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Clinical feasibility of deep 
learning‑based synthetic CT 
images from T2‑weighted MR 
images for cervical cancer patients 
compared to MRCAT​
Hojin Kim , Sang Kyun Yoo , Jin Sung Kim , Yong Tae Kim , Jai Wo Lee , Changhwan Kim , 
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Woo Hyoung Kim , Jayoung Kong  & Yong Bae Kim *

This work aims to investigate the clinical feasibility of deep learning-based synthetic CT images for 
cervix cancer, comparing them to MR for calculating attenuation (MRCAT). Patient cohort with 50 
pairs of T2-weighted MR and CT images from cervical cancer patients was split into 40 for training and 
10 for testing phases. We conducted deformable image registration and Nyul intensity normalization 
for MR images to maximize the similarity between MR and CT images as a preprocessing step. The 
processed images were plugged into a deep learning model, generative adversarial network. To prove 
clinical feasibility, we assessed the accuracy of synthetic CT images in image similarity using structural 
similarity (SSIM) and mean-absolute-error (MAE) and dosimetry similarity using gamma passing rate 
(GPR). Dose calculation was performed on the true and synthetic CT images with a commercial Monte 
Carlo algorithm. Synthetic CT images generated by deep learning outperformed MRCAT images 
in image similarity by 1.5% in SSIM, and 18.5 HU in MAE. In dosimetry, the DL-based synthetic CT 
images achieved 98.71% and 96.39% in the GPR at 1% and 1 mm criterion with 10% and 60% cut-off 
values of the prescription dose, which were 0.9% and 5.1% greater GPRs over MRCAT images.
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Magnetic resonance (MR) imaging enables for highlighting the specific tissues by manipulating pulse-sequences. 
This ability facilitates the tumor detection and delineation for both diagnostic and therapeutic purposes. Unlike 
computed tomography (CT), however, MR image does not provide physical information such as electron density 
for dose calculation. Contrarily, the intensity of CT image, denoted by Hounsfield Unit (HU), represents physical 
information. By matching the HU and electron (physical) density throughout measurements and/or Monte Carlo 
simulations, CT images can be employed for dose calculation, followed by treatment planning for radiotherapy 
(RT). For this reason, MR images have been considered subsidiary in RT. There has been a high demand for 
making MR images more useful by generating CT-like images, called synthetic CT1–4.

The generation of synthetic CT images from MR images is not a new idea, while it has been studied for 
decades. Multiple approaches have been proposed, including segmentation-based5–8 and atlas-based9–14. Seg-
mentation-based techniques basically separate multi-echo MR images into different substances: water, fat and 
bone. Then, the intensities of water and bone substances of MR images are converted to CT numbers with refer-
ence to a conversion curve between MR intensity and CT number. This approach could produce synthetic CT 
images well-aligned to MR images, while the performance relied on parameters such as a priori segmentation, 
and intensity interpolation. A commercially available system, called MR for calculating attenuation (MRCAT), 
was developed and released that generates a type of synthetic CT images from MR images with a specific pulse 
sequence15. Atlas-based approaches generate CT images based on deformation information between the given 
MR image and one of the similar MR images stored in an atlas library. This method mainly depends on the 
deformation accuracy and similarity of the MR images in atlas library.
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A newer concept for synthetic CT image generation is to utilize a learning-based method with the aid of recent 
breakthroughs of machine learning16–18 and deep learning19–21 algorithms. The image translation from MR to 
CT is considered to be a non-linear estimation, which can be modeled by statistical approaches, which involves 
constructing a network architecture that is designed to be optimized with numerous datasets. This data-driven 
approach would be able to overcome such drawbacks as the deformation accuracy and imperfect segmentation 
throughout a thresholding operation that appeared in the existing methods. Previously, the network consists of 
extracting features from MR images and generating the synthetic CT images based upon the extracted features. 
The success of this approach depended on reliably finding and matching the features of the given image. To better 
predict the non-linear model between input and output, convolution kernels were combined with the deep-neural 
network, which led to convolutional neural networks (CNNs) These networks optimize a number of convolution 
kernels between 2 and 3D images imported to input and output of the networks22–27. Recently, newer generative 
network architectures such as generative adversarial network (GAN)28,29, vision transformer30–32, and diffusion 
probabilistic models33,34 have been applied to generating synthetic CT generation from MR images.

This work deals with medical imaging for patients undergoing cervical cancer, which is known as the second 
most common female malignant tumor. Recent breakthroughs have revolutionized cervical cancer detection 
based on deep learning35,36 and treatment with genome-based37,38 and immune system-associated39 methodolo-
gies. In radiation therapy for cervical cancer, MR image have played a crucial role in delineating target volume. 
Commercially available segmentation-based synthetic CT generating algorithms, including MRCAT, was initially 
applied to the pelvis and prostate regions in most cases. Hence, the pelvic region was chosen for this work, which 
investigates both segmentation-based (MRCAT) and learning-based synthetic CT image generation from MR 
images.

It was found that many studies have developed deep neural networks capable of generating synthetic CT 
images from given MR images for several body sites40–43, including the pelvis and the cervix44–46, which allowed 
the application of a clinically approved MRCAT pelvis protocol. Only a few, however, investigated the potential 
use of radiation therapy application by incorporating dosimetry studies, which failed to provide a comprehen-
sive verification procedure to assess the clinical relevance of the generated synthetic CT images. Thus, our main 
contributions of this work were as follows:

•	 This work focused on developing a deep learning-based synthetic CT images from (T2-weighted) MR images 
for cervical cancer patients from well-aligned and pre-process datasets.

•	 It aimed to demonstrate the clinical relevance of the deep learning-based synthetic CT images for radio-
therapy by making comparison to clinically approved MRCAT images from a commercial system.

To achieve our goals, we applied thorough pre-processing to the pairs of T2-weighted MR and CT images 
for cervical cancer patients that ensures qualified alignment between input and output of the proposed deep 
neural network. Additionally, we emphasized a verification process for proving clinical feasibility of the deep 
learning-based synthetic CT images by calculating dose distributions, which were compared against those from 
planning CT and commercial MRCAT images.

Results
Figure 1 shows image similarity between true CT images and two types of synthetic CT images: MRCAT and 
GAN-based CT images. Learning-based GAN produced more qualified synthetic CT images than MRCAT 
images, as seen in Fig. 1 that included the synthetic images before and after DIR operation. Before applying DIR, 
the synthetic CT images from GAN had more realistic image texture, which made them look closer to the true 
CT images than MRCAT images that showed less image contrast and fewer image details. DIR to be conducted 
for dose calculation in assessment appeared to reduce the difference between two-types of images, while the 
deep learning yielded more realistic synthetic images. The difference became explicit on the bone anatomy, as 
indicated by arrows in yellow in Fig. 1. MRCAT frequently under- or over-estimated the CT intensities on the 
bony structures, while deep learning improved the detailed description on the bony structures.

The enhancement in image similarity throughout deep learning was also found in the quantitative analysis, as 
listed in Table 1. It turned out that the deep learning-based approach led to more accurate synthetic CT images 
than MRCAT did. The GAN-based synthetic CT images achieved SSIM of 0.9799, and MAE of 10.97 HU, which 
were about 1.4% greater in SSIM, and 18 HU lower in MAE than MRCAT images had. The improvement across 
the 10 testing cases was statistically significant (p = 0.00) when we analyzed the results by a paired-samples T-test 
after passing the normality test in SPSS.

Besides image similarity, clinical feasibility of two types of synthetic CT images was assessed in dosimetry 
similarity. The dose was computed by a commercial Monte-Carlo algorithm on the deformed MRCAT and GAN-
based synthetic CT images with the SIB-VMAT plan that was optimized with the true CT image for each testing 
case. Table 2 listed up the numerical results regarding the differences between the dose distributions on true CT 
and two types of synthetic CT images in GPR at 1% and 1 mm criterion with > 4.5 Gy and > 27 Gy cut-off dose 
values. MRCAT attained 97.84% passing rate when the region of interest was defined as the imaging voxels that 
received above 5 Gy, which is 10% of the prescription dose (45 Gy). Contrarily, the synthetic CT produced from 
deep learning-based approach reached 98.71% passing rate, which enhanced the GPR 0.9% over MRCAT. The 
difference in GPR between two synthetic CT images ranged from 0.5% on case 6 to 2.1% on case 9. The bigger 
dose cut-off value (27 Gy, 60% of the prescription dose) was applied in calculating GPR to constrain the region 
of interest to high dose of radiation. The extent of improvement in dosimetry accuracy achieved by synthetic CT 
images from deep learning over MRCAT was shown to be greater on high dose region, leading to 5% difference 
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Figure 1.   Comparing true CT images (first row) to MRCAT images (second row) and synthetic CT images 
from deep learning (third row) [− 750 HU ,750 HU].

Table 1.   Image similarity between true CT and two-types of synthetic CT images: MRCAT and GAN-based 
CT images.

1 2 3 4 5 6 7 8 9 10 Avg

SSIM
MRCAT​ 0.9685 0.9611 0.9668 0.9624 0.9634 0.9625 0.9671 0.9709 0.9636 0.9700 0.9656

Synthetic CT from GAN 0.9811 0.9745 0.9784 0.9795 0.9779 0.9774 0.9799 0.9854 0.9783 0.9866 0.9799

MAE (HU)
MRCAT​ 39.99 35.33 34.12 34.01 26.76 30.45 22.06 22.66 29.13 21.21 29.57

Synthetic CT from GAN 10.80 14.38 11.64 10.75 12.31 12.22 9.99 8.47 11.74 8.13 10.97
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on average, as seen in Table 2. The enhancements were made without any exceptional cases out of the 10 testing 
datasets, which made the differences statistically significant (p = 0.00) from the paired-samples T-test.

Figure 2 visualized (1) dose distribution computed on the true CT images in coronal axis and (2) 3D gamma 
maps for the MRCAT and GAN-based synthetic CT images for the 10 testing cases at 1% and 1 mm criterion. 
The gamma maps in Fig. 2 were constrained between 0 and 1, in which the voxels greater than 1 were consid-
ered to be unmet to the criterion (1% and 1 mm) required. It highlighted that the deep learning-based synthetic 
CT images had smaller number of voxels with high intensity than the MRCAT images had. There were smaller 
number of voxels inside or around the high dose region that were high and bright in the gamma maps produced 
from the deep learning over the MRCAT images. These results possibly supported our observation above that the 
accurate intensity prediction of synthetic CT images accomplished by deep learning could have greater impact 
on the high dose region.

Table 3 listed up the image similarity between MR images and synthetic CT images before applying DIR in 
SSIM and dice similarity coefficient (DSC) for the body contours delineated on each image. It revealed that the 
SSIMs between MR and synthetic CT images without DIR behaved similar across the 10 test datasets, leading to 
the difference of 0.0022 on average. Also, the DSCs for the body contours delineated on MR and two synthetic 
CT images without DIR were quite close to each other for the respective cases, resulting in the difference of 
0.0008 on average. The implication from the results was that the improved performance of the deep learning in 
generating the synthetic CT images was not attributed to the role of deformable image registration. The difference 
of performance was most likely to be derived from the synthetic CT generative methods.

Discussion
This study was motivated by synthetic CT generation from T2-weighted MR images throughout a deep learn-
ing model, with the aim of demonstrating the clinical feasibility of the synthetic CT images for potential use in 
radiotherapy. It is well known that several methods have been developed to generate synthetic CT images from 
MR images, in which the analytical segmentation-based approach was adopted in the commercial MR scanners 
and simulators known as MRCAT. Since MRCAT has been clinically approved and is currently capable of gen-
erating synthetic CT images for certain body sites, the comparison and verification of the synthetic CT images 
by deep learning against MRCAT would be necessary to demonstrate its clinical feasibility. Thus, we applied a 
deep learning-based framework for cervical cancer patients, in which the MRCAT pelvic protocol is available. 
To the best of our knowledge, this study represents the first trial on investigating the clinical feasibility of the 
deep learning model in the context of synthetic CT generation from MR images, particularly in comparison to 
commercial MRCAT images.

Several attempts were made in this work to obtain optimal results in the synthetic CT generation and verify 
the clinical relevance of the framework. Firstly, great attention was given to enhancing the similarity between 
pairs of MR and CT images. All MR and CT images used in this work were scanned on the same date and under 
a very similar condition (empty-bladder) for each patient without exception. The MR images were both rigidly 
and non-rigidly registered to the corresponding CT images. Secondly, the data consistency was also strength-
ened. As CT images were used to compute the dose distribution, CT imaging data employed for training and 
testing a network was sourced from a single CT simulator. For MR images, to reduce the deviations in MR image 
intensity across different patient cases, the Nyul intensity normalization was performed. Thirdly, apart from data 
pre-processing, we implemented one of the representing generative model, GAN. Though various generative 
models have been proposed, GAN has been recognized the most successful network architecture and served as a 
reference to verify the performance of the new deep learning models. Lastly, this study emphasized the dosimetry 
similarity to verify the clinical availability of the generated synthetic CT images and to compare them to the 
commercial MRCAT images. For dose calculations on the synthetic CT images, the Monte Carlo algorithm was 
employed to ensure more accurate quantitative analysis between two types of synthetic images.

When applying the trained network to the 10 clinical cases in the testing phase, it was observed that the syn-
thetic CT images generated by the proposed GAN model outperformed the MRCAT images in both image and 
dosimetry similarity, compared to the true CT images. The improvements over the MRCAT synthetic images were 
statistically significant in all categories. The GAN-based synthetic CT images had MAE of 10.97 HU in image 
similarity, relative to the true CT images, which helped achieve 98.71% and 96.39% passing rate on average in 
dosimetry similarity of GPR at 1%/1 mm criterion for 10% and 60% dose cut-offs, which were 0.9% and 5.1% 
greater than MRCAT images attained. The quantitative results showed the advantages of deep learning-based 
framework over MRCAT that has been clinically used, thereby successfully establishing the clinical feasibility. 
The improvement in dose calculation accuracy would yield more reliable, secure treatment plan as the treatment 

Table 2.   Dosimetry similarity in gamma passing rate (GPR, %) at 1% and 1 mm criterion with 10% (4.5 Gy) 
and 60% (27 Gy) cut-offs of the prescription dose between dose distributions computed on true CT and two-
types of synthetic CT images: MRCAT and GAN-based CT images.

1 2 3 4 5 6 7 8 9 10 Avg

GPR (1%/1 mm) (> 4.5 Gy)
MRCAT​ 98.44 97.47 97.44 96.53 98.13 99.05 97.34 99.00 97.53 98.38 97.84

Synthetic CT from GAN 99.34 98.67 98.16 97.52 98.87 99.53 98.47 99.44 99.64 99.03 98.71

GPR (1%/1 mm) (> 27.0 Gy)
MRCAT​ 92.20 88.23 90.01 87.22 92.46 95.31 88.09 95.77 87.34 95.55 91.22

Synthetic CT from GAN 97.04 94.42 93.88 95.37 96.03 98.30 94.44 98.05 98.36 98.05 96.39
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planning optimization finds the beam intensity map by minimizing the difference between the computed dose 
and ideal dose distributions. This work also proved that the enhancement achieved by the deep learning-based 
approach in generating synthetic CT images was not derived from the registration, including DIR. Even before 
DIR applied, the DSCs of the body contours of the original T2W MR and resulting synthetic CT image from the 
deep learning exceeded 99%, which was almost similar to or slightly above those of the MR and MRCAT images.

Figure 2.   Dose distributions in a coronal plane on 10 testing cases (left column), and gamma maps (1%/1 mm 
criterion) between dose distributions on true CT and two types of synthetic CT images: MRCAT (middle 
column) and synthetic CT images from GAN (right column).
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Such an improvement in generating the synthetic CT images from the deep learning against the MRCAT-
based approach would grant a couple of benefits in MR-only radiotherapy. The MRCAT images were obtained 
from the segmentation-based method, which normally required multi-echo images T1-weighted MR images to 
be scanned. It took more time to acquire the T2-weighted MR images that are the most widely used for tumor 
delineation in radiation oncology in addition to the MRCAT procedure. Though the deep learning demands the 
additional computing system that is devoted to generating the synthetic CT images, it would not intervene in 
the image acquisition procedure. Also, though having been improved, the segmentation-based approach for the 
MRCAT still produced unrealistic texture in bony structures, as seen in Fig. 1. Besides, the deep learning-based 
approach produced slightly more accurate image translation for bladder and gas in bowel. The MC-based dose 
calculation would have been able to elucidate the dosimetry difference derived from the slightly different image 
intensities. The difference in dosimetry between the MRCAT and the deep learning might have been due to the 
degree of prediction accuracy for such structures of the synthetic CT images.

Despite various advantages stated in this work, there are a couple of limitations of the proposed framework. 
The first limitation was that the deep learning-based workflow for synthetic CT image generation may well 
demand a site-specific trained model for clinical applications. There must be an additional effort and time 
required, which has been a common barrier of the deep learning-based frameworks applied for image segmenta-
tion and automated treatment planning for radiation therapy. Secondly, as seen in Fig. 1, the predicted synthetic 
CT images did not fully describe the gas in bowel and bladder although there was a slight improvement compared 
to the MRCAT images. It is worth noting that recent advancements in generative models, such as the diffusion 
probabilistic model and vision transformer, hold promise for addressing these imperfections in the prediction of 
synthetic CT images. The vision transformer was known to be more robust in the image generation by takin more 
global image information with self-attention operation, and the diffusion probabilistic model that leans toward 
unsupervised learning would be able to better estimate the gas in small bowel for the cervical cancer patients. 
Thirdly, the evaluation process emphasized the similarity in image and dosimetry aspects. While enhancing 
the performance of the synthetic CT image, we would be able to adopt different validating approaches, such as 
image segmentation47–49 and feature extractions50–52 for treatment outcome modeling throughout the generated 
synthetic CT images, compared to those tasks on the real CT images. Finally, the number of patients cases used 
for training (40) and testing (10) the network, might be considered relatively small. Instead, our primary focus 
was on maximizing the image similarity and data consistency by strengthening the pre-processing steps, ensur-
ing rigorous verification procedure, and optimizing hyper-parameters on the GAN network architecture. The 
proposed workflow, as outlined above, achieved superior accuracy in synthetic CT generation, relative to the 
clinically available MRCAT framework. In the future, incorporating additional options and techniques could 
further elevate the performance of generating synthetic CT images from MR images.

Methods
Patient cohort
All research was performed in accordance with relevant guidelines and regulations. The ethics committee/
institutional review board of the Yonsei University Severance Hospital, Korea (4-2022-0311) approved the study 
protocol, and waived the need for informed patient consent for the retrospective analysis of patient images. The 
patient cohort for this study consisted of 50 pairs of MR and CT images from cervical cancer patients, which 
were split into 40 pairs for training, and 10 pairs for testing a proposed deep neural network. CT images were 
scanned at CT simulator to be used for treatment planning and actual treatment. MR images were T2-wegithed 
(T2W) MR images that have been widely used to define the target volume for radiotherapy due to its ability to 
highlight image contrast between normal and tumor tissue. CT images were acquired using a single CT simulator 
(Canon Aquilion LB, Canon Medical Systems Corporation, Japan), and T2-weighted MR images were obtained 
from MR Ingenia 3.0 T simulator (Philips Healthcare, Amsterdam, Netherlands). The MR and CT images had 
different voxel spacing, 1.06 × 1.06 × 3 mm3 for MR images and 0.76 × 0.76 × 3 mm3 for CT images. To minimize 
the discrepancy between the different imaging modalities, MR images were scanned followed by CT images on 
the same day within a few hours. For the same reason, the patients were instructed to make bladder empty during 
the scanning of both MR and CT images.

The 10 patient cases belonging to the testing phase received the simultaneous integrated boost-based volumet-
ric modulated arc therapy (SIB-VMAT) with two or three arcs for cervical cancer. Among these cases, seven had 
three target volumes (2.2 Gy, 2 Gy, and 1.8 Gy × 25 fractions), two had two target volumes (2 Gy and 1.8 Gy × 25 
fractions), and only one had a single target volume (1.8 Gy × 25 fractions). All test cases in the dataset were 
provided with MRCAT images generated by mDixon sequence embedded in the MR simulator15, in addition 

Table 3.   Image similarity in SSIMs and DSCs between T2W MR and two types of synthetic CT images (before 
applying DIR): MRCAT and GAN-based CT images.

1 2 3 4 5 6 7 8 9 10 Avg

SSIM
MR vs. MRCAT (without DIR) 0.8124 0.8144 0.8217 0.8184 0.8170 0.8056 0.8082 0.8093 0.8079 0.8103 0.8125

MR vs. Synthetic CT from GAN (without DIR) 0.8122 0.8159 0.8234 0.8211 0.8199 0.8082 0.8110 0.8119 0.8109 0.8128 0.8147

DSC (Body Contour)
MR vs. MRCAT (without DIR) 0.9922 0.9859 0.9928 0.9894 0.9917 0.9886 0.9904 0.9908 0.9916 0.9922 0.9906

MR vs. Synthetic CT from GAN (without DIR) 0.9908 0.9833 0.9920 0.9926 0.9928 0.9912 0.9922 0.9925 0.9927 0.9935 0.9914
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to T2-weighted (T2W) MR images. These MRCAT images were used for comparison against the synthetic CT 
images produced from the proposed deep learning framework.

Data preprocessing and network training
The pairs of T2W MR and CT images were used to train a deep CNN, where the T2W MR and CT images were 
defined to be the input and output images. The network was designed to generate the synthetic CT images from 
the T2W MR images, in which the generated synthetic images were updated by comparing it to the true CT 
images throughout a loss function.

This work aimed to reinforce the degree of similarity between input and output of the network, correspond-
ing to the given MR and CT images. To achieve this goal, the MR and CT images were simulated on the same 
date with bladder empty, as stated above. Also, a couple of pre-processing steps were adopted to further enhance 
the image similarity. It was found that the intensity distribution of the MR images slightly varied across patient 
scans despite using the same simulator and pulse sequence. Several studies53–55 employed normalization process 
for the MR images to constrain the variations in MR image intensity. This work adopted a piece-wise linear 
histogram matching method, called Nyul normalization56, which is also a data-driven normalization approach. 
It was designed to apply a standard histogram to a set of MR images (40 MR scans in this work) for training the 
network. Each image in the given set was normalized with reference to its maximum and minimum values, which 
can help define the standard scale landmarks by averaging the image values at 10% interval e.g. 1%, 10%, 20%, 
…, 90%, and 99%. With this new standard scale landmarks, the image in the set was discretized into different 
segments depending on the intensity (group 1 is the elements whose image intensities were between 1 and 10%, 
for instance) and newly normalized in each segment. Figure 3 shows histograms of the MR images before and 
after applying the intensity normalization, which contributed to enhancing the consistency of intensity distri-
butions across the MR image datasets. As stated in the preceding section, the normalization technique was not 
used for the CT images, since there were little histogram deviations in CT images across the patients obtained 
from a single CT simulator. The normalized MR images were rigidly registered to the CT images, such that the 
registered MR images had the same imaging parameters as the CT images, which can facilitate the evaluation for 
the generated synthetic CT images. To further refine the registration, and minimize potential anatomical changes 
between the simulations, the T2W MR images were non-rigidly registered to the CT image for each training case 
using deformable image registration (DIR). Figure 4a specifies the pre-processing steps applied to this work.

The pre-processed MR images along with the CT images were used as input for training the network. The 
small datasets with 40 patient scans was not sufficiently large for the 3D-based network training. The 2D-based 
setting could take a number of pairs of axial MR and CT images for network training, while it might be able to 
neglect the 3D volumetric changes. Hence,the MR and CT images entering the network were designed to have 
three slices of the 2D axial images, yielding a matrix shape of 512 × 512 × 3. This pseudo-3D, also known as 2.5D 
setting, took into account the slices above and below of a specific axial slice during the network training, poten-
tially being able to conduct 3D-like training with insufficient data availability. Predicting synthetic CT image from 
T2-weighted MR image was performed by generative adversarial network (GAN), as illustrated in Fig. 4b. GAN 
has been considered one of the most successful network architectures for the image generation, being widely 
used for a benchmark for the newly developed network architectures. Unlike conventional CNNs with a single 
generator, GAN had an additional structure called discriminator that compares the real image and predicted 
image from the generator28,40,57. The goal was to achieve a level where the discriminator is hard to distinguish 
between the real and the generated images. The structural characteristics established adversarial, competitive 
relationship between the generator and discriminator during the network training that can contribute to helping 
enhance prediction accuracy. The backbone network for the generator was a conventional U-Net-based architec-
ture with skip connections that help preserve image gradient information in deconvolution process, featuring a 

Figure 3.   Impact of Nyul image intensity normalization applied to T2-weighted MR images: (Left) Histogram 
of unnormalized (original) images, (Right) Histogram of normalized images.
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residual structure in the bottle-neck. The loss function of the generator was defined as L1-loss, in addition to the 
adversarial loss. The discriminator had five layered down-sampling convolution blocks with ReLU activations, 
followed by a sigmoid function for binary classification.

Evaluation and implementation
For the 10 independent testing cases, MRCAT images were obtained from the mDixon multi-echo sequence 
along with the T2W MR images in MR simulation. The mDixon multi-echo sequence acquired two T1-weighted 
MR images, which were decomposed into in-phase (water + fat), water and fat images. The in-phase image was 
used to extract the bony structure, while the water image corresponded to the soft-tissue for the MRCAT images. 
The synthetic CT images from the deep learning framework were compared against the MRCAT images using 
the same criteria. Though the pairs of MR and CT images, including MRCAT images, in the testing datasets 
were acquired on the same date, it was found that the images were not perfectly well aligned each other. Thus, 
as described in Fig. 5, DIR following rigid registration was performed on the resulting synthetic CT images 
after the network inference and on the MRCAT images to the true CT images. This was a necessary process to 
ensure that the two types of synthetic CT images could be properly compared and assessed. Without this step, 
it would be challenging to determine whether the improved performance of a specific technique was derived 
from the accuracy of the density (intensity) prediction from resulting synthetic CT images or the accuracy of 
image registrations.

To additionally check the registration effect from the DIR on the evaluation, the image similarity was quanti-
fied in SSIM and DSC for T2W MR image and two types of synthetic CT images, as seen in Fig. 6. For DSCs, we 
delineated the body contours for MR and two synthetic CT images for each test dataset with an aid of a treatment 
planning system, RayStation 11B (RaySearch Laboratory, Sweden). This was a compelling process to show that the 

Figure 4.   (a) Pre-processing MR images before network training: image registration and intensity 
normalization, (b) Network architecture based on GAN for synthetic CT generation from T2-weighted MR 
images.
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superiority of a specific method for generating the synthetic CT was not originated from the image deformations 
if the DSCs and SSIMs were similar between MR and two respective synthetic CT images.

The quantitative assessment of the synthetic CT images produced from T2W MR images was performed in 
terms of both image and dosimetry similarity, relative to the true CT images. The image similarity between true 
and synthetic CT images was conducted by conventional approaches, which measured the mean-absolute error 
(MAE) and structural similarity (SSIM) between the two types of synthetic CT images and the true CT images. 
Dosimetry similarity was compared by analyzing the dose distributions on the true and synthetic CT images 
generated by the deep learning model and MRCAT. The dose calculation on the true and synthetic CT images 
was performed on a commercialized TPS, MONACO (Elekta Solutions, Stockholm, Sweden) with X-ray Voxel 
Monte Carlo (XVMC) dose calculation engine. The same clinical SIB-VMAT plan was applied to three different 
CT images (true and two types of synthetic CT images) for each test case. The computed dose distributions on 
the synthetic CT images were compared against the reference dose distribution on the true CT images in gamma 
passing rate (GPR) at 1% and 1 mm criterion. Typically, GPR is calculated with 10% cut-off value of the prescrip-
tion dose. However, in this study, GPRs were produced with both 10% and 60% cut-off values to highlight the 
dosimetry impact of the synthetic CT images in the high-dose region.

This work used Precision treatment planning system from Accuray (Accuray Incorporate, USA) for DIR 
between multi-modal images (MR and CT images). The mono-modal DIR on the testing phase was performed 
by an open-source software Plastimatch (http://​www.​plast​imatch.​org)58 with a three-layered multi-resolution 
approach. GAN was implemented in TensorFlow 1.14 (http://​www.​tenso​rflow.​org) and Python 3.6 (http://​www.​
python.​org) on a personal workstation with an accelerated GPU (Nvidia GPX Titan X). The network architectures 
of the generator and discriminator were illustrated in Fig. 4b. The pre-processed CT and MR images entering 

Figure 5.   Evaluation of two types of synthetic CT images: MRCAT and GAN-based, where both were 
re-registered to the true CT images for quantifying image and dosimetry similarity.

Figure 6.   Comparing image similarity between (1) T2W MR and MRCAT (with no DIR), and (2) T2W 
MR and GAN-based synthetic CT images (with no DIR) to identify that the deformable image registration is 
independent of superiority of a specific approach against the other in generating the synthetic CT images.

http://www.plastimatch.org
http://www.tensorflow.org
http://www.python.org
http://www.python.org
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the network were normalized, so that the intensity of those images ranged from -1 to 1 for the network train-
ing. As stated before, the loss function was defined as a summation of L1-loss and adversarial loss, in which the 
weights for L1- and adversarial losses were defined to be 1 for both. The Adam optimizer was used for training 
the network with a mini-batch size of 3 by a learning rate of 2 × 10–4. The number of epochs was set to be 100. 
Statistical analysis regarding image and dosimetry similarity between two different types of synthetic CT images 
was conducted in SPSS (IBM, USA).

Conclusion
This study has demonstrated the potential power and effectiveness of applying a deep learning-based workflow 
to generate synthetic CT images from T2-weighted MR images for cervical cancer patients. The deep learning-
based synthetic CT images achieved an SSIM of 0.9799 in image similarity and a GPR of 98.71% in dosimetry 
similarity on average. Notably, these results surpassed the MRCAT images obtained from the MRCAT pelvic 
protocol that has been approved for clinical use. Conclusively, these findings indicate that the synthetic CT images 
derived from deep learning-based workflow has accomplished the clinical feasibility, thereby offering promise 
for integration into radiotherapy.

Data availability
The datasets generated during the current study will be available from the corresponding author on reasonable 
request.
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