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A B S T R A C T

Yes-associated protein (YAP), an effector molecule of the Hippo signaling pathway, is expressed at
high levels in cutaneous melanoma. However, the role of YAP in melanoma progression according to
cellular localization is poorly understood. Tissues from 140 patients with invasive melanoma were
evaluated by immunohistochemistry. Flow cytometry, western blotting, viability assays, wound
healing assays, verteporfin treatment, and xenograft assays were conducted using melanoma cell
lines B16F1 and B16F10 subjected to YapS127A transfection and siYap knockdown. Nuclear YAP
localization was identified in 63 tumors (45.0%) and was more frequent than cytoplasmic YAP in
acral lentiginous and nodular subtypes (P ¼ .007). Compared with cytoplasmic YAP melanomas,
melanomas with nuclear YAP had higher mitotic activity (P ¼ .016), deeper invasion (P < .001), and
more frequently metastasized to lymph nodes (P < .001) and distant organs (P < .001). Patients with
nuclear YAP melanomas had poorer disease-free survival (P < .001) and overall survival (P < .001).
Nuclear YAPwas an independent risk factor for distant metastasis (hazard ratio: 3.206; 95% CI, 1.032-
9.961; P ¼ .044). Proliferative ability was decreased in siYapB16F1 (P < .001) and siYapB16F10
(P ¼ .001) cells and increased in YapS127AB16F1 (P ¼ .003) and YapS127AB16F10 (P ¼ .002) cells. Cell
cycle analysis demonstrated relative G1 retention in siYapB16F1 (P < .001) and siYapB16F10
(P < .001) cells and S retention in YapS127AB16F1 cells (P ¼ .008). Wound healing assays showed that
Yap knockdown inhibited cell invasion (siYapB16F1, P¼ .001; siYapB16F10, P < .001), whereas nuclear
YAP promoted it (YapS127AB16F, P < .001; YapS127AB16F1, P ¼ .017). Verteporfin, a direct YAP inhibitor,
reduced cellular proliferation in B16F1 (P ¼ .003) and B16F10 (P < .001) cells. Proliferative effects of
nuclear YAP were confirmed in xenograft mice (P < .001). In conclusion, nuclear YAP in human
melanomas showed subtype specificity and correlated with proliferative activity and proinvasive-
ness. It is expected that YAP becomes a useful prognostic marker, and its inhibition may be a po-
tential therapy for melanoma patients.

© 2024 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian
Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Despite its low incidence, cutaneous melanoma, a malignancy
of melanocytes in the basal layer of the epidermis, is one of the
most fatal tumors.1,2 The prognosis of melanoma is affected by
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various pathological features, including tumor thickness, ulcera-
tion, microscopic satellites, tumor-infiltrating cells, lymphatic in-
vasion, regression, and Clark level of invasion.1,3With an improved
understanding of the biology and pathogenesis of melanoma in
recent years, it has become evident that there is no single evolu-
tionary pattern describing how neoplastic lesions progress into
fully evolved, aggressive melanomas.4 Each melanoma subtype
may have various precursor lesions, different gene alterations, and
different stages of transformation.2 Therefore, investigators have
been searching for melanoma-specific biomarkers to predict the
behavior of this malignancy and act as therapeutic targets, despite
the existence of different clinicopathologic varieties.5,6

Yes-associated protein (YAP) is a transcriptional coactivator
that functions as the downstream effector of the Hippo signaling
pathway.7 The Hippo signaling system is essential for controlling
organ size, promoting tissue regeneration, and preventing cancer
growth.8,9 In normal cells, YAP function is inhibited by the Hippo
pathway through phosphorylation, which results in its cyto-
plasmic sequestration and destruction.9 It has long been assumed
that a specific 14-3-3 binding site created by large tumor sup-
pressor kinase 1 (LATS1)-mediated phosphorylation of YAPS127
mediates YAP cytoplasmic anchoring, and YAP phosphorylation
favors its cytoplasmic localization.10 When wild-type YAP is
substituted with YAPS112A, nuclear sequestration of YAP occurs.11

Activation of target genes by YAP nuclear translocation and inhi-
bition of the Hippo signaling pathway promote cell proliferation,
survival, and migration.

In cancer cells, aberrant activation of YAP, which promotes
tumor genesis, development, invasion, and metastasis, has been
linked to multiple types of malignancies.7,12 Studies have shown
that YAP overexpression is associated with not only tumorigenesis
but also poorer prognosis in various malignancies, including
pancreatic, liver, breast, and lung cancers.13-17 High-YAP expres-
sion has also been observed in patient samples andmelanoma cell
lines in several studies and has been suggested to be associated
with tumor proinvasion and a poor prognosis.18-20 However, the
role of YAP in melanoma progression according to cellular locali-
zation of this protein has not been fully examined.

In this study, we aim to explore the role of YAP in cutaneous
melanoma according to its cellular localization (nucleus or cyto-
plasm), highlight the implications of YAP in predicting aggressive
tumor behavior, and evaluate the potential therapeutic effects of a
direct YAP inhibitor in melanoma cells.
Materials and Methods

Patients and Tissues

We retrospectively recruited 140 patients diagnosed with
invasive cutaneous melanoma from 2005 to 2013 at Severance
Hospital, Yonsei University College of Medicine. Their medical re-
cords were reviewed for clinical features. To select the most
representative formalin-fixed paraffin-embedded tissues, tumor
samples were mounted on slides, stained with hematoxylin and
eosin, and reviewed by two pathologists (H.J.R. and S.K.K.). The
tumor-infiltrating lymphocyte (TIL) score was calculated using a
previously described method, briefly outlined as the sum of the
lymphocyte distribution and density scores.21 The lymphocyte
distribution score, spanning from0 to 3, was defined as follows: 0¼
absence of lymphocytes within the tissue, 1 ¼ presence of lym-
phocytes occupying <25% of the tissue, 2 ¼ presence of lympho-
cytes occupying 25% to 50% of the tissue, and 3 ¼ presence of
lymphocytes occupying >50% of the tissue. Additionally, the
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lymphocyte density score, ranging from 0 to 3, was defined as
follows: 0 ¼ absent, 1 ¼ mild, 2 ¼ moderate, and 3 ¼ severe.
Applying this scoring method, we calculated the TIL scores,
considering scores from 0 to 2 as low and scores from 3 to 6 as high.
All methods and experimental protocols using human tissues were
conducted in accordance with relevant guidelines and regulations
approved by the Institutional Review Board of Severance Hospital,
Yonsei University Health System (IRB no. 4-2018-0469).
Immunohistochemistry

Formalin-fixed paraffin-embedded blocks were cut into 4-mm-
thick sections and processed using heat-induced epitope retrieval.
Immunohistochemical (IHC) staining was performed in an auto-
mated immunostainer (Ventana BenchMark XT; Roche Di-
agnostics), according to the manufacturer’s instructions. To avoid
color interference from brown melanin pigment in tumor cells,
the Ultraview Universal Alkaline Phosphatase Red Detection Kit
(Roche Diagnostics) was used to detect the anti-YAP antibody
(#sc-101199, 1:200 dilution; Santa Cruz Biotechnology). Staining
for YAP was considered positive when observed in >1% of tumor
cells, and cases exhibiting no YAP expression were excluded from
the study population. Positive YAP staining was classified as
cytoplasmic or nuclear based on the subcellular staining pattern.
We categorized the expression as nuclear when YAP was detected
in the nucleus of tumor cells, regardless of whether cytoplasmic
staining was also present. The expression was classified as cyto-
plasmic when YAP was detected only in the cytoplasm of tumor
cells, with no evidence of nuclear staining. Two pathologists (H.J.R.

and S.K.K.) who were blinded to the pathologic information
independently evaluated the IHC staining results.
Cell Cultures

Mousemelanoma cell lines B16F1, B16F10, B16BL6, K-1735, and
Clone M-3 (Cloudman S91 melanoma) were purchased from the
Korean Cell Line Bank. B16F1 and B16F10 cells were maintained in
Dulbecco’s Modified Eagle Medium (Hyclone Laboratories) with
10% fetal bovine serum (Hyclone Laboratories), 100 unit/mL
penicillin, and 100 mg/mL streptomycin (Hyclone Laboratories).
B16BL6 cells weremaintained inminimum essential mediumwith
Earle’s balanced salt solution (Hyclone Laboratories), and K-1735
and Clone M-3 cells were maintained in Roswell Park Memorial
Institute-1640 medium (Hyclone Laboratories). All cell lines were
grown in a humidified 5% CO2 incubator at 37 ºC.
Vectors and DNA Transfection

Substitution of wild-type YAPwith the YAPS112A allele induces
nuclear sequestration of YAP, and nuclear translocation of YAP
activates target genes associated with cell proliferation, survival,
and migration.11 To establish melanoma cell lines with YAP nu-
clear translocation and overexpression, we used a YapS127A

plasmid DNA vector (kindly provided by Dae-Sik Lim, KAIST), in
which a human YapS127A fragment was cloned into the pcDNA3
Flag vector. Transfection was performed using the Lipofectamine
3000 Transfection Kit (Thermo Fisher Scientific). After trans-
fection of YapS127A and control vectors into melanoma cell lines,
the inserted DNA fragments were verified by sequencing, and YAP
overexpression was identified by western blot analysis.
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siRNA Transfection

To establish Yap-knockdown (KD) melanoma cell lines, mela-
noma cells were transfected with siYAP or control siRNA using the
Lipofectamine RNAi MAX Kit (Invitrogen), according to the man-
ufacturer’s protocol. After 48 hours, cells were harvested and
subjected to western blot analysis. The siRNA sequences were as
follows: control siRNA, 5�-CGUACGCGGAAUACUUCGATT-3�; siYAP,
5�-GAAGCGCUGAGUUCCGAAAUC-3�.
Nuclear/Cytoplasmic Fractionation

Nuclear and cytosolic proteins in each melanoma cell line were
fractionated using the NE-PER Nuclear and Cytoplasmic Extraction
Kit (Thermo Fisher Scientific) to quantify cytoplasmic and nuclear
YAP. Protein quantification was measured with Bradford solution,
and 5 mg of each fraction was subjected to western blot analysis.
Wound Healing Assay

Tumor cells were grown for 24 hours in 60-mm culture plates
at a cell density of 2�105, after which a gap was created by
scratching with a 1000-mL disposable plastic pipette tip. Micro-
scopy pictures were obtained every 12 hours, and the distance of
tumor cell migration across the gap was measured and calculated
using ImageJ software.
Viability Assay

Viability assays were performed using PrestoBlue dye (Invi-
trogen), according to the manufacturer’s instructions. Samples
were read by a microplate reader using 560 nm as the wavelength
of absorbance. To evaluate the effects of YAP inhibition on mela-
noma cell lines according to cellular location, we used verteporfin,
a direct YAP inhibitor (Sigma-Aldrich).
Confocal Microscopy Analysis

Slides were seeded at 5�103 cells per slide and mounted on
cover glasses with DAPI containing solution (Vectashield; Vector
Laboratories). Samples were visualized with an LSM700 confocal
microscope (Zeiss), and images were analyzed with ZEN micro-
scopy software (Zeiss).
Flow Cytometry

Flow cytometry was used for cell cycle analysis to estimate the
percentages of a cell population in the different phases according
to YAP cellular location. Cells were harvested and then fixed with
freshly made 70% ethanol. They were washed, followed by treat-
ment with 100 mg/mL RNase A (Sigma-Aldrich) for 15 minutes at
37 ºC. After the addition of 50 mg/mL propidium iodide (Sigma-
Aldrich), the incubated cells underwent flow cytometry using a
FACS LSR II (BD Biosciences) and FlowJo software (BD Bioscience).
Western Blotting

Protein extracts were obtained from cells or tumor masses
using a protein extraction solution (Pro-Prep; iNtRON), according
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to the manufacturer’s instructions. The following antibodies were
used for western blot analysis: anti-YAP (#4912; Cell Signaling
Technology), antiphospho YAP ser127 (#4911; Cell Signaling
Technology), anti-LATS1 (#3477; Cell Signaling Technology),
antiphospho-LATS1 (Thr1079) (#8654; Cell Signaling Technology),
anti-LATS2 (#5888; Cell Signaling Technology), anti-MST1
(#3682; Cell Signaling Technology), anti-MST2 (#3952; Cell
Signaling Technology), antiphospho MST1 (Thr183)/MST2
(Thr180) (#3681; Cell Signaling Technology), anti-TAZ (#4883;
Cell Signaling Technology), b-actin (#LF-PA020; Ab Frontier), goat
antirabbit IgG (#LF-SA8002A; Ab Frontier), and anti-Flag (#018-
22381; WAKO).
Mouse Experiments

Animal care and experimental procedures were performed
with the approval of the Institutional Animal Care and Use Com-
mittee of Yonsei University. We used 6-week-old male BALB/c-
nude mice for xenograft assays (Orient Bio). B16F1 cells trans-
fected with siYap or YapS127A vector or their corresponding control
siRNA or vector were injected subcutaneously into the left flank of
themice. Tumor sizewasmeasuredwhen the tumorswere at least
100 mm3. Tumor dimensions were measured with a caliper, and
tumor volume was calculated using the standard formula:
length � width2 � 0.5 (mm3). Cancer celleinjected mice were
monitored daily until a tumor appeared, after which the tumor
size was determined weekly for 3 to 5 weeks, as indicated.
Statistical Analysis

All statistical analyses were performed using GraphPad Prism
version 9 (GraphPad Software) or SPSS version 26 software (SPSS
Inc). Cell viability and tumor volume according to YAP expression
in cellular compartments were recorded as mean ± SD, and sig-
nificant differences between means were determined using
analysis of variance, followed by t tests. IHC and flow cytometry
results were analyzed using t tests, and the ratio of tumors with
nuclear YAP expression in surgically resected melanomas was
compared using c2 analysis. All reported P values are two-sided,
and P values of <.05 were considered statistically significant.
Results

Clinical Features of Cutaneous Melanoma Patients According to
Yes-Associated Protein Cellular Location

We performed IHC staining for YAP on invasive cutaneous
melanoma tissues from 140 patients (Fig. 1A, B). Based on the
staining patterns, we divided the cases into two groups: mela-
noma with cytoplasmic YAP expression and melanoma with nu-
clear YAP expression. Cytoplasmic YAP expressionwas found in 77
cases (55.0%), and nuclear YAP expression was observed in 63
cases (45.0%).

The clinical characteristics of the two groups are shown in
Table 1. Nuclear YAP expression was more frequent in men (40/
75, 53.3%) than in women (23/65, 35.4%, P ¼ .033). There was no
difference in age at diagnosis between the nuclear and cyto-
plasmic expression groups. Metastasis to regional lymph nodes
(LNs) and distant organs was more frequent in patients with
nuclear YAP expression than in those with cytoplasmic YAP
expression (P ¼ .0004 and P < .001, respectively). To evaluate



Figure 1.
YAP expression according to cellular compartments and survival curves of patients with melanoma. Cellular location of YAP in human cutaneous melanoma tissue: (A) cyto-
plasmic and (B) nuclear (magnification, �200). Kaplan-Meier survival curves of patients with melanoma according to YAP cellular location: (C) disease-free survival and (D)
overall survival. YAP, yes-associated protein.
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clinicopathological factors associated with metastasis to LNs and
distant organs, we performed logistic regression analysis
(Table 2). Melanomas with nuclear YAP expression more
frequently metastasized to distant organs than tumors with
cytoplasmic YAP expression (hazard ratio [HR], 3.206; 95% CI,
1.032-9.961; P ¼ .044). Deeper tumor invasion was also associ-
ated with LN metastasis (HR, 1.279; 95% CI, 1.076-1.520; P ¼ .005)
and distant organ metastasis (HR, 1.197; 95% CI, 1.016-1.409;
P ¼ .031). Tumor recurrence was more frequent in patients with
nuclear YAP expression (37/63, 58.7%) than in those with cyto-
plasmic YAP expression (19/77, 24.7%; P < .001).
Patient Survival According to Yes-Associated Protein Cellular
Location

Compared with patients with cytoplasmic YAP expression,
individuals with nuclear YAP expression had a poorer prognosis
for both disease-free survival (DFS) (P < .001; Fig. 1C) and overall
survival (OS) (P < .001; Fig. 1D). We performed Cox regression
analysis to identify factors independently associated with patient
survival (Table 3). In univariate analysis, nuclear YAP expression
was associated with worse DFS (HR, 3.433; 95% CI, 1.973-5.973;
P < .0001) and OS (HR, 3.019; 95% CI, 1.508-6.045; P ¼ .002),
compared with cytoplasmic YAP expression. Breslow thickness of
invasion was also associated with worse DFS (HR, 1.143; 95% CI,
4

1.074-1.217; P < .0001) and OS (HR, 1.148; 95% CI, 1.063-1.240;
P < .0001). Patients with LN metastasis (HR, 5.783; 95% CI, 2.777-
12.043; P< .0001) and distant organmetastasis (HR, 5.385; 95% CI,
2.750-10.546; P < .0001) had poorer OS than those with no
metastasis. In multivariate analysis, nuclear YAP expression was
an independent risk factor for worse DFS (HR, 2.493; 95% CI,1.254-
4.953; P ¼ .009), whereas LN metastasis (HR, 3.867; 95% CI, 1.410-
10.601; P ¼ .009) and distant organ metastasis (HR, 3.207; 95% CI,
1.315-7.821; P ¼ .010) were independent risk factors for worse OS.
Histopathologic Features of Human Cutaneous Melanoma
According to Yes-Associated Protein Cellular Location

The histopathologic subtypes of cutaneous melanoma in the
study populationwere as follows: acral lentiginousmelanoma, n¼
85 (60.7%); superficial spreading melanoma, n ¼ 30 (18.8%); and
nodular melanoma, n ¼ 25 (15.6%; Table 1). YAP nuclear location
was more frequent in acral lentiginous and nodular subtypes than
in the superficial spreading subtype (P¼ .007).Whenwe evaluated
tumor invasion depth, cases with nuclear YAP expression had a
higher Clark level (III and IV), greaterBreslow thickness, a higher pT
stage, and vertical growth phase than those with cytoplasmic YAP
expression (P < .001 for each variable). We also counted the
number of mitotic figures in the field with the highest mitotic ac-
tivityper 1mm2of each representativehematoxylinandeosin slide



Table 1
Clinicopathologic features of cutaneous melanoma according to YAP cellular location

Characteristic YAP expression P

Cytoplasm (n ¼ 77, 55.0%) Nucleus (n ¼ 63, 45.0%)

Sex (male:female) 35:42 40:23 .033

Age at diagnosis, y (mean ± SD) 61.28 ± 1.371 59.82 ± 1.547 .482

Follow-up period, mo (mean ± SD) 141.2 ± 8.963 115.3 ± 8.982 .045

Metastasis to lymph nodes 18 (23.4%) 33 (52.4%) <.001

Distant metastasis 6 (7.8%) 23 (36.5%) <.001

Recurrence 19 (24.7%) 37 (58.7%) <.001

Histopathologic subtype .007

Acral lentiginous 42 (49.4%) 43 (50.6%)

Nodular 11 (44.0%) 14 (56.0%)

Superficial spreading 24 (80.0%) 6 (20.0%)

Clark level <.001

II 14 (93.3%) 1 (6.7%)

III 21 (87.5%) 3 (4.8%)

IV 33 (47.8%) 36 (52.2%)

V 9 (40.9%) 13 (59.1%)

Breslow thickness, mm (mean ± SD) 1.945 ± 0.2156 4.763 ± 0.4467 <.001

pT stage <.001

pT1 28 (36.4%) 4 (6.3%)

pT2 27 (35.1%) 18 (28.6%)

pT3 16 (20.8%) 14 (22.2%)

pT4 6 (7.8%) 27 (42.9%)

Growth phase <.001

Radial 35 (45.5%) 4 (6.3%)

Vertical 42 (54.5%) 59 (93.7%)

Mitotic count (mean ± SD)

Per 1 mm2 1.809 ± 2.201 3.293 ± 4.425 .016

Per 10 HPFs 4.206 ± 0.760 7.328 ± 1.449 .049

Ulceration 13 (16.9%) 23 (36.5%) .011

Tumor-infiltrating lymphocytes 16 (20.8%) 4 (6.3%) .016

Pigmentation 63 (81.8%) 56 (88.9%) .342

HPF, high-power field; YAP, yes-associated protein.
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to compare the proliferative activity of melanomas between YAP
expression groups.Meanmitotic activitywas higher inmelanomas
with nuclear YAP expression (3.293 ± 4.425) than in those with
cytoplasmic YAP expression (1.809 ± 2.201) (P ¼ .016). We con-
ducted a microscopic examination of additional melanoma char-
acteristics in the included cases, including tumor ulceration, TIL,
and pigmentation. The findings indicated a higher prevalence of
ulceration in melanomas exhibiting nuclear YAP expression in
contrast to those with cytoplasmic YAP expression (P ¼ .011).
Conversely, melanomas exhibiting cytoplasmic YAP expression
demonstrated ahigher TIL score comparedwith thosewith nuclear
YAP expression (P ¼ .016). Nevertheless, there was no statistically
significant difference inpigmentation amongmelanomas based on
YAP expression (P ¼.342).
Table 2
Univariate logistic regression analysis for metastasis to lymph nodes and distant organ

Factor Lymph node metastasis

HR 95% CI

YAP location (cytoplasm vs nucleus) 2.270 0.914-5.637

Age at diagnosis 0.997 0.963-1.032

Subtype

vs NM 0.393 0.126-1.227

vs SSM 1.148 0.406-3.243

Breslow thickness 1.279 1.076-1.520

Mitosis 0.995 0.948-1.044

HR, hazard ratio; NM, nodular melanoma; SSM, superficial spreading melanoma; YAP,

5

Features of Melanoma Cells According to Cellular Location of Yes-
Associated Protein

After quantifying YAP in five melanoma cell lines (B16F1,
B16F10, B16BL6, K-1735, and Clone M-3), in whole lysate and
nuclear/cytoplasmic fractionations, we chose B16F1 and
B16F10 to produce mutant cell lines (Supplementary
Information S1). We used these mutant lines to explore the
features of melanoma cells with nuclear YAP expression. We
produced mutant B16F1 and B16F10 cell lines with YAP nuclear
overexpression, in which YAP was translocated to the nucleus
by substituting serine 127 with alanine (YapS127A). For com-
parison, we also created Yap-KD melanoma lines (siYap) using
B16F1 and B16F10 cells.
s

Distant metastasis

P HR 95% CI P

.077 3.206 1.032-9.961 .044

.858 0.969 0.931-1.010 .135

.229 .806

.108 1.222 0.385-3.875 .734

.794 0.709 0.163-3.077 .646

.005 1.197 1.016-1.409 .031

.831 0.965 0.903-1.032 .299

yes-associated protein.
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Decreased YAP expression in Yap-KD cells was confirmed by
western blotting (Fig. 2A) and immunofluorescence imaging
(Fig. 2B). We also evaluated changes in the expression of Hippo
signaling pathway kinases that inhibit YAP expression when they
are activated. Decreased expression of LATS1 and phosphorylated
LATS1/LATS2 was observed in Yap-KD cells (Fig. 2C).

In YapS127A cells, overexpression of YAP and nuclear expression
of YAP were confirmed by western blotting (Fig. 2D) and immu-
nofluorescence imaging (Fig. 2E). Analysis of changes in the
expression of Hippo signaling kinases in YapS127A cells revealed an
increased expression of LATS2 and phosphorylated LATS1 (Fig. 2F).
These results suggest that YAP expression and its cellular location
may be directly regulated by kinases of the Hippo signaling
pathway in melanoma cells.
Proliferative Activity of Melanoma Cells According to Cellular Yes-
Associated Protein Location

Based on our finding that mitotic activity was increased in
human melanoma tissues with nuclear YAP expression (Table 1),
we used flow cytometry to estimate the percentage of cells in each
phase of the cell cycle in each melanoma cell line. In Yap-KD cells
(siYapB16F1 and siYapB16F10), we observed relative gap1 phase
retention, in comparison to control cells (P < .001 for both cell
lines; Fig. 3A). In YapS127A B16F1 cells, more cells had entered the
synthesis (S) phase, compared with control cells (P ¼ .008),
although no differences in cell cycle populations were observed
between YapS127A B16F10 and control cells (Fig. 3B). These results
suggest that changes in the cell cycle of melanoma cells with
nuclear YAP localization may lead to increased cell division.

To assess proliferative activity according to nuclear YAP
expression, we performed viability assays in Yap-KD and YapS127A

cells. Compared with their corresponding controls, Yap-KD cells
exhibited less proliferative activity (P < .001 for B16F1; P¼ .001 for
siYapB16F10; Fig. 3C), whereas YapS127A cells exhibited increased
proliferative activity (P ¼ .003 for B16F1; P ¼ .002 for B16F10;
Fig. 3D). These in vitro results indicate that YAP cellular location
affects proliferative activity of melanoma cells.

Next, we performed xenograft mouse experiments to confirm
changes in proliferative activity in vivo according to the cellular
location of YAP using Yap-KD cells and YapS127A mutant cells.
Xenograft mice injected with Yap-KD B16F1 cells had smaller tu-
mor volumes than mice injected with control cells (P < .0001;
Fig. 3E). ReducedYAPexpression in the tumorcells ofYap-KDB16F1
xenograft mice was confirmed by western blot analysis after
sacrificing the mice. When we injected YapS127A B16F1 cells and
corresponding control cells into BALB/c mice, animals receiving
YapS127A B16F1 cells had larger tumor volumes than controlmice (P
< .001; Fig. 3F). Increased YAP expression in the tumor cells of
YapS127A B16F1-injected mice was confirmed by western blotting.
Invasiveness of Melanoma Cells According to Yes-Associated
Protein Expression

In our study population, invasion of melanoma cells was
deeper in patients with nuclear YAP expression than in those with
cytoplasmic YAP expression, according to Clark level and Breslow
thickness (Table 1). To explore this further, we performed wound
healing assays to evaluate differences in invasiveness of mela-
noma cells according to YAP cellular location. After producing a
wound by scratching cell cultures with a pipette, wemeasured the
migrated distance of tumor cells across the gap. The migrated



Figure 2.
Hippo signaling pathway in Yap-knock down (KD) and yes-associated protein (YAP)-overexpressing melanoma cells. (A) Nuclear/cytoplasmic (N/C) fraction of B16F1 and B16F10
cells with Yap-KD. (B) Immunofluorescent images of YAP expression in Yap-KD cell lines. (C) Kinases associated with Hippo signaling pathways of Yap-KD cell lines. (D) N/C
fraction of B16F1 and B16F10 cells with YAP overexpression. (E) Immunofluorescent images of YAP expression in YAP-overexpressing cell lines. (F) Kinases associated with Hippo
signaling pathways of YAP-overexpressing cell lines. CTL, control.
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distance was shorter (ie, migration was less) in Yap-KD cells than
in control cells (P ¼ .0006 for siYapB16F1; P < .0001 for
siYapB16F10; Fig. 4A). Conversely, the migrated distance was
longer in mutant cells with nuclear YAP expression, compared
with control cells (P ¼ .0001 for YapS127AB16F1; P ¼ .0172 for
YapS127AB16F10; Fig. 4B). Thus, the wound healing assays
demonstrated that invasion of melanoma cells was regulated by
the cellular location of YAP, consistent with the results in human
melanoma tissues.
Treatment Effects of a Direct Yes-Associated Protein Inhibitor on
Melanoma Cells

We investigated the treatment effects of verteporfin, a direct
inhibitor of YAP, on melanoma cells expressing YAP. We exposed
B16F1 and B16F10 cells to 2 mM verteporfin and performed
viability assays 24 hours later. Verteporfin inhibited cellular pro-
liferation of melanoma cells more effectively than solvent
(P ¼ .003 for B16F1; P < .001 for B16F10; Fig. 5A). Western blot
analysis confirmed reduced YAP expression in melanoma cells
treated with verteporfin (Fig. 5B). These results suggest that ver-
teporfin targeted YAP-expressing melanoma cells, directly inhib-
iting YAP expression in vitro.
Discussion

In this study, we demonstrated the proliferative and proinva-
sive properties of nuclear YAP localization in human cutaneous
7

melanoma tissues and melanoma cell lines and evaluated the ef-
fects of a direct YAP inhibitor in melanoma cells. As shown in our
results, human melanomas with nuclear YAP expression recurred
and metastasized to LNs and distant organs more frequently than
melanomas with cytoplasmic YAP expression. Accordingly, mela-
noma patients with nuclear YAP expression had poorer DFS and
OS than patients with cytoplasmic YAP expression, but nuclear
localization of YAP was also an independent risk factor for tumor
recurrence. A previous report showed that YAP expression was
significantly higher in patients with LNmetastasis than in patients
without metastases.22 YAP has also been demonstrated to pro-
mote spontaneous melanoma metastasis in vivo, suggesting that
tumor progression is regulated by YAP in human melanoma.23

However, detailed mechanisms of the association of YAP with
recurrence and metastasis have not been previously examined in
human melanoma.

Activation of YAP has been shown to promote resistance to
anticancer therapies in various malignancies.24,25 In melanoma,
high-YAP expression is negatively correlated with responsiveness
to RAF/MEK inhibitors.26 Despite recent progress in immune
checkpoint therapies for treating melanoma and other cancers, it
is not fully understood how immune tolerance is installed in the
tumor infiltrate.27 Previously, we reported a pivotal role of actin
remodeling in YAP-dependent BRAF inhibitor resistance in BRAF
V600E mutant melanoma cells.28 We also reported that nuclear
enrichment of YAP in clinical melanoma samples correlates with
increased programmed death-ligand 1 (PD-L1) expression and
that YAP directly mediates evasion of cytotoxic T-cell immune
responses in BRAFi-resistant melanoma cells by upregulating PD-
L1, suggesting that targeting YAP-mediated immune evasion may



Figure 3.
Proliferative ability of melanoma cells according to yes-associated protein (YAP) expression. (A) Flow cytometry for cell cycle analysis in Yap-knock down (KD) melanoma cells.
(B) Flow cytometry for cell cycle analysis in YAP-overexpressing melanoma cells. (C) Viability assay in Yap-KD melanoma cells. (D) Viability assay in YAP-overexpressing
melanoma cells. (E) Xenograft assay for measuring tumor size in mice injected with Yap-KD melanoma cells. (F) Xenograft assay for measuring tumor size in mice injected
with YAP-overexpressing melanoma cells. CTL, control.
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improve the prognosis of patients withmelanoma.19 In the current
study, we showed that a direct YAP inhibitor could affect the
viability of melanoma cells expressing YAP. Together, our in-
vestigations suggest that directly targeting YAP-expressing tumor
cells may enhance the therapeutic effectiveness of drugs to which
melanoma cells are resistant.

Histopathologically, cellular location of YAP differed between
melanoma subtypes, with nuclear YAP location being observed
more frequently in acral lentiginous and nodular melanomas. The
most common histopathologic subtype in our study population, as
in other Asian populations, was acral lentiginous, a melanoma that
occurs on glabrous acral skin.29,30 Acral lentiginous melanoma is
associated with higher regional recurrence rates and worse sur-
vival than nonacral melanomas,31 and sex, race, sentinel LN status,
and pathologic stage are independent risk factors for survival in
patients with this melanoma subtype.32,33 We showed that acral
lentiginous subtype was significantly associated with worse DFS
in univariate analysis, although it was not an independent prog-
nostic factor in multivariate analysis. Thus, the unfavorable
prognosis of acral lentiginous melanoma may be attributed to
high nuclear YAP expression, which adversely affects patient
survival.
8

Sun exposure is the main environmental risk factor for cuta-
neous melanoma development,4,34 and melanomas can be cate-
gorized into high-chronically sun damaged (CSD), low-CSD, and
non-CSD, along with their mutational signatures, anatomical site,
and epidemiology.2,35 High-CSD CMs encompass lentigo maligna
and desmoplastic melanomas, and low-CSD CMs include super-
ficial spreading melanomas. The non-CSD category includes not
only acral melanomas, some melanomas in congenital nevi, mel-
anomas in blue nevi, and Spitz melanomas but also noncutaneous
melanomas, such as mucosal melanomas and uveal melanomas
(UMs). Nodular melanomas are distributed in all the categories.35

In our study, we included acral lentiginous, superficial spreading,
and nodular melanomas, and the findings revealed a higher fre-
quency of YAP nuclear location in acral lentiginous and nodular
subtypes compared with the superficial spreading subtype.

Studies have been conducted to elucidate the progression of
melanoma, considering the degree of CSD. Progression in both
low- and high-CSD melanomas is typically linked to additional
mutations, including TP53 and PTEN mutations, mutations in the
telomerase reverse transcriptase promoter, and biallelic loss of
CDKN2A.2,4Within the non-CSD category of cutaneousmelanoma,
Spitz melanomas are distinguished by driver fusion genes,



Figure 4.
Wound healing assay for Yap-knock down (KD) and yes-associated protein (YAP)-overexpressed melanoma cells. (A) Relative wound width of Yap-KD cells at 12 hours after
wound creation. (B) Relative wound width of YAP-overexpressing cells at 12 hours after wound creation. CTL, control.
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encompassing the kinase domains of ALK, ROS1, NTRK1, NTRK3,
MET, RET, BRAF, andMAP3K8. On the other hand, acral melanomas
exhibit a high frequency of copy number variations, with gene
amplifications observed in CCND1 and KIT.35 In association with
the Hippo signaling pathway, although BRAF inhibitor-resistant
melanoma cells were shown to depend on YAP/TAZ for their
proliferation and survival,28 YAP/TAZ activity is not associated
with the mutation status of BRAF and NRAS.23 This aligns with
observations indicating that the sensitivity of YAP/TAZ in mela-
noma cells is not associated with either the BRAF or NRAS mu-
tation status.36 Meanwhile, UM, classified within non-CSD
melanoma category, is identified by GNAQ/11 mutations, and it
is recognized that the initiation and progression of UM are driven
by YAP/TAZ activation;37 however, there was no correlation found
between YAP activity and the survival of UM patients or mela-
noma cell lines in our prior study.38

To investigate whether YAP could influence melanogenesis, we
evaluated melanin pigmentation based on YAP expression, but the
Figure 5.
Drug treatment assay of melanoma cell lines after exposure to verteporfin. (A) Viability a
protein (YAP) expression in verteporfin-treated cells.
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intracellular YAP localization did not have a significant impact on
the pigmentation of melanoma cells in human melanoma tissues.
It has been reported that when LATS1, an upstream kinase of
Hippo signaling pathway that negatively regulates YAP, is ablated,
a significantly decreased expression of melanogenesis markers
and melanin synthesis in melanocyte and melanoma cell lines
occurs.39 Additionally, reduced melanin content in LATS1 knocked
down tumors was associated with increased tumor growth.
However, YAP expression based on LATS1 level or changes in
melanogenesis according to YAP level in melanocytes or mela-
noma cells has not been studied to date. Future research en-
deavors should be undertaken to delve into the direct relationship
between YAP and melanoma pigmentation.

It has been demonstrated that YAP and TAZ, both effector
molecules in the Hippo signaling pathway, directly enhance the
expression of the immune checkpoint molecule PD-L1, and
consequently, this suppression of T-cell function occurs.40 In the
context of melanoma, our previous research demonstrated that
ssay of verteporfin-treated melanoma cells. (B) Western blot showing yes-associated
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YAP inhibition led to the regulation of PDL1 expression and
directly inhibited cytotoxic T cells, which improved BRAF inhi-
bition efficacy and patient survival as a result.19 In this study, we
found that melanomas with cytoplasmic YAP expression showed
a higher TIL score compared with those with nuclear YAP
expression. We suggest that the results presented in this study
can be seen as consistent with the findings of previous
researchers.

When we evaluated the number of mitotic figures in human
melanoma tissues as an indicator of melanoma cell proliferation,
our results showed that mitoses were more frequent in mela-
nomas with nuclear YAP than in those with cytoplasmic YAP. We
reproduced the increased mitotic activity of nuclear YAP-
expressing melanomas by performing in vitro and in vivo exper-
iments using YAP-overexpressing and underexpressing (Yap-KD)
melanoma cell lines. When we examined the expression of Hippo
signaling pathway kinases that inhibit YAP expression and nuclear
translocation when activated, expressions of both LATS1 and
LATS2 varied according to YAP expression. Expression of these
kinases was increased when YAP was overexpressed and
decreased when YAP was underexpressed. These findings suggest
that YAP expression in melanoma is directly regulated by the
Hippo signaling pathway.

Cell cycle analysis revealed that YAP nuclear overexpression
induced changes in cellular populations, leading to more mela-
noma cells entering the S phase compared with YAP under-
expression. In xenograft mice, tumors were larger in mice that
were injected with YapS127A melanoma cells than in those
injected with Yap-KD cells. Dysregulation of the Hippo pathway
leads to hyperactivity of YAP, ultimately promoting the tran-
scription of genes involved in cancer survival, proliferation,
migration, and invasion,11,41 and the role of the Hippo signaling
pathway in cell cycle regulation of human cancers has been
previously investigated.42,43 One study showed that LATS1/2
double-knockout cells induced YAP overexpression, a prolonged
S phase, and increased DNA replication, compared with control
cells.44 Another study showed that YAP is required for S phase
entry, and its absence causes retention of cells in the relative
gap1 phase.45 Our results showing higher proliferative activity in
nuclear YAP-expressing cells are consistent with these previous
findings.

We found that deeper tumor cell invasion was more frequent
in melanoma tissues with nuclear YAP expression than in those
with cytoplasmic YAP expression. This finding is consistent with
our wound healing assay results showing that cell migration was
increased inmelanoma cell lines overexpressing YAP but inhibited
in lines underexpressing YAP. Statistical analysis revealed that
deeper invasion was associated with LN and distant organ
metastasis and, accordingly, was an unfavorable prognostic factor
for DFS in patients with melanoma in univariate analysis. The
proinvasive activity of YAP as the Hippo pathway effector in
melanoma has been previously investigated,18,46 although the
underlying mechanisms are not fully understood. A previous
study using unbiased genomic approaches followed by cell-based
assays demonstrated that the role of YAP in melanoma invasive-
ness is dependent on transcriptional enhanced associate domain
(TEAD) transcription factor 1, TEAD2, TEAD3, and TEAD4.47

Another study reported that YAP-mediated transcriptional activ-
ity strongly correlated with published gene expression profiles
linked to melanoma cell invasiveness and that YAP target genes
(AXL, THBS1, and CYR61) are key mediators of YAP-induced mel-
anoma cell invasion.23 However, work remains to be done to un-
derstand exactly how YAP regulates the invasion of tumor cells in
the context of melanoma.
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We conducted both in vitro and in vivo experiments using
murine B16F1 and B16F10 melanoma cell lines that originate in
the syngeneic C57BL/6 (H-2b) mouse strain, although these cell
lines are murine and may have limitations in studying human
melanoma. We assessed YAP expression levels in various mela-
noma cell lines through western blotting, utilizing nuclear/cyto-
plasmic fractionation to identify cell lines expressing YAP in both
the nucleus and cytoplasm. This selection was crucial for gener-
ating cell lines with knocked down and overexpressed YAP mu-
tants. Following the quantification of YAP in melanoma cell lines,
we opted for the B16F1 and B16F10melanoma cell lines. These cell
lines exhibited suitable nuclear and cytoplasmic expressions,
allowing us to observe significant changes in their mutant cells
with YapS127A or siYap. Additionally, we examined the treatment
effects of verteporfin, a direct YAP inhibitor, on B16F1 and B16F10
melanoma cells. The B16 cell lines have been applied in many
studies evaluating the efficacy and pharmacodynamics of anti-
cancer therapeutics.48

We performed in vivo experiments with B16F1 melanoma cell
line to make a subcutaneous xenografted mouse model. The
subcutaneous model is widely used for the evaluation of therapy
inmany tumormodels, including B16melanoma cell lines.48 Upon
subcutaneous injection with B16 melanoma cell lines, tumor
volume evolution throughout days after inoculation was well
known.49 It is important to note that for subcutaneous tumor
growth experiments, consistent and reproducible results can be
obtained when a well-established experimental protocol is uti-
lized.48,49 For these reasons, B16 melanoma cell lines have been
widely used in melanoma research, and in our study, meaningful
results were obtained by conducting xenograft experiments using
B16F1 cell line. We decided to use nude mice for the xenograft
experiments because it allows for direct observation of the for-
mation of tumors after injecting melanoma cells into the mice,
and after the formation of tumors, tumor dimensions were
measured with a caliper. Therefore, we analyzed differences in
tumor growth by injecting control and mutant murine melanoma
cell lines into immune-compromised mice instead of injecting
them into the corresponding C57BL/6J.

Verteporfin, a Food and Drug Administrationeapproved drug
widely utilized as a photosensitizer in photodynamic therapy,
has been demonstrated to directly bind to YAP, preventing its
interaction with TEAD factors and thereby inhibiting its tran-
scriptional activity.50-53 The previous study showed that verte-
porfin decreased nuclear YAP levels and function as a
consequence of trapping YAP in the cytosol and inhibiting cell
proliferation.54 Preclinical data also suggest the use of verte-
porfin as a treatment for various cancers, including endometrial
cancer, ovarian cancer, neuroblastoma, breast cancer, and gastric
cancer.54-58 We explored the potential therapeutic role of ver-
teporfin in YAP-expressing melanoma and observed a decrease
in YAP levels in melanoma cell lines following verteporfin
treatment. However, investigations into the intracellular mech-
anisms occurring in melanoma cell lines after verteporfin
treatment, as well as assessments of the therapeutic effects on
melanoma cells under physiological conditions, were not
addressed in this study.

In this study, we investigated the function of YAP in cuta-
neous melanoma according to its cellular location to highlight
its relevance in predicting tumor behavior and show the po-
tential therapeutic benefits of administering a direct YAP in-
hibitor in melanoma cells. Our preclinical data can be used to
advance the understanding of the pathophysiology underlying
melanoma progression, indicate that nuclear YAP may be a
useful prognostic marker in cutaneous melanoma, and suggest
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the possibility of a YAP inhibitor as a therapeutic option for
patients with melanoma.
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