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B cell receptors (BCRs) denote antigen specificity, while corresponding cell

subsets indicate B cell functionality. Since each B cell uniquely encodes this

combination, physical isolation and subsequent processing of individual B cells

become indispensable to identify both attributes. However, this approach

accompanies high costs and inevitable information loss, hindering high-

throughput investigation of B cell populations. Here, we present BCR-SORT, a

deep learning model that predicts cell subsets from their corresponding BCR

sequences by leveraging B cell activation and maturation signatures encoded

within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve

reconstruction of BCR phylogenetic trees, and reproduce results consistent with

those verified using physical isolation-based methods or prior knowledge.

Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it

revealed inter-individual heterogeneity of evolutionary trajectories towards

Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to

improve our understanding of B cell responses.
KEYWORDS

B cell receptor, B cell subset, deep learning, integrated gradients, somatic hypermutation,
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Introduction

From infectious diseases to various types of cancers and

autoimmune diseases, B cells play a crucial role in establishing

antibody-based protective immunity (1–7). Within the highly

heterogeneous B cell populations, individual B cells play distinct

roles, each expressing a unique combination of cell subset and

antigen receptor (8–10). The cell subset serves as a primary criterion

for the functionality of B cells, on the other hand, the BCR is an

antibody molecule uniquely expressed by each B cell to recognize its

cognate antigen. Given that the BCR and the corresponding cell

subset represent two different modalities of the B cell, simultaneous

interrogation of both is essential for comprehensive understanding

about B cells.

Before antigenic exposure, the BCRs expressed by naïve B cells

establish the foundation for preexisting immunity, preparing the

initiation of the B cell response (11, 12). When faced with an

immunological challenge, B cells undergo a maturation process to

optimize immunological role of the B cells by developing their cell

subsets and BCR sequences simultaneously. In detail, naïve B cells

differentiate into either memory B cells or antibody-secreting cells

(ASCs), while at the same time, the BCR sequences also mature

through somatic hypermutations (SHMs) and class switching (13).

Notably, this bifurcation of maturation trajectories carries distinct

implications. BCRs expressed by memory B cells epitomize past

antigenic encounters, thus widely utilized in identifying

immunological memories engraved in vaccine recipients or

convalescent patients. For example, the human antibody response

against SARS-CoV-2 was revealed by the discovery of memory B

cells expressing neutralizing BCRs among convalescent COVID-19

patients (14–19). On the other hand, BCRs expressed by ASCs

reflect the current antigenic challenges, thus widely utilized in

circumstances under explicit exposure to antigens, such as

autoimmune disorders or ongoing severe infections. As an

instance, potential autoreactive BCRs and their maturations

through continuous exposure to autoantigens were analyzed by

examining ASCs persistent in autoimmune disease patients (20).

Collectively, coupling of antigen receptor and its originating

cell subset resolves the role of B cells while unveiling the

maturation trajectories.

Various methods have been utilized to investigate B cell subset

and antigen receptor. However, approaches combining B cell subset

and antigen receptor information of individual B cells while

addressing the high diversity of B cell populations are lacking.

For example, fluorescence-activated cell sorting (FACS) (21–25) or

single B cell RNA sequencing (scRNA-seq) (4–7, 9) was utilized to

identify B cell subset and antigen receptor simultaneously.

However, both methods require additional complex machinery

and experimental procedures for the physical isolation and

processing of numerous bulk B cells in a single-cell resolution,

which is costly and susceptible to information loss (26). In detail,

compartmentalization of multiple cell subsets using FACS

necessitates consecutive gating rounds and the preparation of

separate libraries for sequencing. Therefore, in most cases,

practical use is constrained to specific cell subsets of interest
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while excluding the other cell subsets (27). This results in a loss

of information regarding the transition landscape between cell

subsets, which is inherent in most B cell maturation processes.

On the other hand, scRNA-seq couldn’t cover the vast diversity of

the entire B cell population owing to prohibitive expenses, thus

resulting in severe undersampling of information. In practice,

scRNA-seq covers B cell diversity that is more than one order of

magnitude lower compared to bulk BCR high-throughput

sequencing (HTS), thereby erasing the maturational relationships

between B cells.

Prediction of cell subsets directly from the sequence of

corresponding antigen receptors could provide high throughput

information of antigen receptors combined with their cell types. In

previous studies, SHMs induced in the IGHV region were

quantified and B cells exhibiting low SHMs and un-switched

isotypes (IgM/IgD) were categorized as naïve B cells, while the

rest were classified as antigen-experienced B cells (either memory B

cells or ASCs) (28–30). Yet, this heuristic approach was unable to

distinguish between memory B cells and ASCs. Considering that the

complementarity-determining region 3 of heavy chain (HCDR3)

region undergoes the most frequent SHMs, and that B cell

activation and maturation are driven by the binding of its BCR to

a cognate antigen, there is a chance that HCDR3 harbors pivotal

information for predicting cell types. However, no method

has yet been proposed to exploit the potential of HCDR3

information. Recently, a machine learning approach was

proposed, which harnessed HCDR3 information for cell subset

prediction (23). However, fixed vector embeddings that represent

physicochemical properties of amino acids were inadequate for

HCDR3 sequence representations, resulting in a performance

suboptimal to replace FACS or scRNA-seq. Thus, a novel method

to utilize HCDR3 as a valuable source of information for cell subset

prediction is essential.

To this end, we proposed BCR-SORT, a deep learning model

that predicts the originating B cell subset using the HCDR3

sequence of a given BCR. Unlike previous approaches, BCR-

SORT established a direct link between the BCR and its

originating cell subset by deciphering the inherent B cell

maturation features encoded within the HCDR3 sequence.

Exploiting these features, BCR-SORT offered a scalable and cost-

effective method to accurately couple antigen receptors with their

cell subsets, especially when used in conjunction with HTS of the

BCR repertoire (Figure 1A). Through benchmark tests against

FACS and scRNA-seq, we validated the applicability of BCR-

SORT on datasets obtained from diverse immunological

conditions. In addition, we demonstrated that BCR-SORT

enabled cell subset-aware reconstruction of BCR lineage, which

rearranged the original evolutionary scenario of the lineage to

follow the biological process of B cell differentiation (Figure 1B).

Finally, BCR-SORT was applied to various unlabeled datasets from

autoimmune diseases and vaccinations. Of note, BCR-SORT

revealed treatment-resistant ASC populations from autoimmune

disease patients, and at the same time, revealed the maturation

trajectory towards Omicron-binding memory B cells induced by the

triple vaccinations of wild-type SARS-CoV-2 virus.
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Materials and methods

Model architecture and training

BCR-SORT was constructed to process HCDR3 sequence,

IGHV gene, IGHJ gene, and isotype as inputs and conducted

multi-class classification. HCDR3 amino acid sequences were

converted to numeric feature vectors by first encoding them using

learnable embedding vectors and then processing them using 2-

layer bidirectional Long Short-Term Memory (LSTM) followed by

3-layers of 1-dimensional Convolutional Neural Network (1D-

CNN). Other input attributes were also converted to embedding

vectors and concatenated with the sequence feature vector. The

concatenated feature vectors were fed into a 3-layer multi-layer

perceptron (MLP) to produce output vector. For better

generalizability, we randomly masked a single amino acid from
Frontiers in Immunology 03
each HCDR3 sequence and created an auxiliary task to predict the

masked amino acid using the concatenated feature vector. Total loss

was calculated by the sum of cross entropy loss for the original

classification task and the auxiliary task after scaling the auxiliary

loss to 0.05. The model was trained using a learning rate of 10-4 and

a batch size of 1024. The accuracy of the model was assessed by 5-

fold cross validation. PyTorch (v1.12.0) was used for the

implementation of LSTM, CNN, and MLP.
Dataset preparation

We used the BCR-B cell subset coupled data archived in the

Observed Antibody Space (31) (OAS) database to train BCR-SORT.

We confirmed that each dataset was constructed while satisfying the

following criteria: naïve B cell (CD19+CD27-), memory B cell
A B
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C

FIGURE 1

BCR sequence-based prediction of B cell subsets using BCR-SORT. (A) Schematic depicting the coupling of B cell subsets with corresponding
antigen receptors using BCR-SORT. (B) Schematic example of BCR lineage rearrangement using BCR-SORT. Lineage inferred without cell subset
information is reconstructed using BCR-SORT. (C) Detailed illustration of the BCR-SORT architecture. (D) Performance of BCR-SORT with respect to
input attributes. The influence of input attributes on accuracy is shown, including that in the case of the existing state-of-the-art method.
(E) Confusion matrix representing the average prediction results of BCR-SORT with respect to B cell subsets. (F, G) Bar plots representing the
relationship between model accuracy and the isotype of input instances (F), and HCDR3 sequence length (G), respectively. (H) tSNE visualization of
penultimate layer activation in BCR-SORT. 5,000 instances are randomly selected. Accuracy in (D–G) is measured with 5-fold cross validation.
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(CD19+CD27+CD38-), and ASC (CD19+CD27+CD38+). Memory

B cell data were further obtained from Mitsunaga et al. (25) for the

sake of balancing with other labels. To identify HCDR3 sequence,

IGHV, IGHJ, and isotype from each BCR sequence, sequence

annotation results provided by OAS were utilized as input,

whereas the data obtained from Mitsunaga et al. were annotated

in-house using BLAST (32) and IgBLAST (33). HCDR3 sequences

with length between 8 and 25 were used. For each B cell subset, the

isotype proportion was balanced to reflect the actual proportion in

the body, following a previous study (24) (Supplementary Table 1).

Identical BCR sequences duplicated in multiple B cell subsets were

discarded. In total, 2.65 million sequences were collected and split

into training set (98%), validation set (1%) and test set (1%).

To evaluate the performance of the state-of-the-art model

proposed in previous work (23), additional BCR sequence

features (the number of mutations, the physicochemical

properties of junction sequences, and the replacement/silent

mutation ratios) were calculated in R using shazam (34) (v1.1.2)

and alakazam (34) package (v1.2.1).
Integrated gradients

IG is a model interpretation method that calculates the

cumulative sum of gradients along a path from a baseline value to

the input value to measure the influence score of each input feature.

Each input consisted of 25 amino acid sequence features (including

padding), 1 isotype feature, 1 IGHV gene usage feature, and 1 IGHJ

gene usage feature, and the IG value was calculated with regard to

the baseline feature. We used the zero vector as a baseline feature,

which was also an embedding of the padding token. The IG value

was calculated as follows.

IG(Vij) = o
l

k=1

(V ij
k − ~V ij

k ) �  o
m

p=1

∂ F½~V + p
m � (V − ~V)�
∂Vij

k

 � 1
m

where F denotes the BCR-SORT model, V denotes an input

feature, Vij
k denotes k-th value of the i-th input and j-th feature, ~V

denotes a baseline feature, p denotes an interpolation step, and m

denotes the number of total interpolation steps. As the IG value was

calculated for each vector element, the final IG value for each input

feature was computed as the average of the IG vector elements. To

focus on features with high influence on the output, input features

with top 10% IG values (high-IG) were selected for further analysis.

Integrated gradients function in the captum (35) (v0.5.0) module

was used to calculate the IG values.
Parapred for paratope prediction

Parapred is a sequence-based paratope prediction model that

utilizes a bidirectional LSTM and CNN architecture to leverage

local and neighboring residue features (36). By applying the pre-

trained Parapred model to HCDR3 sequences, the probabilities of

each residue corresponding to a paratope were obtained. Each
Frontiers in Immunology 04
amino acid residue was predicted as a paratope if the obtained

probability was higher than 0.488, which was the threshold used in

the original paper (36).
In silico saturation mutagenesis

Using high-IG HCDR3 features, we applied in silico saturation

mutagenesis by replacing the amino acid of each high-IG residue

with 19 different amino acids, while retaining the other input

features (isotype, IGHV gene usage, and IGHJ gene usage). To

mimic the mechanism of SHM, sequence length was identically

controlled and a single substitution of amino acid was mutated,

since indels are rare in SHM (37). Subsequently, we predicted cell

subsets of the mutated sequences using BCR-SORT and verified

whether the applied mutation altered the prediction.
Validation of in silico cell subset alteration
on human repertoire

In silico mutations driving the alteration of B cell subset

prediction was validated in in vivo circumstances using a human

repertoire dataset. To reflect the actual in vivo alteration of B cell

subsets, only human repertoires comprising the entire cell subsets

(naive, memory, and ASC) in the identical dataset were used. We

verified whether the original sequence and the mutated sequence

pairs analyzed in in silico experiments were identifiable in the

human repertoire as identical cell subsets. Each mutation was

grouped based on the types of previous amino acids and the

location of the mutation. Subsequently, the number of cell subset

alterations for each mutation group was quantified based on the

number of BCR sequences that induced a cell subset alteration via a

single mutation within that mutation group. Finally, the correlation

between mutation groups observed in in vivo alterations and in

silico alterations was analyzed.
Benchmarking FACS and scRNA-seq

External validation datasets for benchmarking FACS and

scRNA-seq were prepared by manually downloading, and BCR

sequences were annotated following the same manner with training

set (Supplementary Table 2). In case of benchmarking FACS, BCR

sequencing data acquired after sorting the single biological sample

into three different B cell subsets using FACS was collected to

evaluate the model in real-world settings. B cell subset sorted by the

phenotypic criteria identical to the training set was utilized. In case

of benchmarking scRNA-seq, each paper independently identified B

cell subsets from their gene expression data, while we followed the

annotation of B cell subset provided in each paper. In case of

benchmarking FACS, the validation datasets were constructed per

individual, while those from multiple individuals were pooled when

benchmarking scRNA-seq due to data scarcity issue.
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Transfer learning

Trained BCR-SORT was fine-tuned into a disease-specific

model or a chronological model using external datasets, which

were prepared for benchmarking FACS and scRNA-seq. For fine-

tuning, the model was initialized with the pre-trained weights and

then further trained on the same task to achieve finely adjusted

model. Corresponding to each type of disease, data from a single

individual were provided for fine-tuning, and the accuracy on

datasets from other individuals was measured to assess the

model’s performance in unseen situations with data-scarcity. As

data from multiple individuals were pooled in case of scRNA-seq,

data from a single paper were used for fine-tuning and the accuracy

on datasets from other papers with same diseases was measured. For

chronological transfer, datasets containing multiple time points

from identical individuals were selected. Similarly, data from a

single time point were provided for fine-tuning, and the accuracy on

datasets from different time points was measured for each

individual. All parameters were updated during fine-tuning

without freezing specific layer to optimize the model (38), and

auxiliary task was not provided during fine-tuning to prevent over-

fitting on limited dataset. A learning rate of 0.1 times lower than the

original learning rate was used to delicately adjust the model’s

weights, ensuring that the pre-existing knowledge was not abruptly

overridden by new data.
Reconstruction of BCR lineage using
phylogenetic analysis

Full-length nucleotide sequences in the BCR repertoire were

processed for phylogenetic analysis following the workflow of

Change-O (34). Briefly, BCR sequences sharing identical IGHV/

IGHJ genes were assigned to a lineage when the similarity between

junction sequences exceeded 85%. For each lineage, the virtual

germline sequence was inferred after masking the IGHD segment

due to its unreliable alignment. The phylogenetic tree of the BCR

lineage was constructed using the BuildTrees method in IgPhyML

(39, 40). To consider lineages undergone active maturations, those

containing 10 or more BCR sequences and isotype switching were

taken into consideration. Lineages containing more than 200 BCR

sequences were down-sampled to prevent excessive computation

time required when constructing the phylogenetic tree (41). The

phylogenetic tree was analyzed and visualized in R using dowser

(42, 43) (v1.1.0), and ggtree (44) (v3.6.2) package.
Rerooting of BCR phylogenetic tree using
BCR-SORT

Given a phylogenetic tree, we predicted cell subsets of

constituent BCRs using BCR-SORT and examined whether

antigen-experienced B cell (memory B cell or ASC) preceded

antigen-unexperienced naïve B cell along the tree. If this was the

case, we selected a naïve B cell as an alternative root of the tree and

rearranged the tree (“reroot”) based on the new root. When
Frontiers in Immunology 05
multiple naïve B cells were identified, we employed the presence

of somatic hypermutations (SHMs), even at a low level, as a

criterion and selected the least mutated naïve B cell as the new

root, considering that naïve B cells can exhibit a small number of

SHMs (45–47). If multiple naïve B cells were identified as the least

mutated, we randomly sampled one of them to designate as the new

root. IgPhyML was utilized to construct the rerooted phylogenetic

tree, after removing the existing virtual germline and setting the

new root of the tree as decided. In case of longitudinal studies

providing lineages comprised of BCRs across multiple time points,

the root was determined among BCRs obtained from the

earliest time point in the lineage to reflect chronological

development simultaneously.
Blood sample collection

Peripheral blood samples were obtained at three time points

from one patient with pemphigus vulgaris (PV) – at diagnosis, one

month after the second dose of rituximab (RTX), and at relapse –

and from one patient with myasthenia gravis (MG) – before RTX, 1

week after the first dose of RTX, and three months after RTX. The

study involving human participant was approved by the

Institutional Review Board of Gangnam Severance Hospital (IRB

No. 3-2019-0191, PV) and by the Institutional Review Board of

Severance Hospital, Yonsei University Health System (IRB No. 4-

2023-1059, MG). Peripheral blood mononuclear cells (PBMCs)

were obtained from blood samples of the patients using Ficoll–

Paque (GE Healthcare). Total RNA was isolated using TRIzol

Reagent (Invitrogen) according to the manufacturer’s protocols.
Library preparation and next-
generation sequencing

Genes encoding the variable domain (VH) and part of the first

constant domain of the heavy chain (CH1) were amplified, using

specific primers, as described previously (11). Briefly, total RNA was

used as a template to synthesize complementary DNA (cDNA), using

the SuperScript IV First-Strand Synthesis System (Invitrogen), with

specific primers targeting the CH1 domain of each isotype (IgM, IgD,

IgG, IgA, and IgE), according to the manufacturer’s instructions.

After cDNA synthesis, SPRI beads (Beckman Coulter, AMPure XP)

were used to purify cDNA. The purified cDNA was subjected to

second-strand synthesis using V gene-specific primers and KAPA

Biosystems kit (Roche, KAPA HiFi HotStart PCR Kit). The PCR

conditions for sample collected from the PV patient at one month

after the second dose of RTX was as follows: 95°C for 3min; 4 cycles

of 98°C for 30s, 60°C for 45s, 72°C for 1 min; and 72°C for 5 min. The

PCR conditions for other samples were as follows: 95°C for 3min, 1

cycle of 98°C for 30s, 60°C for 45s, 72°C for 1 min, and 72°C for

5 min. After second-strand synthesis, double-stranded DNA was

purified using SPRI beads. VH-CH1 genes were amplified using

purified dsDNA using primers containing indexing sequences and a

KAPA Biosystems kit. The PCR conditions were as follows: 95°C for

5 min; 25 cycles of 98°C for 30 s, 60°C for 30 s, and 72°C for 1 min;
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and 72°C for 5 min. PCR products were subjected to electrophoresis

on a 1.5% agarose gel and purified using a QIAquick gel extraction kit

(QIAGEN) according to the manufacturer’s instructions. The gel-

purified PCR products were purified again using SPRI beads. SPRI-

purified libraries were quantified with a 4200 TapeStation System

(Agilent Technologies) using a D1000 ScreenTape assay and

subjected to next-generation sequencing on the Illumina

NovaSeq platform.
NGS data processing

NGS data were processed following the procedures described

previously (11). Briefly, NGS reads were merged by PEAR (48)

(v0.9.10), and those with 95% of the bases having Phred scores

higher than 20 were left for use. VH-CH1 primers and unique

molecular identifier (UMI) sequences were recognized from each

read, and the reads were clustered according to the UMI sequences.

The clustered reads were aligned using Clustal Omega (49, 50)

(v1.2.4), and a consensus sequence was extracted within each UMI

cluster based on the most dominant base pairs at each position.

Isotype and V(D)J regions were annotated in-house for each

consensus read, as described above.
Persistent clone

Within the BCR repertoire from the PV patient, a BCR clone

was defined as a group of BCR sequences sharing identical IGHV/

IGHJ gene and HCDR3 amino acid sequence, following the

definition of previous work (20). Clones present from pre-RTX to

relapse were defined as persistent clones. Those comprised solely of

IgM or IgD BCRs were excluded to focus on B cells eliciting antigen-

specific responses.
Identification of SARS-CoV-2-specific
BCR lineage

BCR repertoire data provided by Park et al. (51) were processed

to reconstruct the lineage, as described above. SARS-CoV-2-specific

BCR sequences in the repertoires were identified using verified

binder sequences archived in CoV-AbDab (52). Omicron-specific

BCR sequences and the effective concentration (EC50) of BCRs

within the Omicron binder lineages were identified from the data

provided in the original paper. BCR sequences in the repertoire

were labeled as binders based on the HCDR3 sequence by allowing a

single amino acid mismatch.

To examine the relationship between consecutive vaccinations

and Omicron immunity, lineages containing the verified Omicron

binders after the 3rd dose of vaccine were selected. To focus on

vaccine antigen-driven responses, one naïve B cell lineage was

discarded and eight different lineages were identified as a result.

Among those eight lineages, memory B cell lineages (n=5) were

subjected to phylogenetic analysis, considering the significance of

memory B cells on driving Omicron immunity.
Frontiers in Immunology 06
Results

Prediction of B cell subsets using
BCR-SORT

We assumed that the BCR sequence, especially the HCDR3

sequence, possesses learnable features since activation and

maturation of B cells are driven by the binding of their BCR with

cognate antigens. Utilizing inputs comprised of HCDR3 amino acid

sequence, IGHV/IGHJ gene usage, and isotype information, BCR-

SORT predicted the most probable originating B cell subset among

naïve B cell, memory B cell, and ASC, as those three cell subsets

comprise the majority of the B cell population (53) (Figure 1C).

BCR-SORT was trained on 2.6 million BCR sequences obtained

from individuals with heterogeneous immunological conditions

(Supplementary Table 3). By leveraging the HCDR3 sequence

features extracted from LSTM layers followed by 1D-CNN layers,

BCR-SORT predicted corresponding cell subsets with high

accuracy, outperforming the existing state-of-the-art method

based on handcrafted features (23) (Figure 1D). Although those

handcrafted features were created using the entire variable regions

of BCRs, BCR-SORT exhibited superior performance using only the

HCDR3 sequences, indicating that HCDR3 inherently contains

plenty of information to represent cell subsets.

In addition to the HCDR3 sequence, other input attributes also

contributed to accurate prediction, with the isotype and IGHV/

IGHJ gene following the HCDR3 sequence in terms of importance

(Supplementary Table 4). Further, the performance of BCR-SORT

was assessed over the entire set of cell subsets, isotypes, and HCDR3

lengths (Figures 1E–G). Interestingly, an increase in input sequence

length was observed to enhance accuracy, further corroborating the

benefits of HCDR3 information for prediction. Meanwhile, BCR

sequences embedded by the BCR-SORT exhibited trajectory-like

patterns spanning the entire B cell subsets, resembling the biological

course of B cell differentiation as well as the actual cell sorting

process (Figure 1H).
Interpretation of BCR-SORT

Learning the relationship between BCRs and their

corresponding cell subsets implies understanding the BCR

sequence features relevant to B cell activation and differentiation.

To ascertain whether BCR-SORT generated outputs by truly

utilizing these features, we probed the relationships between input

features and model predictions using Integrated Gradients (IG)

(54). Through this method, we calculated the influence of each

input feature on model output, and to focus on input features with

high influence on the output, those with top 10% IG values (high-

IG) were selected for further analysis.

Depending on B cell subsets, input features contributed to the

prediction results to different extents (Figure 2A). Isotype features

exhibited substantial influence when predicting naïve B cells as their

isotypes are dominated by IgM and IgD in nature (25).

Nevertheless, high-IG features corresponded predominantly to the

HCDR3 sequence throughout the entire B cell subsets. Notably, the
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influence of HCDR3 was more pronounced in antigen-experienced

cells (memory B cells and ASCs) than antigen-unexperienced naïve

B cells, as BCR-SORT was found to be capable of utilizing B cell

activation and maturat ion signatures encoded in the

HCDR3 sequence.

B cell activation and maturation are associated with BCR-

antigen binding and the accumulation of SHMs. In accordance

with this, we discovered that high-IG values were assigned to

HCDR3 residues related to BCR-antigen binding and SHM

events. By identifying HCDR3 residues contributing to antigen

binding (paratope) using Parapred (36), we observed that the

proportion of paratope was significantly higher for high-IG

residues (Figure 2B). This tendency was notable in antigen-

experienced cells, indicating that BCR-SORT considered the

antigen binding capability of BCRs during prediction. In addition,

high-IG values were assigned to the middle part of the HCDR3,

which encoded higher diversity owing to frequent SHMs compared

to the amino-terminal and the carboxyl-terminal parts of the

HCDR3 (55) (torso of HCDR3), during the prediction of antigen-

experienced cells (Figure 2C, Supplementary Figure S1). In sum, the

aforementioned evidences indicated that the activation and

maturation signatures encoded in BCR sequences were exploited

by BCR-SORT.
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Finally, we assessed the impact of high-IG residues on cell

subset prediction. This was achieved by conducting in silico

saturation mutagenesis on high-IG residues and identifying

alterations in cell subset prediction (56). This experiment

efficiently covered all possible mutation scenarios, while

mimicking the mechanism of SHM (Figure 2D). Consequently, in

silico mutations of a single high-IG residue were found to alter the

model’s predictions with significantly higher probability than those

induced in random residues (Figure 2E). While our primary focus

was on in silico experiments, we found reproducible results in

human BCR repertoire data. This was evident as identical mutations

frequently observed in the in silico experiment were also repeatedly

identified in the human BCR repertoire data (Figure 2F,

Supplementary Figure S2).
Benchmarking FACS and scRNA-seq

BCR-SORT was further validated by comparing the cell subset

prediction results with cell subsets identified by FACS and scRNA-

seq using external datasets. Assessed on multiple unseen datasets

comprising various diseases to benchmark both FACS and scRNA-

seq (4–7, 21–23, 57) (Supplementary Table 2), BCR-SORT
A B

D E F

C

FIGURE 2

Interpretation of B cell subset-specific BCR sequence features using Integrated Gradients. (A) Composition of the top 10% high-IG features with
regard to cell subsets. (B) Proportion of HCDR3 residues predicted as paratope using Parapred. Mean predicted paratope proportions and their
confidence intervals (error bars) are plotted. The confidence interval is obtained by bootstrapping 100,000 high-IG and non-high-IG sequences
10,000 times. (C) Proportion of high-IG HCDR3 residues with regard to position. Sequence length of 15, which is the most dominant length in the
dataset, is shown as an example. (D) Schematic of the in-silico saturation mutagenesis experiment. A single substitution of HCDR3 residue is
considered in the region-of-interest, and B cell subset of the mutated sequence is predicted by BCR-SORT. (E) Proportion of in silico mutations
altering the prediction of BCR-SORT. To examine if the mutation in high-IG residue was critical on altering the prediction, HCDR3 residues to induce
mutations were selected from high-IG residues and randomly selected residues. The proportion is calculated with respect to sequence length.
(F) Correlation plot between the cell subset alteration counts measured in in silico saturation mutagenesis and in human repertoire data. Alteration
between memory B cell and ASC with the sequence length of 15 is plotted as an example. Spearman’s correlation coefficient is shown in the figure.
In (E), the statistics are calculated using paired t-test. ***p< 0.001.
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outperformed the current state-of-the-art method (Figures 3A, B).

Although the BCR-SORT was trained on datasets originated from

various diseases (Supplementary Table 3), it had no experience of

datasets such as COVID-19, tetanus toxoid (TT) vaccination, and

systemic lupus erythematosus (SLE). However, these unseen

diseases were also included to assess the model’s general

applicability in diverse physiological and pathological

circumstances. Overall, BCR-SORT exhibited stable performance

on various diseases, except a slight performance degradation on the

SLE dataset.

In fact, BCR profiles expressed by each B cell subset are

divergent depending on the type of disease owing to different

antigen-specific B cell responses, which affects the prediction

performance. We hypothesized that the performance of BCR-

SORT can be further improved if it is optimized for specific

diseases. Based on this hypothesis, we utilized transfer learning to

overcome the differences originating from various diseases and

leverage the full capacity of the model. Thus, for each type of

disease, we fine-tuned the established BCR-SORT into disease-
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specific models and measured the improvements in accuracy

(Figure 3C). Clearly, fine-tuning improved the model

performance across all diseases by integrating specific disease-

related features with the general cell subset features. By contrast,

BCR-SORT trained from scratch using only the disease-specific

data could not outperform these fine-tuned models (Figure 3D).

Given that the type of disease is specified in most analyses and

considering the effectiveness of disease-specific fine-tuning even in

data-scarce settings, this approach can be viewed as generally

applicable in practice.

In addition to disease-specific fine-tuning, BCR-SORT could be

fine-tuned on single time point data of an individual to mitigate

individual BCR heterogeneity. As the type of disease is likely to be

consistent in most patients over multiple time points, we expected

that the addition of individual-level BCR properties over disease-

specific properties by chronological transfer would provide further

accuracy. Despite the chronological gap between training and

evaluation data, the addition of individual-level BCR properties

resulted in extra accuracy gain compared with disease-specific
A B

D EC

FIGURE 3

External validation and transfer learning for benchmarking FACS and scRNA-seq. (A, B) Performance of BCR-SORT and the current state-of-the-art
random forest (RF)-based model on external validation datasets, verified by FACS (A) and scRNA-seq (B). Accuracy is measured using various
benchmark datasets and presented according to the source of the dataset. Performance of RF is evaluated on datasets for whom full length of
nucleotide BCR sequences are available, and error bars of datasets containing only a single sample are calculated by bootstrapping 150 BCR
sequences 1,000 times. (C) Accuracy gains achieved by fine-tuning the established BCR-SORT into disease-specific models with respect to the
number of examples utilized in fine-tuning. (D) Performance gap between models trained with the same disease-specific examples, but built either
from the established BCR-SORT or from scratch. In cases of using maximum number of training examples are shown. (E) Comparison of accuracy
gains achieved using two different data transfer schemes. In case of inter-individual transfer, the established BCR-SORT was fine-tuned using data
from other individuals under identical type of disease [in the same manner with (C)], while in case of intra-individual transfer, data from identical
individual’s chronological data was given.
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properties (Figure 3E), thus demonstrating that BCR-SORT is

applicable for chronological analysis of an individual’s B cell

population with personalized optimization.
Cell subset-aware lineage reconstruction

Beyond characterization of individual B cells, we demonstrated that

BCR-SORT can also be applied to investigate maturation hierarchy

within families of relevant B cells. As a proxy of maturation hierarchy,

SHM hierarchy was inferred starting from SHM-free BCR sequences

(germline) by simulating the accumulation of SHMs. To postulate the

origin of such hierarchy, previous methods assume a virtual naïve B cell

ancestor containing a germline sequence (39, 40). However, the

germline sequence cannot be specified around HCDR3 owing to

unreliable alignment of IGHD germline gene, in other words, SHMs

induced within HCDR3 cannot be fully elucidated. Consequently,

previous methods are restricted in representing the actual B cell

maturation hierarchy, and at times, result in an evolutionary scenario

that contradicts the biology of B cell differentiation (e.g. ASC preceding

naïve B cell).

This uncertainty in virtual naïve B cell ancestor is mitigated by

BCR-SORT as it provides an actual naïve B cell as an alternative

ancestor to replace the virtual one. Herein, using the alternative naïve B

cell ancestor as a new root of the tree, we demonstrated that BCR-

SORT contributes to rearranging the original phylogenetic tree, thereby

suggesting alternative evolutionary scenarios better aligned with the

biology of B cell differentiation (Figure 4A, Supplementary Figure S3).

To this end, we designed a process to rearrange the phylogenetic tree

inferred by previous methods (“reroot”) and evaluated the outcome of

the process (Materials and methods). We compared the sequential

order of BCR evolutions between phylogenetic trees reconstructed by

IgPhyML and BCR-SORT via rank correlation (Figure 4B). Rerooting

using BCR-SORT substantially altered the sequential order of BCR

evolution, with the rerooting results well-aligned with those obtained

using B cell subset information verified by FACS or scRNA-seq. In

detail, rerooting using BCR-SORT relocated naïve B cells to the front of

the tree, and ASCs to the rear (Figure 4C). Likewise, IgM BCRs were

relocated to the front of the tree, whereas class-switched isotypes, such

as IgG or IgA, were relocated to the rear (Figure 4D).

Owing to uncertainty of germline sequence, previous methods

had difficulty in clarifying the BCR sequence development along

evolution trajectory (affinity maturation process). On the other

hand, lineage rerooting using BCR-SORT yielded clear mutation

history since the root of the mutation was specified by the

designated naïve B cell (Supplementary Figure S4).
Unveiling treatment-resistant B cell
subpopulations in autoimmune disorders
using BCR-SORT

Before applying BCR-SORT on publicly accessible, unlabeled

BCR repertoire datasets, we first applied the model on in-house

datasets. While these datasets were also unlabeled, they were

anticipated to exhibit discernable patterns in the distribution of B
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cell subpopulations, thereby serving as a robust foundation for our

preliminary assessments. Rituximab (RTX), a monoclonal antibody

that targets CD20 molecules on B cells, is a treatment option for

various autoimmune diseases mediated by autoantibody-producing

B cells. RTX treatment induces profound alterations in B cell

subpopulations by depleting naïve B cells and memory B cells,

whereas ASCs are resistant to depletion owing to low CD20

expression on cell surface (58). Besides, these RTX-resistant ASCs

have been substantiated to serve as a basis of post-RTX relapse (20).

Thus, we utilized BCR-SORT to identify RTX-driven alterations

and to investigate RTX-resistant ASCs with potential relevance to

disease relapse.

We recruited one MG patient and one PV patient to investigate

their BCR repertoires. Using BCR-SORT, we identified alterations

in B cell subpopulations and observed that ASCs exhibited

resistance to RTX treatment in both MG and PV patients

(Figure 5A). As post-RTX relapse was identified in PV patient,

autoantibody-producing B cells which resist the RTX treatment and

survive until the relapse might be the potential source of the relapse.

Therefore, we identified persistent clones, groups of similar BCR

sequences that were present in all three peripheral blood sampling

points (pre-RTX treatment, after it, and after disease relapse), and

analyzed using BCR-SORT. Consistent with previous studies (20),

ASCs defined by BCR-SORT appeared to be more persistent than

memory B cells (Figure 5B). Moreover, phylogenetic analysis

revealed that these persistent BCRs continuously acquired SHMs

from pre-RTX stage to relapse, implying the continuous exposure to

autoantigens (Figure 5C).
Elucidating COVID-19 vaccine-induced
maturation of BCRs using BCR-SORT

Finally, we applied BCR-SORT to an unlabeled BCR repertoire

dataset to interpret the role of B cells by recovering the B cell

subset information. Using datasets constructed by Park et al. (51),

BCR repertoires obtained from 41 COVID-19 vaccine recipients

during three doses of vaccination were analyzed using BCR-SORT

after fine-tuning the model with labeled COVID-19 data

(Supplementary Figure S5A). Prior to employing BCR-SORT,

the intricate B cell responses against SARS-CoV-2 were not

clearly understood (Supplementary Figure S5B). However,

following its use, these responses showed clear patterns distinct

to each B cell subpopulation in accordance with the vaccination

schedule (Figure 6A), representing the initial antigenic encounter

(Dose 1), boosting (Dose 2), and the persistence of immunological

memory over time (Dose 2 + 6wk and Dose 2 + 30wk), followed by

rapid recall response (Dose 3).

Previous works have reported that triple vaccinations with the

wild-type virus protein (original Wuhan strain) induces a potent

antibody response to variants of concern including Omicron (59–

61). Specifically, Omicron-binding memory B cells are known to

emerge after the 2nd dose of vaccine (62–64) and increase in number

by the 3rd dose of vaccine upon reactivation (59–61). However, the

underlying landscape of SHMs and inter-individual heterogeneity

of the recall response has remained unknown.
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Consistent with the previously published findings, immunity

against Omicron was found to be initiated by memory B cells

defined by BCR-SORT after the 2nd dose of vaccine, followed by

their expansion after the 3rd dose, with a large margin compared to

ASCs (Figure 6B, Supplementary Figure S6). Of note, we identified

three lineages from two vaccine recipients that contained Omicron-

binding memory B cells, which exhibited significant expansion in

number and evolutionary relationships between B cells emerging after

the 2nd and 3rd doses. Using BCR-SORT, we identified inter-individual

heterogeneity of memory B cell emergence during the course of

vaccinations. Through phylogenetic analysis, we derived direct

evidence that memory B cells emerging after the 2nd dose of vaccines

became the source of Omicron-specific recall response after the 3rd

dose via accumulation of SHMs (Figure 6C). However, no evidence of

antigen experience was observed until the 3rd dose of vaccine in a

lineage obtained from another vaccine recipient (Figure 6D), although

both lineages comprised similar HCDR3 sequences sharing an identical

IGHV gene (Supplementary Figure S7). Interestingly, the emergence of
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Omicron-specific memory B cells we captured was in accordance with

the presence of antibodies exhibiting high levels of SHM, further

enhancing our observations (Figure 6E, Supplementary Figure S8).

Altogether, our observation suggested that the evolution of memory B

cells could reveal individual differences in vaccine efficacy against

SARS-CoV-2 variants.
Discussion

In this study, we proposed BCR-SORT, a deep learning model

designed to predict B cell subsets based on the given BCR sequence.

Contrary to conventional B cell subset identification methods such

as FACS or scRNA-seq, BCR-SORT enabled the coupling of antigen

receptors with B cell subsets using solely the sequencing modality.

Leveraging HCDR3 sequences as a reliable source of B cell

subset-specific features, BCR-SORT outperforms the current state-

of-the-art method. When full-length BCR sequences were used as
A B

D

C

FIGURE 4

Comparisons of BCR phylogenetic trees inferred using cell subset-aware lineage reconstruction and conventional method. (A) An example of
phylogenetic tree reconstructed using IgPhyML (left) and BCR-SORT (right). Naïve B cell node selected as a new root of the tree is labeled.
(B) Distribution of rank correlations representing the sequential alignment of BCR evolutions between two phylogenetic trees. Within the same lineage,
sequential order of BCR evolutions is identified along the phylogenetic tree reconstructed by IgPhyML and the tree rerooted by BCR-SORT, and
compared with the tree rerooted based on the ground truth naïve B cells. (C, D) Effect of rerooting using BCR-SORT on rearranging BCRs within the
phylogenetic tree. The distribution of B cell subset (C) and isotype (D) within the lineage is measured before and after rerooting using BCR-SORT. Each
lineage is divided into three parts based on the evolutionary time scale, and positional variation of BCRs within the lineage is measured. In total, 442
lineages are analyzed in (B–D). Statistics are calculated using Mann-Whitney U test with p-value adjustment using Bonferroni correction in (C, D).
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inputs instead of HCDR3 sequences, we observed no improvement

in performance, further indicating the importance of HCDR3 in cell

subset prediction (Supplementary Figure S9). Extensive analysis on

the model behavior via IG revealed that BCR-SORT utilized B cell

activation and maturation signatures encoded in the HCDR3

sequence during B cell subset prediction. BCR-SORT was

validated to be generally applicable to BCR datasets from various

types of disease, with disease or individual-specific fine-tuning

further enhancing the performance. In addition, BCR-SORT, in

conjunction with conventional phylogenetic analysis method,

enabled cell subset-aware rearrangement of BCR lineages, which

yielded more interpretable results following the biology of B cell

differentiation. Finally, BCR-SORT was applied to unlabeled

datasets obtained from autoimmune disease patients and COVID-

19 vaccine recipients. Notably, BCR-SORT not only reproduced

results consistent with previous knowledge, but also elucidated the

varying effects of vaccines on constructing immunological memory

among different vaccine recipients.

Current limitation of BCR-SORT is the absence of a method to

analyze individual BCRs while incorporating the context of the BCR

repertoire, i.e., similar BCRs originating from the same source are not

considered during prediction. In fact, Miho et al. (65) discovered that

the similarity relations between BCRs exhibit distinctive features
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depending on the B cell subset, as the biological mechanism to

diversify BCRs differs between cell subsets. Therefore, incorporating

this information into predictions is expected to further improve the

performance of the model. Additionally, BCR-SORT is unable to

distinguish two different B cell subsets encoded by the identical BCR.

Unfortunately, indistinguishable cases may emerge when the

maturation of the B cell subset precedes BCR sequence maturation

by a significant margin. However, results from post-hoc analysis on

our dataset implied that these could be extremely rare in practice. We

found that only 0.32%, 1.01%, and 0.09% of BCRs were found to be

indistinguishable between naïve-memory, memory-ASC, and naïve-

ASC compartments within our dataset, respectively. Finally,

benchmarking scRNA-seq has been constrained due to limited

datasets available compared to FACS, indicating the need for more

extensive validation.

In recent developments, the integration of large language

models (LLMs) has uncovered unknown representations within

biological sequences, paving the way to harness their potential uses

(66, 67). By embracing the development of LLMs, complicated

representations encoded in the HCDR3 sequences are expected to

be further deciphered.

Lately, various analytic solutions have been proposed to

decipher B cell or T cell responses by combining functional
A B

C

FIGURE 5

Chronological tracing of treatment-resistant B cells from autoimmune disease patients using BCR-SORT. (A) Proportion of B cell subsets throughout
the course of treatment and relapse predicted using BCR-SORT. Data from MG patient (left) and PV patient (right) were shown. (B) BCR fractions in
each persistent clone. Persistent clones were divided into those dominated by ASCs (left) and memory B cells (right), and their BCR fractions were
measured within each subset. The number of persistent clones analyzed was indicated on top. (C) Representative phylogenetic tree of persistent
clones accompanying multiple B cell subsets during the course of treatment and relapse.
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landscape and antigen specificity (68–72). However, these solutions

focus on developing a novel method to integrate antigen receptor

sequence data and gene expression data, while delegating the data

generation to the costly scRNA-seq analysis. Consequently, these

solutions are inherently restrained to be widely applied in various

contexts and to cover high diversity of immune cells.

Instead, BCR-SORT focuses on the generation of missing B cell

subset information to combine functional landscape and antigen

specificity. High-throughput sequencing has already been

established as a standard method to investigate BCR repertoire.

Therefore, BCR-SORT is broadly applicable to establish missing

links between individual BCR and cell subset. We anticipate

that BCR-SORT will contribute to the generalization of the

simultaneous analysis of B cell subsets and corresponding

antigen receptors to clarify the roles of B cells during various

immunological challenges.
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Raw BCR sequencing data are available under BioProject

Accession PRJNA1015005. Other BCR sequence data used in this

study are publicly available through the Observed Antibody Space

database or via manual downloading from the original paper

(Supplementary Tables 2, 3). BCR sequence data from COVID-19

vaccine recipients are available from Park et al. (51). Source code is

available at https://github.com/eyebis208/BCR-SORT.
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FIGURE 6

Investigation of BCR responses over triple COVID-19 vaccinations using BCR-SORT. (A) Proportion of SARS-CoV-2-binding BCRs with regard to B
cell subsets predicted by BCR-SORT. For each vaccine recipient, BCR repertoires are identified at six different time points: pre-vaccination, 1 week
after the first dose, 1, 6, 30 weeks after the 2nd dose, and 1-4 weeks after the 3rd dose. Outliers lying outside 2 standard deviations from the mean
are discarded for better visualization. (B) B cell subset of Omicron-binding BCRs identified along multiple vaccinations. Omicron-binding BCRs are
identified after the 2nd dose and expand after the 3rd dose, with them being predominantly predicted as memory B cells. (C, D) Phylogenetic tree of
lineages containing Omicron-binding memory B cells obtained from two different vaccine recipients, with recall response from memory B cells
originating from the 2nd dose of vaccine (C), and without recall response (D). Sampling points are labeled for BCRs only when they are obtained
except from the Dose 3, and Omicron-binding BCRs are labeled as diamond. (E) Omicron reactivity of BCRs emerging after the 2nd dose and the 3rd

dose of vaccines. Verified EC50 values against Omicron viral proteins were shown for BCRs within lineage in (C) (left) and (D) (right).
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