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INTRODUCTION

Neuroblastic tumors encompass a variety of tumors, includ-
ing neuroblastoma, ganglioneuroblastoma, and ganglioneu-
roma, ranging from mature or spontaneously regressing tu-
mors to those that lead to patient death.1,2 Thus, patients with 

neuroblastic tumors are stratified by risk from the very low- to 
high-risk group according to the International Neuroblastoma 
Risk Group (INRG) pre-treatment classification system based 
on a combination of pathological grade, patient age, disease 
stage, chromosome 11q status, ploidy, and MYCN gene ampli-
fication to predict prognosis and determine treatment plans.3 
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In particular, the 5-year survival rate of the high-risk neuro-
blastoma group is reported to be less than 50%.4

Radiomics refers to the method of extracting a very large 
amount of quantitative features from medical images through 
specific algorithms. These extracted features are called ra-
diomics features, and their use is thought to enable radiolo-
gists to distinguish subtle differences that cannot be caught by 
the naked eye, and to quantitatively evaluate features that 
were previously only qualitatively evaluated visually.5-7 Many 
studies have already been conducted on CT or MRI-based ra-
diomics targeting various organs or tumors; and in particular, 
meaningful tumor discrimination has been reported with ra-
diomics models derived from T2-weighted images that have 
been developed as either two-dimensional or three-dimen-
sional models.8-10 

A few studies have reported on the use of CT-based radiomics 
to predict MYCN gene amplification in children with neuro-
blastic tumors, showing optimistic results.11,12 Due to radiation 
concerns, MRI is sometimes preferred for initial tumor staging 
in pediatric patients. However, no studies have yet applied MR 
imaging for radiomics analysis in children with neuroblastic tu-
mors. If high-risk neuroblastomas could be assessed quantita-
tively by MR-based radiomics, it would be helpful for planning 
diagnostic workup and treatment even before the invasive pro-
cedures. Unless the whole tumor is taken out for pathologic 
evaluation, needle biopsy for pathology has a limitation to ob-
tain whole tissue of the tumor. Also, due to the heterogeneous 
nature of neuroblastoma, only needle biopsy results could un-
derestimate the tumor aggressiveness. In these cases, quanti-
tative radiomics evaluation could be helpful as additional di-
agnostic criteria for risk stratification. Therefore, the purpose of 
this study was to determine if high-risk neuroblastoma could 
be predicted among neuroblastic tumors using radiomics fea-
tures extracted from MRI.

MATERIALS AND METHODS

Subjects
This retrospective study was approved by the Institutional Re-
view Board at the authors’ institution (IRB number: 4-2020-
1095), and the requirement for informed consent was waived. 
From two different institutions, pediatric patients (age ≤18 
years) diagnosed with neuroblastic tumors who had pre-treat-
ment T2-weighted MR images available were included in this 
study. For the training set, patients from institution A were en-
rolled from January 2010 to November 2019, and for the test 
set, patients from institution B were enrolled from January 2016 
to January 2022. Exclusion criteria were 1) image corruption 
due to program errors and 2) incorrect risk stratification due to 
lack of information. The included patients were divided into 
two groups as high-risk group and non-high-risk group, with 
the latter consisting of patients with very low to intermediate 

risk. Data on clinical and biological factors, including age, sex, 
disease stage, MYCN gene amplification, and ploidy were col-
lected from medical records. Variable MR protocols were used 
for the T2-weighted images according to the tumor location 
and size. The mean value was 2606±1372 msec for repetition 
time, 91±15 for echo time, and 5±2 mm for slice thickness 
(Supplementary Table 1, only online). 

Development and testing of the radiomics model

Segmentation
Each tumor was semi-automatically segmented on T2-weight-
ed MR images by two radiologists (J.K. with 6 years of experi-
ence, M.L. with 20 years of experience) using a commercial 
software package (syngo.via Frontier, version 1.3.0; Siemens 
Healthineers, Munich, Germany). The regions of interest (ROI) 
were drawn along the tumor margin, excluding encasing vas-
cular structure on the cross-section selected from the largest 
plane available in the entire volume among the axial or coro-
nal images (Fig. 1). Segmentation was independently imple-
mented by two radiologists who were blinded to each other. 
One radiologist (J.K. with 6 years of experience) repeated seg-
mentation once more a month later for all patients. The maxi-
mum diameter of a tumor was defined as the largest mea-
sured value among the T2-weighted images of the three axes.

Normalization
Using linear interpolation, MR images were resampled with a 
spatial resolution of 1×1×1 mm3. All images were processed to 
normalize the MR signal intensity using the same software, 
according to the following equation: 

f(x)=
s(x-μx)
σx

with f(x) as normalized intensity, x as original intensity, μx as 
mean, and σx as the standard deviation of the image signal in-
tensity contained in each drawn ROI.13-15

Extraction, selection, and modeling of radiomics features
A software package (syngo.via Frontier, version 1.3.0; Siemens 
Healthineers) was used for the radiomics analysis, which was 
developed based on the PyRadiomics library, version 3.0.1 
(https://github.com/Radiomics/pyradiomics) and scikit-learn 
machine learning library (https://scikit-learn.org/stable/mod-
ules/generated/sklearn.ensemble.RandomForestClassifier.
html). A total of 930 radiomics features—including 93 origi-
nal, 744 wavelet-filtered, and 93 square-filtered features—
were extracted. To show the association between the found 
clusters of patients and features, a cluster map was generated 
through agglomerative hierarchical clustering (Fig. 2). 

We selected multivariate logistic regression (MLR) for in-
terpretability and random forest (RF) models from 10-fold 
cross-validation to evaluate non-linear relationships and avoid 

https://github.com/Radiomics/pyradiomics
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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overfitting. Using classic minimum redundancy maximum rele-
vance with R2 difference, the 10 most relevant features were se-
lected from all the extracted radiomics features and clinical 
data. The best feature subset of MLR was determined with the 
forward selection method using adjusted R2. Also, a RF model 
was built using the 10 selected features. Specifically, 10-fold 
cross-validation was conducted with iterations of feature selec-
tion and model development for the RF model. The average 

area under the receiver operating characteristic curve (AUC) 
and average sensitivity, specificity, and accuracy with a thresh-
old probability of 0.5 were provided as performance metrics 
for the training set. Both the trained MLR and RF models were 
tested in the external test set.

Statistical analysis
Statistical analyses were performed using SPSS software (ver-

A B

Fig. 1. Regions of interest drawn along the tumor margin of the widest section of the T2-weighted axial images of 3-year-and-4-month-old girl assigned to 
non-high-risk group (A) and 3-year-and-1-month-old boy assigned to high-risk group (B).

Fig. 2. A cluster map produced through agglomerative hierarchical clustering to visualize the association between the found clusters of subjects and 
features.
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sion 25.0; IBM Corp., Armonk, NY, USA) and R software (R 
Foundation for Statistical Computing). Univariate analyses us-
ing clinical and biological data were performed to assess cor-
relations with the high-risk group. Kaplan–Meier survival plots 
were analyzed to compare the survival rates between patient 
groups in the training set using the log-rank test. Intraclass co-
efficients of the features were calculated to evaluate intra- and 
inter-observer variability using the extracted features before 
building the MLR and RF models. p values less than 0.05 were 
considered statistically significant.

RESULTS

Patient populations
In the training set, a total of 32 patients (M:F=23:9, mean age 
26.0±26.7 months) were enrolled with pre-treatment T2-weight-
ed MR images after excluding only one patient with corrupted 
images due to program errors. Patients were divided into two 
groups: the high-risk group diagnosed with neuroblastoma 
(n=9) and the non-high-risk group diagnosed with either neu-
roblastoma (n=14), ganglioneuroblastoma (n=4), or ganglio-
neuroma (n=5), according to the INRG pre-treatment classifi-
cation system (Table 1).

The mean age of the high-risk group (32.3±16.9 months) and 
non-high-risk group (23.5±29.7 months) was not significantly 
different (p=0.408) with no significant difference in sex be-
tween the two groups (p=0.185). MYCN gene amplification 
was found in six out of nine patients in the high-risk group, and 

distant metastasis was reported in six out of 23 patients in the 
non-high-risk group. The Kaplan–Meier survival plots are pre-
sented in Fig. 3. In the non-high-risk group, 18 out of 23 patients 
(78.3%) showed no evidence of disease (NED) status and two 
out of 23 (8.7%, follow-up period: 2.6±3.3 months) showed dis-
ease progression, whereas only one out of nine patients (11.1%) 
in the high-risk group showed NED status and six out of nine 
(66.7%) showed disease progression (p<0.001, follow-up peri-
od: 23.0±15.6 months). The primary tumor location of the non-
high-risk group was the thorax (11/23, 47.8%), followed by the 
adrenal gland (7/23, 30.4%). In the high-risk group, seven out of 

Table 1. International Neuroblastoma Risk Group Consensus Pretreatment Classification Schema 

INRG 
stage

Age 
(months)

Histologic category
Grade of tumor 
differentiation

MYCN
11q 

aberration
Ploidy

Pretreatment 
risk group

L1/L2 GN maturing; GNB intermixed A Very low
L1 Any, except GN maturing or GNB intermixed NA B Very low

Amp K High
L2 <18 Any, except GN maturing or GNB intermixed NA No D Low

Yes G Intermediate
≥18 GNB nodular; neuroblastoma Differentiating NA No E Low

Yes H Intermediate
Poorly differentiated or undifferentiated NA

Amp N High
M <18 NA Hyperdiploid F Low

<12 NA Diploid I Intermediate
12 to <18 NA Diploid J Intermediate

<18 Amp O High
≥18 P High

MS <18 NA No C Very low
Yes Q High

Amp R High
blank field=“any”; INRG, International Neuroblastoma Risk Group; GN, ganglioneuroma; GNB, ganglioneuroblastoma; Amp, amplified; NA, not amplified; L1, lo-
calized tumor confined to one body compartment and with absence of image-defined risk factors (IDRFs); L2, locoregional tumor with presence of one or more 
IDRFs; M, distant metastatic disease (except stage MS); MS, metastatic disease confined to skin, liver and/or bone marrow in children <18 months of age.
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Fig. 3. Kaplan–Meier survival plots comparing the high-risk and non-
high-risk groups in the training set using the log-rank test (p<0.001).
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nine patients had tumors located in the adrenal gland (77.8%), 
and there was one case with tumors in the retroperitoneum and 
thorax (11.1%, each). The location of the primary tumor did 
not statistically differ between the two risk groups (p=0.103) 
(Table 2).

The test set included 14 patients (M:F=10:4, mean age 33.4± 
20.4 months) after two patients were excluded for image cor-
ruption and two for incorrect risk stratification due to lack of in-
formation. Three out of 14 patients were included in the high-
risk group (M:F=3:0, mean age 32.0±6.9 months). Eleven patients 
were included in the non-high-risk group (M:F=7:4, mean age 
33.7±23.1 years) with three neuroblastomas, four ganglioneuro-
blastomas, and four ganglioneuromas. Of the high-risk group, 
two patients reached NED status and one was lost to follow-up. 
Eight patients of the non-high-risk group showed NED status, 
and three were receiving treatment at the time of data collec-
tion (Table 2).

Development and testing of the radiomics model
A total of 930 radiomics features were extracted from T2-weight-
ed MRI images. The top 10 most relevant features were selected 
with three original and seven wavelet-based features, original 
glcm Maximum Probability, original glszm Gray Level Non 
Uniformity Normalized, original glszm Gray Level Variance, 
wavelet-HLL first order Energy, wavelet-LLL glszm Zone Entro-
py, wavelet-LLL glcm Joint Energy, wavelet-LLL glcm Maximum 
Probability, wavelet-LHL gldm Dependence Non Uniformity, 
wavelet-HHH gldm Dependence Non Uniformity, and wave-
let-HHL gldm Dependence Non Uniformity.

The heatmap of these radiomics features showed a trend to-
wards differences between the non-high-risk group and high-
risk group (Fig. 4). Among the 10 selected features, two features 
were finally used to build the MLR model. The odds ratios (ORs) 
for each feature were as follows: wavelet-LLL_glcm_Maximum-
Probability: OR 7.088, confidence interval (CI) 1.329–37.821 
(p=0.022) and wavelet-HHH_gldm_DependenceNonUnifor-
mity: OR 4.042, CI 0.612–26.68 (p=0.147). The AUC of the MLR 
model was 0.94 (sensitivity 67%, specificity 91%, and accuracy 
84%). The average AUC of the RF model from 10-fold cross-vali-
dation was 0.83 (sensitivity 44%, specificity 87%, and accuracy 
75%) (Fig. 5). The diagnostic performances of MLR and RF mod-
els were not significantly different (p=0.165).

In the external test set, the AUC of the MLR model was 0.94 
(sensitivity 33%, specificity 91%, and accuracy 79%) and the 
average AUC of the RF model was 0.91 (sensitivity 67%, speci-
ficity 91%, and accuracy 86%) (Fig. 6). In the test set as well, 
the diagnostic performances of the MLR and RF models were 
not significantly different (p=0.480).

Reproducibility of the radiomics features extracted 
from MRI 

Intra-observer variability
When intraclass correlation coefficients (ICCs) were calculated 
for the 930 radiomics features extracted through two segmenta-
tions performed independently by a radiologist, ICCs showed 
poor (450/930, 48.4%), moderate (232/930, 24.9%), good 
(190/930, 20.4%), and excellent (58/930, 6.2%) repeatability.

Table 2. Clinical, Laboratory, and MRI Results of Patients in the Training Set from Institution A (n=32) and Test Set from Institution B (n=14)

Characteristics
Training set from institution A (n=32) Test set from institution B (n=14)

High-risk group 
(n=9)

Non-high-risk group 
(n=23)

p value
High-risk group 

(n=3)
Non-high-risk group 

(n=11)
p value

Age (months) 32.3±16.9 23.5±29.7 0.408 32.0±6.9 33.7±23.1 0.903
Sex (M:F) 7:2 12:11 0.185 3:0 7:4 0.217
Primary tumor location 0.103

Adrenal gland 7   7 3 1 0.023
Retroperitoneum 1   4 0 4
Thorax 1 11 0 5
Neck 0   1 0 1

Maximum diameter (mm) 69.4±30.9 52.5±19.2 0.070 46.4±15.1 90.7±40.9 0.198
MYCN amplification (+) 6/9 (67) 0/23 (0) 0.004 1/3 (33) 0/11 (0) 0.047
Distant metastasis (+) 9/9 (100) 6/23 (26.1) <0.001 2/3 (67) 0/11 (0) 0.003
Prognosis <0.001*

NED 1 18 2 8 0.106
Progression 6   2 0 0
On treatment 0   1 0 3
Follow-up loss 2   2 1 0

Follow-up period (months) 17.6±15.5 38.4±27.8 0.044
NED, no evidence of disease.
Data are presented as mean±SD, n, or n (%).
*Log-rank test.
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The ICCs of the 93 original features were poor for 28 (<0.5), 
moderate for 35 (0.5 to <0.75), good for 28 (0.75 to <0.9), and 
excellent for two (0.9–1.0). Among the 744 wavelet-filtered 
features, the ICCs were poor for 394 features (<0.5), moderate 
for 193 (0.5 to <0.75), good for 149 (0.75 to <0.9), and excellent 
for eight (0.9–1.0). The ICCs of 93 square-filtered features were 
poor for (<0.5) 28, moderate for four (0.5 to <0.75), good (0.75 

to <0.9) for 13, and excellent (0.9–1.0) for 48. 
The ICC of the most relevant features chosen to create the 

prediction model was moderate (0.5 to <0.75) for six features 
(original glszm Gray Level Non Uniformity Normalized 0.633, 
original glszm Gray Level Variance 0.633, wavelet-HLL first or-
der Energy 0.653, wavelet-LLL glszm Zone Entropy 0.671, wave-
let-LHL gldm Dependence Non Uniformity 0.685, wavelet-HHL 

Fig. 4. Feature extraction from T2-weighted MR images and selection of the 10 most relevant features.
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Fig. 5. Receiver operating characteristic curves of the multivariate logis-
tic regression (MLR) and random forest (RF) models from 10-fold cross-
validation to predict high-risk neuroblastoma in the training set (p=0.165). 

Fig. 6. Receiver operating characteristic curves of the multivariate logistic 
regression (MLR) and random forest (RF) models from 10-fold cross-vali-
dation to predict high-risk neuroblastoma in the external test set (p=0.480).
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gldm Dependence Non Uniformity 0.718), good (0.75 to <0.9) 
for two features (wavelet-HHH gldm Dependence Non Unifor-
mity 0.813, wavelet-LLL glcm Joint Energy 0.882), and excellent 
(0.9 to 1.0) for two features (original glcm Maximum Proba-
bility 0.909, wavelet-LLL glcm Maximum Probability 0.911) 
(Table 3).

Inter-observer variability
When the ICCs of the 930 radiomics features extracted after the 
normalization were calculated to compare the two radiologists, 
the ICCs were widely distributed with poor (276/930, 29.7%), 
moderate (314/930, 33.8%), good (231/930, 24.8%), and excel-
lent (109/930, 11.7%) reproducibility.

The ICCs of the 93 original features were poor for 14 (<0.5), 
moderate for 45 (0.5 to <0.75), good for 31 (0.75 to <0.9), and 
excellent for three (0.9–1.0). Among the 744 wavelet-filtered 
features, the ICCs were poor for 245 features (<0.5), moderate 
for 256 (0.5 to <0.75), good for 189 (0.75 to <0.9), and excellent 
for 54 (0.9–1.0). The ICCs of the 93 square-filtered features 
were poor (<0.5) for 17, moderate (0.5 to <0.75) for 13, good 
(0.75 to <0.9) for 11, and excellent (0.9–1.0) for 52. 

The ICC of the most relevant features, which were used to 
create the prediction model, was moderate (0.5 to <0.75) for 
three features (wave-HLL first order Energy 0.695 original gl-
szm Gray Level Non Uniformity Normalized 0.737, original gl-
szm Gray Level Variance 0.737), good (0.75 to <0.9) for four 
features (wavelet-LLL glszm Zone Entropy 0.759, wavelet-LLL 
glcm Joint Energy 0.781, original glcm Maximum Probability 
0.781, wavelet-LLL glcm Maximum Probability 0.82), and ex-
cellent (0.9 to 1.0) for three features (wavelet-LHL gldm De-
pendence Non Uniformity 0.962, wavelet-HHH gldm Depen-
dence Non Uniformity 0.979, wavelet-HHL gldm Dependence 
Non Uniformity 0.985) (Table 3).

DISCUSSION

In our study, the prognosis actually differed between high-risk 
and non-high-risk patients, and a combination of several wave-
let and original features could predict high-risk neuroblastic tu-
mors using T2-weighted MRI. Even when tested in patients 
from the external institution, the good performance of the built 
model was still maintained. 

To date, there have been several radiomics studies on neu-
roblastoma based on CT. Three studies evaluated whether 
MYCN amplification could be predicted, one tried to differen-
tiate intermediate/high mitosis-karyorrhexis index (MKI) from 
low MKI, and all four of the abovementioned studies present-
ed radiomics models capable of predicting MYCN amplifica-
tion or MKI with high accuracy.12,16-18

Although MRI-based radiomics have been applied to vari-
ous oncology fields, such as breast cancer, hepatocellular car-
cinoma, and prostate cancer,19-21 none has made an effort to 
study MRI-based radiomics in neuroblastoma patients. Since 
MRI could obtain several images with subtle differences de-
pending on the setting even with the same sequence, con-
cerns have been raised about the reproducibility of radiomics 
in MRI. Scalco, et al.22 reported that the same radiomics model 
could be applied if images undergo pre-processing through 
the normalization process. MRI-based radiomics can play a 
clinically important role in pediatric patients, since there are 
many children in whom only MRI is taken instead of CT due 
to radiation issues.

The most relevant features selected for modeling included 
Maximum Probability, Gray Level Non Uniformity Normalized, 
Gray Level Variance, Energy, Zone Entropy, Joint Energy, and 
Dependence Non Uniformity with or without wavelet filtering. 
All of these features indicated tumor homogeneity or heteroge-
neity according to their calculated values. Our results showed 
that the high-risk group and the non-high-risk group had signif-
icant differences even when heterogeneity was quantitatively 
evaluated with radiomics, which has previously been evaluat-
ed only qualitatively.11 As some cases have pathology down-
graded after chemotherapy, surgical pathology can differ from 
expectations.23 In these cases, if we can use imaging studies to 
predict risk, precise risk stratification will be possible just by 
analyzing pre-chemotherapy images.

In this study, we analyzed data using segmentation for cross-
sections rather than the entire tumor volume. This is because 
segmentation of the total neuroblastoma tumor volume is in-
accurate and labor-intensive, considering that neuroblastoma 
characteristically grows by creeping around the surrounding 
structures and that there are difficulties in distinguishing pri-
mary lesions from conglomerated lymph node metastasis.24 It 
will be easier to apply the studied model in practice if the tex-
ture features of cross-sections can yield meaningful results.

When the ICCs of 930 extracted radiomics features were 
compared to evaluate intra- and inter-observer variability, 

Table 3. Reproducibility of the 10 Most Relevant Features Extracted 
from MRI

Radiomics features
Intra-

observer 
variability*

Inter-
observer 

 variability*
wavelet-LLL glcm Maximum Probability 0.911 0.820
wavelet-LLL glcm Joint Energy 0.882 0.781
wavelet-HHH gldm Dependence Non Uniformity 0.813 0.979
wavelet-HHL gldm Dependence Non Uniformity 0.718 0.985
wavelet-LHL gldm Dependence Non Uniformity 0.685 0.962
wavelet-LLL glszm Zone Entropy 0.671 0.759
wavelet-HLL first order Energy 0.653 0.695
original glcm Maximum Probability 0.909 0.781
original glszm Gray Level Variance 0.633 0.737
original glszm Gray Level Non Uniformity Normalized 0.633 0.737
*intraclass correlation coefficient.
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they ranged widely from poor to excellent reliability. However, 
since the most relevant features used to build the radiomics 
model showed only moderate to excellent agreement, we can 
assume that the reproducibility of the radiomics model devel-
oped in this study is more than moderate.

Our study had some limitations. First, the number of includ-
ed patients was relatively small. In particular, since only three 
high-risk patients were included in the external test set, it is 
possible that the sensitivity was underestimated. However, giv-
en the rarity of the disease, the number of 32 patients collected 
over 10 years is not that small, and when analyzed with the RF 
model, a 10-fold cross-validation was performed. Even with 
these efforts, there was a risk of overfitting in this study. Also, a 
sample bias could exist as only cross-sections were segmented, 
not the entire volume. However, the widest cross-sectional area 
was selected and segmented, and this is considered a simpler 
method for practical use. Another point to consider is that de-
spite the shape being considered a significant feature given 
the growth pattern of neuroblastoma, shape features were ex-
cluded from our analysis, since as a radiologist, it is easy for us 
to evaluate image-defined risk factors and body compartment 
in neuroblastoma patients. It would be helpful for us to detect 
high-risk group before obtaining histopathology or mutation 
by radiomics texture analysis. Additional studies with a larger 
number of cases to overcome overfitting concerns and validate 
repeatability and reproducibility of radiomics features are 
needed. 

In conclusion, an MRI-based radiomics model showed po-
tential for predicting high-risk neuroblastoma among neuro-
blastic tumors. This method could be considered as an addi-
tional option for risk stratification without increasing radiation 
exposure for pediatric patients.
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