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Simple Summary: Although shear-wave elastography has been utilized in diagnosing a malignant
breast lesion and axillary lymph node metastasis, its potential role in predicting treatment response
to neoadjuvant chemotherapy has not been thoroughly explored. In this study, we aimed to assess
the possibility of elasticity values measured using SWE as a predictive marker for neoadjuvant
chemotherapy in breast cancer. Our findings indicate that low tumor stiffness, as measured using
SWE, was significantly associated with an excellent treatment response following neoadjuvant
chemotherapy. This relationship was particularly evident in hormone-receptor-positive, HER2-
negative breast cancer, and triple-negative breast cancer. Furthermore, we identified an inverse
correlation between tumor stiffness and the tumor-infiltrating lymphocyte level, suggesting that
tumors with high TIL levels tend to exhibit lower stiffness. Our findings suggest that SWE could
be a useful tool in predicting treatment response and guiding treatment decisions in neoadjuvant
chemotherapy for patients with breast cancer.

Abstract: Shear-wave elastography (SWE) is an effective tool in discriminating malignant lesions of
breast and axillary lymph node metastasis in patients with breast cancer. However, the association
between the baseline elasticity value of breast cancer and the treatment response of neoadjuvant
chemotherapy is yet to be elucidated. Baseline SWE measured mean stiffness (E-mean) and max-
imum stiffness (E-max) in 830 patients who underwent neoadjuvant chemotherapy and surgery
from January 2012 to December 2022. Association of elasticity values with breast pCR (defined as
ypTis/T0), pCR (defined as ypTis/T0, N0), and tumor-infiltrating lymphocytes (TILs) was analyzed.
Of 830 patients, 356 (42.9%) achieved breast pCR, and 324 (39.0%) achieved pCR. The patients with
low elasticity values had higher breast pCR and pCR rates than those with high elasticity values. A
low E-mean (adjusted odds ratio (OR): 0.620; 95% confidence interval (CI): 0.437 to 0.878; p = 0.007)
and low E-max (adjusted OR: 0.701; 95% CI: 0.494 to 0.996; p = 0.047) were independent predictive
factors for breast pCR. Low elasticity values were significantly correlated with high TILs. Pretreat-
ment elasticity values measured using SWE were significantly associated with treatment response
and inversely correlated with TILs, particularly in HR+HER2- breast cancer and TNBC.

Keywords: breast neoplasm; neoadjuvant therapy; ultrasound; elasticity imaging techniques;
treatment response
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1. Introduction

Neoadjuvant chemotherapy has gained widespread utilization in patients with breast
cancer, aiming to downsize breast tumors, eradicate axillary lymph node metastasis, and en-
hance the likelihood of breast-conserving surgery [1,2]. Moreover, neoadjuvant chemother-
apy could evaluate the clinical efficacy of novel drugs [3] and the treatment response
determines the regimen of following adjuvant therapy [4,5]. The pathologic complete
response (pCR) after neoadjuvant chemotherapy is well known to be associated with a
favorable prognosis, especially in patients with HER2-positive (HER2+) breast cancer and
triple-negative breast cancer (TNBC) [6–9]. Consequently, considerable research efforts
have focused on identifying predictive biomarkers, including radiologic parameters, breast
cancer subtypes, histologic grade, Ki-67, and tumor-infiltrating lymphocytes (TILs), to
anticipate treatment response of neoadjuvant chemotherapy [10,11].

In clinical settings, various radiologic methods such as ultrasound and breast MRI
are frequently employed to track the effectiveness of neoadjuvant chemotherapy. While
breast MRI stands out as the most precise tool for gauging tumor response, there remains
a concern about potential false-negative or false-positive outcomes. Additionally, the
widespread applicability of breast MRI is limited, and its use is constrained in patients with
specific conditions. Similarly, ultrasound, relying on grayscale images, does not fare well
in accurately predicting the response to neoadjuvant chemotherapy. Consequently, there is
still a lack of universally satisfactory imaging modalities for reliably forecasting the efficacy
of neoadjuvant chemotherapy [12,13].

Shear-wave elastography (SWE) is a non-invasive imaging method that enables the
reproducible quantification of tissue stiffness using ultrasound. In addition, SWE is easily
incorporated into the standard workup for patients with breast cancer. This modality has
proven to be effective in discriminating malignant breast lesions from benign or normal
mammary tissues, as malignant lesions tend to exhibit higher stiffness [14]. Furthermore, in
patients diagnosed with ductal carcinoma in situ, the combination of SWE with ultrasound
examination has accurately predicted the upgrade to invasive cancer based on stiffness
discrepancies [15]. In addition, the application of SWE in axillary evaluation can aid
the prediction of tumor metastasis [16–18]. However, despite these significant strides,
the impact of tumor stiffness on treatment response to neoadjuvant chemotherapy is not
elucidated in breast cancer.

The present study aimed to assess whether the degree of tumor stiffness in breast
cancers, measured using SWE before the treatment initiation, was associated with the
response to neoadjuvant chemotherapy. Additionally, we explored the clinicopathologic
features according to the elasticity values assessed using SWE.

2. Patients and Methods
2.1. Study Population

Our study was approved by the Institutional Review Board at Gangnam Severance
Hospital, Yonsei University, Seoul, Republic of Korea (Local IRB no. 3-2020-0307), follow-
ing the Good Clinical Practice guidelines and the Declaration of Helsinki. The need for
informed consent was waived under the approval of the IRB due to its retrospective design.

As shown in Figure 1, between January 2012 and December 2022, 1041 patients
received neoadjuvant chemotherapy followed by curative surgery. Of these, 830 patients
were finally assessable and included in this study. The clinicopathologic data, including
age at diagnosis of breast cancer, elasticity values measured using SWE, histologic grade
(HG), estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor
receptor 2 (HER2), clinical subtypes of breast cancer, Ki-67 index, TILs, pretreatment
clinical T and clinical N stages, treatment regimen, and post-treatment pathologic T and
pathologic N stages, were collected from the electronic medical records. The clinical stage
was evaluated on preoperative radiologic modalities including mammography, ultrasound,
and breast MRI per the 8th edition of the American Joint Committee on Cancer guidelines.
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2.2. Pathologic Evaluation, Immunohistochemistry (IHC), and TIL Assessment

Pathologic evaluation and IHC interpretation were performed using light microscopy
(BX53 upright microscope; Olympus, Tokyo, Japan). The HG of the breast tumor was
determined based on the modified Scarf–Bloomer–Richardson grading system [19].

ER (clone 6F11; dilution of 1:200; Leica Biosystems, Wetzlar, Germany), PR (clone
16; dilution of 1:500; Leica Biosystems), and HER2 (clone 4B5; dilution of 1:5; Ventana
Medical System, Oro Valley, AZ, USA) staining was performed according to the guideline
of the 2018 American Society of Clinical Oncology/College of American Society of Clinical
Oncology/College of American Pathologists [20,21]. For the estrogen receptor (ER) and
progesterone receptor (PR), nuclear staining values of 1% or higher were considered
positive. Cases with strong and circumferential membranous HER2 immunoreactivity
(3+) were considered positive, while those with 0 and 1+ HER2 staining were considered
negative. Samples with equivocal HER2 expression (2+) underwent further evaluation for
HER2 gene amplification via silver in situ hybridization (SISH).

In all patients, ultrasound-guided core needle biopsy with a 14-gauge semiautomated
biopsy gun was performed under local anesthesia. At least three core samples were ob-
tained per patient. Core needle biopsy samples were classified into the following subtypes:

λ Hormone-receptor-positive, HER2-negative (HR+HER2-): ER-positive and/or PR-
positive, and HER2-negative.

λ HER2+: HER2-positive regardless of ER and PR status.
λ Triple-negative breast cancer (TNBC): ER-negative, PR-negative, and HER2-negative.

The TIL levels were concurrently assessed following the International TIL Working
Group guidelines [22]. In core needle biopsy samples, all cores containing invasive tumor
cells were evaluated. Apart from polymorphonuclear leukocytes, other mononuclear cells,
including lymphocytes and plasma cells, were counted, and the average score was reported
as a percentage [23]. For a statistical analysis, a 30% cutoff was applied to categorize
patients into low-TIL (<30%) and high-TIL (≥30%) groups [24].
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2.3. Elastography

Four radiologists, each with 5–10 years of experience, conducted all breast ultrasound
examinations with SWE. In essence, we utilized the Aixplorer ultrasound system (Su-
perSonic Imagine, Aix-en-Provence, France), along with its ShearWave™ elastography
mode. This mode was equipped with a 4–15 MHz linear-array transducer to capture SWE
images of breast lesions before neoadjuvant chemotherapy. During the examinations, we
configured a rectangular field-of-view box to encompass both the breast lesion and the
surrounding normal tissue. This setting revealed a semitransparent color map illustrating
tissue stiffness overlaid on the gray-scale image. The color range extended from dark
blue, indicating the lowest stiffness, to red, indicating the highest stiffness (0–300 kPa).
The transducer was held steady for a few seconds to allow the SWE image to stabilize.
To minimize artifacts, the probe lightly touched the skin without consciously applying
any vibration or compression. In addition, generous amounts of contact jelly were used,
and the patient was instructed to hold their breath. SWE images were captured at least
twice, and the most representative image with sufficient quality and the fewest artifacts
was chosen and saved. Elasticity values, such as mean stiffness (E-mean) and maximum
stiffness (E-max), were automatically computed by placing a fixed 20mm circular region of
interest (ROI) on the stiffest part of the breast lesion, including the peritumoral areas [14].

We used receiver operating characteristic (ROC) curve analyses to evaluate the sen-
sitivities and specificities of elasticity values for predicting breast pCR after neoadjuvant
chemotherapy. The optimal cut-off points of elasticity values that maximize sensibility
and specificity were established. Different subtypes of breast cancer respond differently to
neoadjuvant chemotherapy, and there was a statistical difference in elasticity values among
the subtypes (Table 1); we established the cut-off values of elasticity values for the entire
cohort and each breast cancer subtype separately. The ideal points to classify a high or low
E-mean, and E-max, were as follows: 190.75 and 221.35 in the entire cohort; 179.7 and 192.9
in HR+HER2- breast cancer; 119.2 and 145.8 in HER2+ breast cancer; 190.35 and 218 in
TNBC, respectively.

Table 1. Baseline characteristics of patients according to breast cancer subtypes.

HR+HER2-
(n = 258)

HER2+
(n = 312)

TNBC
(n = 260)

Total
(n = 830) p-Value

Age, median [range] 47 [29–78] 49 [31–78] 48 [21–80] 48 [21–80] 0.112

HG *, n (%) <0.001
1 or 2 215 (91.1) 222 (82.5) 110 (47.4) 547 (74.2)
3 21 (8.9) 47 (17.5) 122 (52.6) 190 (25.8)

TILs *, n (%) <0.001
<30% 191 (80.3) 159 (59.3) 126 (55.8) 476 (65.0)
≥30% 47 (19.7) 109 (40.7) 100 (44.2) 256 (35.0)

Clinical T stage, n (%) <0.001
1 or 2 172 (66.7) 190 (60.9) 204 (78.5) 566 (68.2)
3 86 (33.3) 122 (39.1) 56 (21.5) 264 (31.8)

Clinical nodal status, n (%) <0.001
negative 17 (6.6) 63 (20.2) 49 (18.8) 129 (15.5)
positive 241 (93.4) 249 (79.8) 211 (81.2) 701 (84.5)

Breast pCR <0.001
Yes 23 (8.9) 207 (66.3) 126 (48.5) 356 (42.9)
No 235 (91.1) 105 (33.7) 134 (51.5) 474 (57.1)

pCR <0.001
Yes 11 (4.3) 196 (62.8) 117 (45.0) 324 (39.0)
No 247 (95.7) 116 (37.2) 143 (55.0) 506 (61.0)
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Table 1. Cont.

HR+HER2-
(n = 258)

HER2+
(n = 312)

TNBC
(n = 260)

Total
(n = 830) p-Value

E-mean (mean, SD (kPa)) 188.47 ± 66.55 174.76 ± 65.23 178.22 ± 61.99 180.11 ± 64.84 0.036

E-max (mean, SD (kPa)) 216.17 ± 71.58 200.23 ± 71.93 203.60 ± 69.15 206.24 ± 71.20 0.022

* Missing values; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative
breast cancer; HG, histologic grade; TILs, tumor-infiltrating lymphocytes; E-max, maximum stiffness; E-mean,
mean stiffness.

2.4. Statistical Analysis

We compared continuous variables using Student’s t-test and categorical variables
using either the chi-square test or Fisher’s exact test. The pathologic complete response
(pCR) was defined as the absence of invasive cancer cells in both the breast and axillary
lymph nodes (ypT0/is, ypN0), while breast pCR was specifically defined as the absence of
invasive cancer cells in the breast (ypT0/is). These criteria were based on the pathologic
evaluation of the surgical specimen after neoadjuvant chemotherapy [25]. To identify sig-
nificant factors related to pCR and breast pCR, we conducted univariable and multivariable
logistic regression analyses. Additionally, we explored the relationship between the elas-
ticity values and TIL level using Pearson’s Correlation test. All analyses were performed
using SPSS version 25 (SPSS; Chicago, IL, USA). A p-value less than 0.05, two-sided, was
considered statistically significant, and 95% confidence intervals (CIs) not including 1 were
deemed significant as well.

3. Results
3.1. Baseline Characteristics

The median age of the patients included in this analysis (N = 830) was 48 years
(range, 21–80). Of these, 31.8% were clinical T3, and 84.5% were clinical node-positive.
Among the whole cohort, 258 (31.1%) had HR+HER2- breast cancer, 312 (37.6%) had HER2+
breast cancer, and 260 (31.3%) had TNBC (Table S1). The majority (98.6%) of patients with
HER2+ breast cancer received neoadjuvant chemotherapy with HER2-targeted therapy:
295 of 312 (94.6%) patients received docetaxel, carboplatin, trastuzumab, and pertuzumab
(TCHP); 14 of 312 (4.5%) patients received adriamycin, and cyclophosphamide followed by
taxane with trastuzumab; 3 of 312 (0.9%) patients received anthracycline and taxane-based
chemotherapy without HER2-targeted therapy. All patients with HER2-negative breast
cancer received adriamycin- and taxane-based neoadjuvant chemotherapy. The average
values of the E-mean and E-max were significantly higher in patients with HR+HER2- breast
cancer than the rest of the patients (E-mean = 188.47 kPa, p = 0.036; E-max = 216.1 7kPa,
p = 0.022, respectively).

According to the cut-off points of elasticity values, the proportion of a low E-mean
and low E-max was as follows: 55.3% (459 of 830) and 56.7% (471 of 830) in all patients
(Table S1), 44.2% (114 of 258) and 42.2% (109 of 258) in HR+HER2- breast cancer (Table S2),
60 of 312 (19.2%) and 70 of 312 (22.4%) in HER2+ breast cancer (Table S3), and 146 (56.2%)
of 260 and 151 (58.1%) of 260 in TNBC (Table S4), respectively. In HER2+ breast cancer,
tumors with low elasticity values showed as higher than those with high elasticity values.
(Table S3). In HR+HER2- breast cancer and TNBC, an inverse correlation between elasticity
values and TILs was observed (Tables S2 and S4).

3.2. Relationship between the Elasticity Values and TIL Level

Pretreatment TILs on biopsy samples were evaluated in 732 of 830 (88.2%) patients.
Overall, tumors with high TILs significantly predominated with low elasticity values: 40.3%
in the low-E-mean group vs. 28.8% in the high-E-mean group (p = 0.001) and 41.0% in
the low-E-max group vs. 27.4% in the high-E-max group (p < 0.001). Analyzing by breast
cancer subtypes, we observed similar trends in the patients with HR+HER2- breast cancer
and TNBC. In HR+HER2- breast cancer, tumors with high TILs were more commonly
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observed in low-E-mean and -E-max groups: 26.5% of the low-E-mean group vs. 14.7%
of the high-E-mean group (p = 0.024) and 26.0% of the low-E-max group vs. 15.2% of the
high-E-max group (p = 0.039). In TNBC, this inverse correlation between TILs and elasticity
became even more apparent. High TILs were found in 52.8% of the low-E-mean group vs.
33.7% of the high-E-mean group (p = 0.004) and 53.1% of the low-E-max group vs. 32.7% of
the high-E-max group (p = 0.002). In contrast, no significant relationship existed between
the elasticity values and TILs in HER2+ breast cancer (Figure 2).
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Figure 2. Relationship between the elasticity values and TILs in (A) all patients, (B) patients with
HR+HER2- breast cancer, (C) patients with HER2+ breast cancer, and (D) patients with triple-negative
breast cancer.

3.3. Pathologic Complete Response According to the Elasticity Values

Overall, 356 (42.9%) patients achieved the breast pCR, and 324 (39.0%) patients
achieved the pCR after neoadjuvant chemotherapy (Table 2). In addition, the breast pCR
rate and the pCR rate were highest in patients with HER2+ breast cancer (66.3% and 62.8%),
followed by TNBC (48.5% and 45.0%), and HR+HER2- breast cancer (8.9% and 4.3%).

In all patients, pretreatment low elasticity values were associated with the response to
neoadjuvant chemotherapy (Table 2). The breast pCR rate and pCR rate were 48.8% and
43.6% in the low-E-mean group vs. 35.6% and 33.4% in the high-E-mean group (p < 0.001
and p < 0.001, respectively) and 48.8% and 43.5% in the low-E-max group vs. 35.1% and
33.1% in the high-E-max group (p < 0.001 and p = 0.002, respectively). In the multivariable
analysis, a low E-mean (adjusted OR: 0.620; 95% CI: 0.437 to 0.878; p = 0.007) and low E-max
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(adjusted OR: 0.701; 95% CI: 0.494 to 0.996; p = 0.047) still remained as independent factors
for predicting the breast pCR, but not for the pCR (Table 3).

Table 2. pCR and breast pCR according to the elasticity values stratified by breast cancer subtypes.

E-Mean E-Max

All Patients Breast pCR Total
(n = 830)

Low
(n = 459)

High
(n = 371) p-Value Low

(n = 471)
High

(n = 359) p-Value

yes, n (%) 356 (42.9) 224 (48.8) 132 (35.6) <0.001 230 (48.8) 126 (35.1) <0.001
no, n (%) 474 (57.1) 235 (51.2) 239 (64.4) 241 (51.2) 233 (64.9)

HR+HER2- Breast pCR Total
(n = 258)

Low
(n = 114)

High
(n = 144) p-Value Low

(n = 109)
High

(n = 149) p-Value

yes, n (%) 23 (8.9) 17 (14.9) 6 (4.2) 0.003 17 (18.3) 6 (4.0) 0.001
no, n (%) 235 (91.1) 97 (85.1) 138 (95.8) 92 (81.7) 143 (96.0)

HER2+ Breast pCR Total
(n = 312)

Low
(n = 60)

High
(n = 252) p-Value Low

(n = 70)
High

(n = 242) p-Value

yes, n (%) 207 (66.3) 46 (76.7) 161 (63.9) 0.060 54 (77.1) 153 (63.2) 0.030
no, n (%) 105 (33.7) 14 (23.3) 91 (36.1) 16 (22.9) 89 (36.8)

TNBC Breast pCR Total
(n = 260)

Low
(n = 146)

High
(n = 114) p-Value Low

(n = 151)
High

(n = 109) p-Value

yes, n (%) 126 (48.5) 84 (57.5) 42 (36.8) 0.001 83 (55.0) 43 (39.4) 0.013
no, n (%) 134 (51.5) 62 (42.5) 72 (63.2) 68 (45.0) 66 (60.6)

E-mean E-max

All Patients pCR Total
(n = 830)

Low
(n = 459)

High
(n = 371) p-Value Low

(n = 471)
High

(n = 359) p-Value

yes, n (%) 324 (39.0) 200 (43.6) 124 (33.4) 0.003 205 (43.5) 119 (33.1) 0.002
no, n (%) 506 (61.0) 259 (56.4) 247 (66.6) 266 (56.5) 240 (66.9)

HR+HER2- pCR Total
(n = 258)

Low
(n = 114)

High
(n = 144) p-Value Low

(n = 109)
High

(n = 149) p-Value

yes, n (%) 11 (4.3) 8 (7.0) 3 (2.1) 0.065 * 8 (7.3) 3 (2.0) 0.058 *
no, n (%) 247 (95.7) 106 (93.0) 141 (97.9) 101 (92.7) 146 (98.0)

HER2+ pCR Total
(n = 312)

Low
(n = 60)

High
(n = 252) p-Value Low

(n = 70)
High

(n = 242) p-Value

yes, n (%) 196 (62.8) 42 (70.0) 154 (61.1) 0.200 49 (70.0) 147 (60.7) 0.158
no, n (%) 116 (37.2) 18 (30.0) 98 (38.9) 21 (30.0) 95 (39.3)

TNBC pCR Total
(n = 260)

Low
(n = 146)

High
(n = 114) p-Value Low

(n = 151)
High

(n = 109) p-Value

yes, n (%) 117 (45.0) 78 (53.4) 39 (34.2) 0.002 76 (50.3) 41 (37.6) 0.042
no, n (%) 143 (55.0) 68 (46.6) 75 (65.8) 75 (49.7) 68 (62.4)

* p-Values are obtained with Fisher’s exact test. pCR, pathologic complete response; E-max, maximum stiffness;
E-mean, mean stiffness; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC,
triple-negative breast cancer.

Although the high elasticity values were consistently related to the poor treatment
response, the statistically significant elasticity values were different by the tumor subtypes
(Table 2). The proportion of breast pCR and pCR was significantly higher in HR+HER2-
breast cancer and TNBC with low elasticity values (both E-mean and E-max). Meanwhile,
HER2+ breast cancer had a significantly different proportion of the breast pCR rate with
the E-max alone. With the multivariable analysis, low elasticity (both E-mean and E-max)
was an independent factor for breast pCR in HR+HER2- breast cancer (E-mean—adjusted
OR: 0.333, 95% CI: 0.120–0.926, p = 0.035; E-max—adjusted OR: 0.322, 95% CI: 0.116–0.893,
p = 0.030). Regarding TNBC, low elasticity (both E-mean and E-max) was significantly as-
sociated with both breast pCR (E-mean—adjusted OR: 0.394, 95% CI: 0.226–0.688, p = 0.001;
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E-max—adjusted OR: 0.512, 95% CI: 0.295–0.891, p = 0.018) and pCR (E-mean—adjusted
OR: 0.440, 95% CI: 0.251–0.772, p = 0.004; E-max—adjusted OR: 0.570, 95% CI: 0.326–0.997;
p = 0.049) (Table 3). The elasticity value had no significant effect on breast pCR or pCR of
HER2+ breast cancer.

Table 3. Odds ratio and 95% confidence interval of the elasticity values on pCR and breast pCR.

Breast pCR
All Patients HR+HER2- HER2+ TNBC

Odds Ratio
(95% CI) * p-Value * Odds Ratio

(95% CI) † p-Value † Odds Ratio
(95% CI) † p-Value † Odds Ratio

(95% CI) † p-Value †

E-mean
low Ref Ref Ref Ref
high 0.620

(0.437–0.878) 0.007 0.333
(0.120–0.926) 0.035 0.585

(0.282–1.216) 0.151 0.394
(0.226–0.688) 0.001

E-max
low Ref Ref Ref Ref
high 0.701

(0.494−0.996) 0.047 0.322
(0.116−0.893) 0.030 0.554

(0.279−1.101) 0.092 0.512
(0.295−0.891) 0.018

pCR
All Patients HR+HER2- HER2+ TNBC

Odds Ratio
(95% CI) * p-Value * Odds Ratio

(95% CI) † p-Value † Odds Ratio
(95% CI) † p-Value † Odds Ratio

(95% CI) † p-Value †

E-mean
low Ref Ref Ref Ref
high 0.733

(0.512−1.051) 0.091 0.423
(0.099−1.800) 0.244 0.762

(0.381−1.525) 0.589 0.440
(0.251−0.772) 0.004

E-max
low Ref Ref Ref Ref
high 0.827

(0.575−1.189) 0.305 0.392
(0.092−1.675) 0.607 0.688

(0.357−1.324) 0.262 0.570
(0.326−0.997) 0.049

* Covariates for multivariable models were age (continuous value), clinical T stage (1 or 2 vs. 3), clinical N
stage (positive vs. negative), histologic grade (I–II vs. III), TILs (<30% vs. ≥30%), and subtypes (HR+HER2- vs.
HER2+ vs. TNBC). † Covariates for multivariable models were age (continuous value), clinical T stage (1 or 2
vs. 3), clinical N stage (positive vs. negative), histologic grade (I–II vs. III), and TILs (<30% vs. ≥30%). pCR,
pathologic complete response; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC,
triple-negative breast cancer; E-max, maximum stiffness; E-mean, mean stiffness.

4. Discussion

Herein, we evaluated the relationship between the tumor stiffness represented using
SWE and treatment response in patients with breast cancer who received neoadjuvant
chemotherapy. Because the elasticity values (E-mean and E-max) used in this study were
measured in the malignant breast lesion rather than in the axillary lymph node, the treat-
ment response was evaluated in two aspects: the breast pCR and the pCR. Our findings
revealed a significant link between elevated stiffness, as indicated using SWE measure-
ments, and a diminished rate of breast pCR or pCR following neoadjuvant chemotherapy.
It could be assumed that high elasticity values may be caused by extracellular matrix (ECM)
stiffness. When invasive cancer cells penetrate the basement membrane into the adjacent
stroma, which is called a desmoplastic reaction [26], it makes ECM denser, by activating
the cancer-associated fibroblast and inducing connective fibers including tenascin and
fibronectin [27,28]. Earlier research has described that ECM stiffness enhances cancer cell
growth, progression, metastasis, and drug resistance [26,27,29].

The association between low elasticity values and a favorable response to neoadjuvant
chemotherapy has been consistently represented [30–35]. In addition, several antecedent
studies underscore the superiority of pretreatment SWE over ultrasound alone in predicting
neoadjuvant chemotherapy response. Furthermore, an artificial intelligence model or nomo-
gram developed by incorporating radiologic parameters from medical images including
SWE and clinicopathologic data has exhibited excellent diagnostic predictive performance
for the neoadjuvant chemotherapy response [32,33]. These results not only highlight the
synergistic potential of various data sources but also emphasize the role of elasticity values
as a pivotal factor in accurately predicting the response to neoadjuvant chemotherapy.
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In contrast to previous studies lacking subtype stratification, our analysis with a large
cohort provides substantial statistical power to assess whether the elasticity values were
predictive for the treatment response stratified by breast cancer subtypes: we observed
an overall better treatment response with low elasticity values, with significant predictive
elasticity values varying for each subtype. Differences in elasticity values could be related to
the TIL level of each tumor subtype. Over 80% of HR+HER2- breast cancer belonged to the
low-TIL group, and their elasticity was higher than HER2+ or TNBC subtypes. In contrast
to mesenchymal components or tumor cells that are tightly attached to cell junctions, TILs
have no adhesive properties [36], which could explain the higher elasticity of HR+HER2-
breast cancer.

Interestingly, the elasticity values were predictive factors for the treatment response
in HR+HER2- breast cancer and TNBC, whereas the multivariable analysis showed an
insignificant association between the elasticity values and treatment response in HER2+
breast cancer. The efficacy of dual HER2-targeted therapy likely counteracts the negative
impact of high elasticity on chemotherapy efficacy. Meanwhile, Yuan et al. reported a
significant correlation between the elasticity value (E-max) and neoadjuvant chemotherapy
response in the HER2-enriched subtype. This discrepancy could be attributed to a difference
in the number of patients and administration of HER2-targeted therapy. In our study,
we included 312 patients with HER2+ breast cancer, with 94% of them receiving HER2-
targeted therapy involving trastuzumab and pertuzumab. Conversely, the prior study
encompassed only 26 patients with HER2+ breast cancer, and all of them exclusively
received chemotherapy without HER2-targeted therapy.

Notably, recent reports demonstrated that early reduction in elasticity values is more
accurate in predicting the treatment response than baseline SWE features [12,37]. In line
with this, findings from the TBCR026 and PHERGAIN trials underscore the importance of
early reduction in the standardized uptake value as a predictive marker for the response to
neoadjuvant systemic therapy, particularly when HER2-targeted drugs are involved in the
treatment of HER2+ breast cancer [38,39]. Accordingly, it becomes evident that the early
reduction in elasticity values, rather than the baseline elasticity value, may carry more
significance in predicting the treatment response for patients with breast cancer undergoing
neoadjuvant chemotherapy, including those with HER2+ breast cancer receiving HER2-
targeted therapy. The need for further studies is apparent to ascertain the most effective
quantitative SWE parameters and to understand the impact of changes in elasticity values
on the treatment response stratified by tumor subtypes.

Numerous studies have described the apparent relationship between high TILs and
favorable clinical outcomes, especially in HER2+ breast cancer and TNBC [11,40]. Our
study showed that TILs were inversely correlated with the elasticity values, especially
in HR+HER2- breast cancer and TNBC. Similarly, a previous study showed that high
elasticity values are significantly associated with low TILs in the adjuvant setting [36]. As a
low elasticity value could imply high TIL infiltration, a favorable treatment response of
TNBC could be explained by this context. However, for HR+HER- breast cancer, it is still
intriguing that a low elasticity value predicted breast pCR, as this subtype usually has low
TILs and poorly responds to neoadjuvant chemotherapy.

Our retrospective analysis has certain limitations. First, we evaluated the TILs from the
core needle biopsy sample, which may not fully mirror the stromal TILs of the whole tumor.
However, several studies reported that the TIL score in the core needle biopsy sample could
be reliable, representing the TIL status of the entire tumor [23,41]. Second, although Ki-67
is a well-established predictive factor for pCR [42], this value is not routinely assessed
in core needle biopsy samples at our institution. Because Ki-67 was evaluated in only
about 26% of the entire cohort, it resulted in its exclusion from the multivariable analysis
to maintain statistical power. Third, we separately established cut-off points for the entire
cohort and each breast cancer subtype, considering the variations in the treatment regimens
and response among different breast cancer subtypes. Accordingly, these cut-off points
require validation in independent cohorts. Lastly, our study solely focused on the treatment
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response and did not assess the prognosis of patients after neoadjuvant chemotherapy.
Extended follow-up studies are warranted to investigate the potential impact of elasticity
values on post-neoadjuvant-chemotherapy survival.

5. Conclusions

In conclusion, our study revealed that the low elasticity values were significantly
related to the better response to neoadjuvant chemotherapy and high TILs in patients with
breast cancer. These findings were particularly evident in HR+HER2- breast cancer or
TNBC. Our results propose SWE as a valuable adjunctive diagnostic tool for predicting the
treatment response in patients with breast cancer undergoing neoadjuvant chemotherapy.
Furthermore, this radiologic tool may have a potential role in representing the tumor-
microenvironment status, further enhancing clinical relevance.
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elasticity values in triple-negative breast cancer.
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