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Abstract

Background: The early prediction of antibiotic resistance in patients with a urinary tract infection (UTI) is important to guide
appropriate antibiotic therapy selection.

Objective: In this study, we aimed to predict antibiotic resistance in patients with a UTI. Additionally, we aimed to interpret
the machine learning models we developed.

Methods: The electronic medical records of patients who were admitted to Yongin Severance Hospital, South Korea were used.
A total of 71 features extracted from patients’ admission, diagnosis, prescription, and microbiology records were used for
classification. UTI pathogens were classified as either sensitive or resistant to cephalosporin, piperacillin-tazobactam (TZP),
carbapenem, trimethoprim-sulfamethoxazole (TMP-SMX), and fluoroquinolone. To analyze how each variable contributed to
the machine learning model’s predictions of antibiotic resistance, we used the Shapley Additive Explanations method. Finally,
a prototype machine learning–based clinical decision support system was proposed to provide clinicians the resistance probabilities
for each antibiotic.

Results: The data set included 3535, 737, 708, 1582, and 1365 samples for cephalosporin, TZP, TMP-SMX, fluoroquinolone,
and carbapenem resistance prediction models, respectively. The area under the receiver operating characteristic curve values of
the random forest models were 0.777 (95% CI 0.775-0.779), 0.864 (95% CI 0.862-0.867), 0.877 (95% CI 0.874-0.880), 0.881
(95% CI 0.879-0.882), and 0.884 (95% CI 0.884-0.885) in the training set and 0.638 (95% CI 0.635-0.642), 0.630 (95% CI
0.626-0.634), 0.665 (95% CI 0.659-0.671), 0.670 (95% CI 0.666-0.673), and 0.721 (95% CI 0.718-0.724) in the test set for
predicting resistance to cephalosporin, TZP, carbapenem, TMP-SMX, and fluoroquinolone, respectively. The number of previous
visits, first culture after admission, chronic lower respiratory diseases, administration of drugs before infection, and exposure
time to these drugs were found to be important variables for predicting antibiotic resistance.

Conclusions: The study results demonstrated the potential of machine learning to predict antibiotic resistance in patients with
a UTI. Machine learning can assist clinicians in making decisions regarding the selection of appropriate antibiotic therapy in
patients with a UTI.

(JMIR Med Inform 2024;12:e51326) doi: 10.2196/51326
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Introduction

Urinary tract infection (UTI) refers to an infection that occurs
in any part of the urinary system, including the kidneys, ureters,
urinary bladder, urethra, and other auxiliary structures [1,2].
Globally, UTIs are the most prevalent type of infectious disease,
with around 150-250 million cases occurring each year [3].
Considerable morbidity and mortality result from these
infections [4]. Typically, the most effective treatment for UTIs
is the administration of antibiotics [3]. However, inappropriate
use of antibiotics can permanently affect the normal microbiota
of the urinary tract system and lead to antibiotic resistance [5].

The antibiotic susceptibility test is commonly used to identify
antibiotic resistance, but it takes 24-48 hours to obtain test
results [6,7]. However, in the clinical workflow, clinicians need
to identify antibiotic resistance quickly to provide effective
treatment for patients with UTIs. For this reason, early prediction
of antibiotic resistance in patients with UTIs is important to
guide the selection of appropriate antibiotic therapy. Machine
learning can be used to develop prediction models and clinical
decision support systems (CDSSs) to identify antibiotic
resistance and support the selection of appropriate antibiotic
therapy for patients with a UTI.

Several efforts have been made to predict antibiotic resistance
in patients with UTIs using data from patients’ electronic
medical records (EMRs), including demographics, prescriptions,
comorbidities, procedures, and laboratory tests. These
investigations have yielded promising results. Some of these
studies were limited to specific patient groups, including patients
with uncomplicated UTIs [8] and patients treated in the
emergency department [9]. In other studies, researchers worked
with heterogeneous data that were not limited to a specific
patient group [10-12]. However, prior studies that analyzed
heterogeneous data did not address the interpretation of machine

learning models. The black-box nature of machine learning is
a limiting factor not only in its use for antibiotic resistance
prediction but also in its wider clinical use [13,14]. Thus,
interpreting the results obtained by the machine learning model
is crucial in increasing users’ trust in the machine learning model
[15,16]. Furthermore, these studies did not address the
development of the CDSS with the prediction models they built.

In this study, we aimed to predict antibiotic resistance in patients
with a UTI. Heterogeneous data that were not limited to a
specific patient group were used. UTI pathogens were classified
as either sensitive or resistant to 5 commonly used antibiotics
in UTI treatment: cephalosporin, piperacillin-tazobactam (TZP),
carbapenem, trimethoprim-sulfamethoxazole (TMP-SMX), and
fluoroquinolone. In addition, our objective was to understand
and explain the inner workings of the machine learning models
we developed. Eventually, a prototype CDSS was developed
to provide clinicians the resistance probabilities for each
antibiotic.

Methods

Ethical Considerations
Ethics approval for the study was obtained from the institutional
review board of Yonsei University Severance Hospital on June
6, 2022 (approval 9-2023-0095). The informed consent was not
required due to the retrospective nature of the study.

Data Set Description and Study Design
In this study, we used the EMRs of patients who were admitted
to Yongin Severance Hospital, South Korea, between October
2012 and October 2022. To build the prediction models,
admission, diagnosis, prescription, and microbiology records
were extracted. The summary of the research process is
presented in Figure 1.
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Figure 1. Summary of the research process. AST: antibiotic susceptibility test; AUROC: area under the receiver operating characteristic curve; EMR:
electronic medical record; KNN: k-nearest neighbor; PRAUC: precision-recall area under the curve; SHAP: Shapley Additive Explanations; TMP-SMX:
trimethoprim-sulfamethoxazole; TZP: piperacillin-tazobactam; XGBoost: Extreme Gradient Boosting.

Data Preprocessing
The microbiology table contained 143,114 urine cultures
collected from 6011 patients during 7719 admissions. Since
positive samples typically indicate the presence of bacteriuria,
and urine culture samples were typically collected from patients
with UTI symptoms, we considered these to be indicative of a
UTI [10]. The resistance profiles were evaluated based on the

Clinical and Laboratory Standards Institute guidelines, where
intermediate-level resistance was considered sensitive. To assess
the resistance of UTI pathogens to antibiotic classes, antibiotics
were grouped as cephalosporin, TZP, carbapenem, TMP-SMX,
and fluoroquinolone. The antibiotics included in each antibiotic
class are presented in Multimedia Appendix 1. The patients’
demographic information was extracted from the admission
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table, their comorbidities were extracted from the diagnosis
table, and their drug use information was extracted from the
prescription table. For all input variables, the time of the first
culture test was considered as the end point, and only data
collected before the first culture test were used. After
preprocessing and variable extraction from the raw data, the
tables were combined using the admission number as the
primary key. Missing data were excluded from the study.
Patients aged 19 years and older and 100 years and younger at
admission were included in the study, and numerical variables
were standardized. A total of 71 features were used to classify
UTI pathogens as either sensitive or resistant to each antibiotic.
The predictors for the prediction models were selected by
considering related works and using clinical judgment.
Additionally, the threshold values for binarization were selected
according to the literature [17] and the expert assessment of a
specialist in infectious diseases. Detailed information about the
predictors can be found in Multimedia Appendix 2.

Machine Learning Model Development
We used a repeated train test split approach for modeling. The
data sets were split into training and test sets using an 80:20
ratio, and the training sets were used for the development of the
machine learning models. When splitting the data into training
and test sets, data points from the same patient and admission
were exclusively included in either the training or test data set
to prevent potential data leakage and ensure the models were
evaluated on previously unseen data. At each iteration, we
created different training and test data sets by changing the
random seed. Decision tree, k-nearest neighbor, logistic
regression, Extreme Gradient Boosting, and random forest were
used for modeling. The hyperparameters of the machine learning
models were optimized by using the random search
hyperparameter optimization method with 10-fold
cross-validation on the training data set. We stored the
performance of the prediction models at each iteration, and the
mean of performance metrics was calculated. The procedure of
splitting the data, optimizing hyperparameters, modeling, and
evaluation was iteratively repeated 1000 times to classify UTI
pathogens as either sensitive or resistant to cephalosporin, TZP,
carbapenem, TMP-SMX, and fluoroquinolone. The machine
learning models were built using Python (version 3.10.4; Python
Software Foundation).

Machine Learning Model Interpretation
To analyze the contribution of the variables to the machine
learning models in predicting antibiotic resistance, we used the
Shapley Additive Explanations (SHAP) method. The SHAP
values of the random forest models that showed superior
performance compared to other machine learning methods were
evaluated. The random forest model with the highest area under
the receiver operating characteristic curve (AUROC) on the test

set across all iterations for each antibiotic was used for SHAP
analysis. Python (version 3.10.4; Python Software Foundation)
was used for SHAP analysis.

CDSS Development
To develop the CDSS prototype, the random forest model with
the highest AUROC on the test set across all iterations for each
antibiotic was used. The CDSS prototype was developed using
the tkinter package in Python (version 3.10.4; Python Software
Foundation).

Evaluation
The performance of the machine learning model for predicting
antibiotic resistance was evaluated on the training and test sets
using the AUROC with 95% CIs, precision-recall area under
the curve (PRAUC), accuracy, and F1-score performance
metrics. Herein, the AUROC value was considered the main
evaluation metric. The definitions of the performance metrics
we used are provided below.

• AUROC: The AUROC is a widely used metric that
represents a classifier’s ability to discriminate between
positive instances and negative instances [18].

• PRAUC: PRAUC refers to the area under the
precision-recall curve that plots precision as a function of
recall for all the possible decision thresholds [19].

• Accuracy: Accuracy is the ratio of correctly classified
samples to all samples.

• F1-score: F1-score is the harmonic mean of precision and
recall metrics.

Python (version 3.10.4; Python Software Foundation) was used
to evaluate the prediction models.

Results

Data Set Characteristics
The general characteristics of the data set used in this study are
presented in Table 1. The data set included 3535, 737, 708,
1582, and 1365 samples for cephalosporin, TZP, TMP-SMX,
fluoroquinolone, and carbapenem resistance prediction models,
respectively. Escherichia coli was the most frequently isolated
bacterial specimen across all antibiotics.
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Table 1. General characteristics of the data set.

CarbapenemFluoroquinoloneTMP-SMXbTZPaCephalosporin

136515827087373535Samples, n

392571374366396Admissions, n

386557368360390Patients, n

142 (10.4)1014 (64.1)281 (39.7)169 (22.9)1492 (42.2)Resistance, n (%)

71.7 (14.3)71.9 (14.4)71.4 (14.4)71.4 (14.4)71.5 (14.4)Age (years), mean (SD)

994 (72.8)1013 (64)507 (71.6)523 (71)2597 (73.5)Female, n (%)

624 (45.7)349 (22)331 (46.7)312 (42.3)1650 (46.7)Most common bacteria
(Escherichia coli), n
(%)

220 (16.1)305 (19.3)c111 (15.7)109 (14.8)556 (15.7)Second-most common
bacteria (Klebsiella
pneumoniae), n (%)

83 (6.1)180 (11.4)e21 (3)d69 (9.4)168 (4.7)Third-most common
bacteria (Pseudomonas
aeruginosa), n (%)

aTZP: piperacillin-tazobactam.
bTMP-SMX: trimethoprim-sulfamethoxazole.
cThe isolated bacterial specimen is Enterococcus faecium.
dThe isolated bacterial specimen is Citrobacter freundii.
eThe isolated bacterial specimen is Enterococcus faecalis.

Model Performance
The performance analysis of the random forest models is
presented in Table 2. The AUROC values were 0.777 (95% CI
0.775-0.779), 0.864 (95% CI 0.862-0.867), 0.877 (95% CI
0.874-0.880), 0.881 (95% CI 0.879-0.882), and 0.884 (95% CI
0.884-0.885) in the training set and 0.638 (95% CI 0.635-0.642),

0.630 (95% CI 0.626-0.634), 0.665 (95% CI 0.659-0.671), 0.670
(95% CI 0.666-0.673), and 0.721 (95% CI 0.718-0.724) in the
test set for predicting resistance to cephalosporin, TZP,
carbapenem, TMP-SMX, and fluoroquinolone, respectively.
The performance analysis of the other machine learning models
is presented in Multimedia Appendices 3-6.

Table 2. Classification performances of the random forest models.

Test setTraining set

F1-scoreAccuracyPRAUCAUROC (95% CI)F1-scoreAccuracyPRAUCbAUROCa (95% CI)

0.5560.6030.5470.638 (0.635-0.642)0.6760.7150.7250.777 (0.775-0.779)Cephalosporin

0.3130.6410.3320.630 (0.626-0.634)0.6520.8080.6880.864 (0.862-0.867)TZPc

0.2200.7250.2220.665 (0.659-0.671)0.4930.8220.5390.877 (0.874-0.880)Carbapenem

0.5600.6380.5680.670 (0.666-0.673)0.7810.8220.8290.881 (0.879-0.882)TMP-SMXd

0.7060.6570.8130.721 (0.718-0.724)0.8320.8020.9380.884 (0.884-0.885)Fluoroquinolone

aAUROC: area under the receiver operating characteristic curve.
bPRAUC: precision-recall area under the curve.
cTZP: piperacillin-tazobactam.
dTMP-SMX: trimethoprim-sulfamethoxazole.

Important Features
The SHAP values of the 15 most important features in the
random forest models are presented in Figure 2.

The SHAP feature importance bar plot (Figure 3A) and SHAP
summary plot (Figure 3B) of the fluoroquinolone resistance
prediction model are presented in Figure 3. The SHAP feature
importance plot and SHAP summary plot of the other antibiotic
prediction models are presented in Multimedia Appendices
7-10.
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Figure 2. SHAP values of the 15 most important features in the prediction models. SHAP: Shapley Additive Explanations; TMP-SMX:
trimethoprim-sulfamethoxazole; TZP: piperacillin-tazobactam.

Figure 3. SHAP analysis results of fluoroquinolone resistance prediction model. (A) The feature importance bar plot. (B) The SHAP summary dot
plot. SHAP: Shapley Additive Explanations.

Clinical Decision Support System
The user interface of the CDSS is shown in Figure 4. The CDSS
prototype obtains data from the user and produces antibiotic
resistance probabilities for each antibiotic.

We presented the CDSS prototype on a scenario. In this case,
a female aged 55 years was admitted to the hospital’s outpatient
department. The patient previously visited the hospital 3 times
and was readmitted to the hospital within 30 days of her last
3-day stay. The duration between the patient’s admission to the
hospital and the first culture was 1 day. The patient was

previously diagnosed with diabetes and chronic lower respiratory
disease. Additionally, the patient had a history of cefazolin use
in the last 30 days and resistance in urine culture.

The system output for the given scenario is shown in Figure 5.
The system produced resistance probabilities for each antibiotic.
For the given scenario, the system produced a 71% probability
of fluoroquinolone resistance, a 41% probability of
cephalosporin resistance, a 39% probability of TMP-SMX
resistance, a 19% probability of TZP resistance, and a 13%
probability of carbapenem resistance.
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Figure 4. The user interface of the clinical decision support system.

Figure 5. The screenshot of system output for the given data.
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Discussion

Principal Findings
In this study, our main objective was to predict cephalosporin,
TZP, carbapenem, TMP-SMX, and fluoroquinolone resistance
in patients with UTI and develop a CDSS with the machine
learning models we built. Moreover, we identified the most
important features for predicting antibiotic resistance in patients
with UTI using SHAP analysis.

Our prediction models achieved AUROCs of 0.777 (95% CI
0.775-0.779), 0.864 (95% CI 0.862-0.867), 0.877 (95% CI
0.874-0.880), 0.881 (95% CI 0.879-0.882), and 0.884 (95% CI
0.884-0.885) in the training set and 0.638 (95% CI 0.635-0.642),
0.630 (95% CI 0.626-0.634), 0.665 (95% CI 0.659-0.671), 0.670
(95% CI 0.666-0.673), and 0.721 (95% CI 0.718-0.724) in the
test set for predicting resistance to cephalosporin, TZP,
carbapenem, TMP-SMX, and fluoroquinolone, respectively.
The fluoroquinolone resistance prediction model showed
superior performance, as confirmed by its high AUROC values
in both the training and test sets. On the other hand, the
cephalosporin resistance prediction model showed poor
performance, as confirmed by the low AUROC values in both
training and test sets.

According to SHAP analysis, the contribution of the variables
varied for each antibiotic; however, we found that the number
of previous visits, first culture after admission, chronic lower
respiratory diseases, administration of drugs before infection,
and exposure time to these drugs were important predictors
across all antibiotics. Factors such as the first culture after
admission, exposure time, and the number of previous visits
were found to affect resistance, which can be explained by the
impact of health care–associated infections. Chronic lower
respiratory and kidney diseases are also likely to be associated
with frequent visits to health care facilities, although it is
difficult to confirm the actual number of visits. However, this
suggests that the characteristics of health care–seeking behavior
in patients with specific underlying diseases may influence
resistance [20]. Interestingly, the use of cefazolin had a negative
impact on the development of resistance for all antibiotics. This
is because cefazolin is one of the narrow-spectrum antibiotics
used in less severe patients. Further research is needed to
examine these results.

Comparison to Prior Work
Past efforts to predict antibiotic resistance in patients with UTIs
have had promising results, with the lowest AUROC being 0.58
for predicting TMP-SMX resistance [12] and the highest
AUROC being 0.83 for predicting ciprofloxacin resistance [9].
In comparison, our prediction models demonstrated comparable
performance to these prior works. Some previous studies on
predicting antibiotic resistance in patients with UTIs were
limited to specific patient groups, including patients with
uncomplicated UTIs [8] and patients treated in the emergency

department [9]. We analyzed heterogeneous data that were not
limited to a specific patient group or bacteria. This approach
provides a more comprehensive insight into the prediction of
antibiotic resistance in patients with UTIs. Similarly,
Lewin-Epstein et al [21] analyzed heterogeneous data and were
able to achieve AUROC values ranging from 0.73 to 0.79 for
the prediction of ceftazidime, gentamicin, imipenem, ofloxacin,
and TMP-SMX resistance. Their data contained multiple culture
tests, which provided a more comprehensive approach to
predicting antibiotic resistance. Although urine cultures can be
used to infer colonized resistance in patients, further research
is needed to extend culture results beyond urine.

Limitations
While this study provides insights into predicting antibiotic
resistance in patients with UTIs, it has some limitations. First,
this study is the lack of multidrug resistance classification. The
data set we used in this study did not contain a sufficient amount
of multidrug resistance outcomes to build a classification model
for the prediction of multidrug resistance. Furthermore, our
prediction models were developed using prescription records
within the hospital setting. However, patients may have used
antibiotics outside of the hospital setting during visits to other
hospitals. The lack of information about past drug use could
have negatively impacted the performance of our prediction
models. To overcome this limitation, we intend to conduct
further studies using data from the National Health Insurance
Service of South Korea, which contain all past drug use
information of the patients. Thus, we will have a more
comprehensive data set. By using this approach, we may be
able to develop more accurate machine learning models to
predict antibiotic resistance and improve our ability to guide
appropriate antibiotic therapy selection. Additionally, further
development is required to address the limitations of prototype
CDSS, including the integration of real-time patient data and
validation in larger patient cohorts. Moreover, the prototype
CDSS only gives the resistance risk probability to the user.
However, a more comprehensive system that can provide
decision support on the selection of appropriate therapy, dosage,
and duration of treatment can be developed in further studies.
Such a system has the potential to reduce the duration of
treatment, number of antibiotics used, cost, mortality, and
morbidity [22,23].

Conclusions
In conclusion, our study results demonstrated that prediction
models to predict antibiotic resistance in patients with UTIs can
be constructed using routinely collected EMR data alone,
without requiring additional laboratory tests or specialized tests.
Machine learning techniques can be used to develop systems
that can guide clinicians in selecting appropriate antibiotic
therapy. This has the potential to prevent the risk of
inappropriate antibiotic administration, thereby reducing
patients’ risk of developing antibiotic resistance.
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Multimedia Appendix 10
SHAP analysis results of TMP-SMX resistance prediction model. (A) The feature importance bar plot. (B) The SHAP summary
dot plot. SHAP: Shapley Additive Explanations; TMP-SMX: trimethoprim-sulfamethoxazole.
[PNG File , 123 KB-Multimedia Appendix 10]
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