 62) for the brain regions showing significant group differences. Each
dot represents the group-wise mean of the beta value for each region, and each error bar indicates the group-wise standard error. Asterisks
denote significance based on two-sample t-test (p < 0.001). (C) Correlation between beta value of the left insula and the model-based
weight parameter (ω) estimates. Each dot represents the beta value of the right insula (extracted from 3mm spheres at peak MNI

coordinates: 46, 2, 2) from the first-level analysis on the x-axis, and the individual estimates of the model-based weight parameter on the
y-axis. The regression line represents the Pearson correlation between the beta value of the right insula and the estimates of ω. The asterisk

denotes a significant correlation (p < 0.05). OFC 5 orbitofrontal cortex; SFG 5 superior frontal gyrus.
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investigation. Future studies should encompass samples with
diverse cognitive capabilities and manipulate participants’
understanding of the task to substantiate and generalize the
observed associations.

While the degree of model-based control (i.e., ω) was
similar across groups, the IGD and AUD groups exhibited
higher α2 and π estimates, indicating shared cognitive as-
pects between alcohol and gaming addiction. Impulsivity, a
well-known personality trait related to addiction (Bickel &
Marsch, 2001; Koob & Volkow, 2016; Kozak et al., 2019;
Poulton & Hester, 2019), might account for the higher
learning rate (α2) estimates in terms of reward sensitivity
and cognitive control. The faster updates of immediate
reward found in the addicted individuals may indicate
enhanced salience of immediate rewards or impaired ability
to inhibit responses to immediate rewards (Wu et al., 2017).
Additionally, while a higher learning rate can be advanta-
geous in a rapidly changing and uncertain environment, it
might be detrimental in a setting like the two-stage task,
where reward probability changes gradually (Eckstein &
Collins, 2020).

Higher perseverance parameter (π) estimates in the IGD
and AUD groups suggest a greater tendency to repeat pre-
vious choices regardless of reward, which could be related to
habitual behavior or compulsivity, key characteristics of

addictive disorders (Everitt & Robbins, 2015; Lucantonio
et al., 2014; Lüscher et al., 2020; Ostlund & Balleine, 2009).
Previous literature also reported elevated perseverance in
addictive individuals, supporting the idea that high persev-
eration could be a detrimental feature related to addiction
(Doñamayor et al., 2022; Ersche et al., 2011). Therefore, the
shared pattern of higher learning rate and perseverance
found in the IGD and AUD groups might reflect the neu-
rocognitive characteristics of addictive behaviors, though
further investigation is warranted.

Using fMRI, we found distinctive neural correlates of
model-based behavior in the IGD compared to the AUD
groups. Specifically, we observed that the insula plays a
specific role in model-based behavior in IGD. The insula is a
key component of the brain’s salience network (Menon &
Uddin, 2010; Uddin, 2015), involved in representing pre-
diction errors related to reward variance (Preuschoff,
Quartz, & Bossaerts, 2008) and processing salient stimuli
(Jensen et al., 2007; Seeley et al., 2007). Previous literature
reported hyper-connectivity of the salience network in in-
dividuals with behavioral addiction during resting state
(Tolomeo & Yu, 2022), and also specifically in individuals
with IGD during resting state, risky decision making, and
executive control tasks (Hong et al., 2015; Lee, Lee, Lee, &
Jung, 2017; Sun et al., 2012; Zheng et al., 2019). Consistent

Seed: R Insula

RPutamen

OccipitalOccipital
lobe

L
R

L InsulaLL Insula
OccipitalOccipital
lobe

X = -47 Y = 4 Z = 0

T value

ACC

RSTG OccipitalOccipital
lobe

X = 0 Y = -6 Z = -15Seed: L Insula

Fig. 6. Results of psychophysiological interaction (PPI) analysis results of the internet gaming disorder group
Using the right insula (MNI-coordinates: �40, 2, �8) and left insula (MNI-coordinates: 46, 2, 2) as seed regions (3 mm spheres), a PPI
analysis was conducted with model-based reward prediction error (RPE) as the psychological variable. The brain maps display the effects of
model-based RPE on each insula to the whole brain of the IGD group (p < 0.001, uncorrected; cluster size, k ≥ 10). The color bar represents

t-statistics from the results of one-sample t-tests. See Table S5 for the MNI coordinates of the peak voxels.
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with these findings, our results suggest that hyper-sensitivity
of the insula, a key component of the salience network,
might serve as a distinct neural marker of IGD.

To comprehend the hyperactivation of the insula spe-
cifically in the IGD group, it is crucial to consider its
involvement in drug craving and addiction (Droutman,
Read, & Bechara, 2015). Brain lesions in the insular cortex
are known to disrupt addictive behavior, emphasizing the
insula’s significant role in addiction (Naqvi, Gaznick, Tranel,
& Bechara, 2014). However, neuroimaging studies on SUDs
have generally reported hypoactivation of insula during
decision-making tasks (Nestor, Hester, & Garavan, 2010;
Stewart, Connolly, et al., 2014; Stewart, May, et al., 2014).
This discrepancy may be attributed to the differential pro-
cessing of drug rewards and non-drug rewards in individuals
with addiction (Madden, Petry, Badger, & Bickel, 1997).
Drugs of addiction are highly salient reward, leading to
hyperactivation of the salience network, while non-drug
rewards are associated with decreased activity in the salience
network compared to non-drug users (Cushnie, Tang, &
Heilbronner, 2023). Therefore, the previous findings of
hypoactivation of the insula during decision-making tasks in
SUDs may be due to the use of non-salient rewards.
Correspondingly, neuroimaging studies of IGD using
gaming-related cues have indicated heightened activation of
the salience network (Ko et al., 2009, 2013; Turel, He, Wei, &
Bechara, 2021). Considering the task dynamics and reward
structure in our study, which may resemble gaming behavior
at least more than substance use, the excessive insula acti-
vation observed in the IGD group may reflect that the in-
dividuals treated the two-stage task like a game.

Another notable finding is that individuals with AUD
exhibited hyperactivation in the prefrontal regions, specif-
ically the OFC and SFG, in the context of model-based
behavior. The OFC has been identified as a key regulator of
goal-directed, or model-based action planning and execution
(Gremel & Costa, 2013; Jones et al., 2012; Kahnt, 2023;
McDannald, Lucantonio, Burke, Niv, & Schoenbaum, 2011),
encoding the value of stimuli and the relationship between
stimuli and their expected outcomes (Howard, Gottfried,
Tobler, & Kahnt, 2015; Lopatina et al., 2015). Similarly, the
SFG is involved in higher cognitive functions and working
memory associated with executive processing (Boisguehe-
neuc et al., 2006). Interestingly, while previous literature
suggested decreased prefrontal activation in individuals with
AUD during decision-making tasks and resting state, the
individuals with AUD in our study showed increased acti-
vation of these regions. This discrepancy could be explained
by differences in model-based performance, as we did not
detect impairment of model-based control in AUD, contrary
to previous findings of AUD or SUDs (Dom, Sabbe, Hul-
stijn, & Brink, 2005; Moorman, 2018). Notably, these find-
ings align with previous studies that suggesting
compensatory hyperactivation in prefrontal regions in cases
of AUD, aiming to maintain task performance (López-
Caneda et al., 2012). Building upon this prior finding, the
hyperactivation of the prefrontal regions in the AUD group
may be interpreted as efforts to counteract impaired model-

based systems, thus enabling model-based behavior.
Importantly, compensatory hyperactivation in the frontal
regions is specific to AUD and not observed in IGD. This
distinction may be attributed to the absence of chemical
intoxication in IGD, unlike in AUD and other SUDs (Grant,
Potenza, Weinstein, & Gorelick, 2010; Han et al., 2015;
Oscar-Berman & Marinković, 2007; Weinstein &
Lejoyeux, 2020).

To the best of our knowledge, this is the first neuro-
imaging study that compared IGD and AUD focusing on the
model-based behavior. Our findings suggest that IGD and
AUD have shared mechanisms regarding the model-based
behavior, indicating common cognitive characteristic related
to reward sensitivity and compulsivity. However, the un-
derlying neural mechanisms may differ due to various fac-
tors such as differences in reward of salience and the distinct
brain changes related to alcohol and gaming behavior. Our
findings provide valuable insights into the neurocognitive
mechanisms underlying addictive disorders and highlight
the need for further research to explore the complex role of
insula and salience network in IGD. Nonetheless, this study
has several limitations. First, we did not jitter the duration of
fixation between trials, using 0.5-second-fixation for all in-
ter-trial intervals. This methodological limitation may result
in trial-preparatory activity and also overlap in the BOLD
responses across trials (Friston, Zarahn, Josephs, Henson, &
Dale, 1999). Thus, we recommend future studies to use jit-
tering for inter-trial intervals, as well as sufficient intervals
between the trials. Second, as this is the first study to
compare neural correlates of model-based behavior between
IGD and AUD, we acknowledge the broadness of our sta-
tistical methods and lack of specificity in exploring the
common and specific neural correlates of each group. Thus,
further investigation with more specificity is needed to
identify the group difference in the neural correlates. Lastly,
the generalizability of the findings is limited not only due to
the relatively modest sample sizes of each group, but also the
characteristics of the samples. Although participants were
diagnosed with IGD or AUD by psychiatrists, they were not
clinical patients seeking for treatment. Instead, they were
recruited from community sites, which could potentially
lead to variations in clinical characteristics compared to
patients with more severe symptoms. Furthermore, the
sample is restricted to young men in terms of gender and
age, and the majority of individuals in the IGD group was
predominantly engaged in a specific game genre, multiplayer
online battle arena (MOBA), which may be influenced by
Korean culture. Therefore, future studies should consider
the influence of culture, and also use larger sample sizes and
more stringent statistical thresholds.

CONCLUSIONS

Our study provides novel insights into the neurocognitive
features and neural correlates of model-based learning in
individuals with IGD and AUD. Despite both IGD and AUD
exhibiting similar levels of model-based behavior, distinct
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neural signatures were observed in the insula for IGD and
prefrontal regions for AUD. These findings suggest potential
differences in the neurobiological mechanisms underlying
addictive behaviors in IGD and AUD, contributing to the
growing body of evidence highlighting shared and distinct
features of IGD and substance-related addictive disorders.
Further prospective research is needed to better understand
pathophysiology of IGD, and to address the controversy
surrounding the diagnostic criteria and treatment ap-
proaches specific to IGD.
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