
iScience

Article

ll
OPEN ACCESS
Evaluation of GPT-4 for 10-year cardiovascular risk
prediction: Insights from the UK Biobank and
KoGES data
Changho Han,

Dong Won Kim,

Songsoo Kim,

Seng Chan You,

Jin Young Park,

SungA Bae,

Dukyong Yoon

cardiobsa@yuhs.ac (S.B.)

dukyong.yoon@yonsei.ac.kr

(D.Y.)

Highlights
Quantitative evaluation of

GPT-4 in CVD risk scoring

GPT-4 shows robust

performance regardless of

data omission

GPT-4 consistent in multi-

ethnic dataset

Study underscores GPT-4’s

potential in AI-driven

healthcare

Han et al., iScience 27, 109022
February 16, 2024 ª 2024 The
Author(s).

https://doi.org/10.1016/

j.isci.2024.109022

mailto:cardiobsa@yuhs.ac
mailto:dukyong.yoon@yonsei.ac.kr
https://doi.org/10.1016/j.isci.2024.109022
https://doi.org/10.1016/j.isci.2024.109022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.109022&domain=pdf


iScience

Article

Evaluation of GPT-4 for 10-year cardiovascular
risk prediction: Insights from the UK
Biobank and KoGES data

Changho Han,1,7 Dong Won Kim,1,7 Songsoo Kim,1,7 Seng Chan You,1,2 Jin Young Park,3,4,6 SungA Bae,3,5,*

and Dukyong Yoon1,2,3,8,*

SUMMARY

Cardiovascular disease (CVD) remains a pressing global health concern. While traditional risk prediction
methods such as the Framingham and American College of Cardiology/American Heart Association
(ACC/AHA) risk scores have been widely used in the practice, artificial intelligence (AI), especially
GPT-4, offers new opportunities. Utilizing large scale of multi-center data from 47,468 UK Biobank partic-
ipants and 5,718 KoGES participants, this study quantitatively evaluated the predictive capabilities of
GPT-4 in comparison with traditional models. Our results suggest that the GPT-based score showed com-
mendably comparable performance in CVD prediction when compared to traditional models (AUROC on
UKB: 0.725 for GPT-4, 0.733 for ACC/AHA, 0.728 for Framingham; KoGES: 0.664 for GPT-4, 0.674 for
ACC/AHA, 0.675 for Framingham). Even with omission of certain variables, GPT-4’s performance was
robust, demonstrating its adaptability to data-scarce situations. In conclusion, this study emphasizes
the promising role of GPT-4 in predicting CVD risks across varied ethnic datasets, pointing toward its
expansive future applications in the medical practice.

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, accounting for a considerable proportion of health-

care costs and posing a substantial public health risk.1 The accurate and timely prediction of an individual’s risk of developing CVD can

facilitate early intervention and prevention strategies, which reduce the incidence and devastating impact of CVD.2 Conventional CVD risk

prediction models, such as the Framingham risk score3 and the American College of Cardiology/American Heart Association (ACC/AHA)

risk score,4 are widely used in clinical settings. These models were derived from cohorts in the United Kingdom (UK) and the United States,

respectively, and provide valuable insights into CVD risk prediction and aid in patient management.

Recently, artificial intelligence (AI) has been widely adopted across various fields of medicine.5 Large languagemodels (LLMs), particularly

the generative pretrained transformer 4 (GPT-4) model developed by OpenAI, exhibit remarkable proficiency in producing human-like lan-

guages and have potential for application in various industries.6,7 In the medical field, reports suggest that ChatGPT not only possesses

knowledge sufficient to pass the United States Medical Licensing Examination (USMLE), but also has the potential to assist in various aspects

of the medical workflow, such as making medical diagnosis and aiding in clinical decision making.8,9 Particularly in the field of cardiology,

ChatGPT has shown promise in verifying the appropriateness of recommendations for the prevention of cardiovascular diseases.10

Despite growing expectations for GPT’s potential in medicine, many aspects of its practical applications remain unexplored. The efficacy

of GPT in estimating the risk of CVD has not been studied. Additionally, due to its inherent language model nature, GPT may offer greater

flexibility in terms of input compared to conventional CVD risk predictionmodels, and this flexibility warrants further evaluation. Furthermore,

GPT is not without concerns. A significant current limitation of GPT impeding its application in themedical domain is the occurrence of incon-

sistent and potentially incorrect answers, because it is based on probabilistic algorithms.11–13 When presented with identical prompts, the

model’s responses often vary, and while this variation can sometimes lead to more insightful responses, it can also result in less accurate

or even incorrect answers.12 There is a need to assess the variability of GPT’s responses, quantitatively if possible, in order to further under-

stand its reliability in clinical settings. Another concern with GPT is that the composition of its training corpus, as well as its training processes,
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are not fully transparent.12 This lack of transparency raises questions about whether GPT will operate similarly across various groups, cohorts,

or ethnicities.

Thus, in this study, we aimed to evaluate the efficacy and reliability of the GPT models in predicting 10-year CVD risk. Specifically, our ob-

jectives were to: (1) quantitatively evaluate the efficacy and reliability of the GPT models in evaluating 10-year CVD risk through comparative

analysis with established benchmarks such as the Framingham risk score using real-world, longitudinal data from different ethnic groups

including the UK Biobank and the Korean Genome and Epidemiology Study (KoGES) data14,15; (2) quantitatively evaluate the variability of

the GPT-4 risk score by conducting multiple iterations of experiments for each subject at different GPT-4 temperature settings; and (3) inves-

tigate the adaptability and flexibility of GPT-4 in scenarios of incomplete data, a common challenge in clinical settings. This way, we aimed to

gain insights into the capabilities of GPT in estimatingCVD risk within the complex landscape that entails both promise andpitfalls in applying

LLMs to the medical domain.

RESULTS

Cohort selection and baseline characteristics

TheUKBiobank study included 502,396 participants aged 40–69 years at the time of assessment, recruited between 2006 and 2010 (Figure S1).

Data pertaining to age, sex, diabetes diagnosed by a doctor, blood pressure medication, smoking status, total cholesterol, high-density

lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, systolic blood pressure (SBP), diastolic blood pressure

(DBP), standing height, weight, date of attending the assessment center, and date of death were extracted, and the outcome was 10-year

CVD risk defined by major adverse cardiovascular events (MACEs). A total of 103,817 participants with missing data were excluded. Of

the remaining participants, after randomly selecting 50,000 participants, 2,532 patients who had previously experienced MACEs were further

excluded, leaving 47,468 subjects for the analysis.

For the KoGES study population, variables analogous to those used in the UK Biobank were extracted. Out of an initial 10,030 participants,

875 with missing data were excluded (Figure S2). An additional 3,437 participants, who were not followed up at the 10-year mark, were also

omitted, resulting in a final cohort of 5,718 subjects for subsequent analysis.

Baseline characteristics of the UK Biobank and KoGES participants and the CVD risk derived from GPT-4 are shown in Table 1. Among a

total of 47,468 individuals from the UK Biobank for analysis, the participants had an overall median age of 57 years (IQR 50–63), with 21,224

(44.7%) men and 3,136 (6.6%) experiencing MACE within 10 years. When grouped by the GPT-4 risk group category (details on deriving and

categorizing 10-year CVD risk from GPT-4 will be described in the next section), 15,190 individuals were classified as low-risk, 10,290 as mod-

erate-risk, and 21,268 as high-risk. Among the 5,718 patients from KoGES included in the study, the participants had an overall median age of

49 years (IQR 44–59), with 2,663 (46.6%) men and 176 (3.1%) experiencing MACE within 10 years. In both the UK Biobank and KoGES cohorts,

the higher-risk groups had older individuals, a higher proportion of males, a higher prevalence of diabetes mellitus, more antihypertensive

treatment, a higher proportion of smokers, more unfavorable lipid profiles, higher blood pressure, a higher body mass index (BMI), and a

higher incidence of 10-year MACE (p < 0.001).

Performances of the GPT models in 10-year CVD risk prediction and comparison with traditional models

To predict the incidence of CVDs using GPT, we transformed the variables into a sentence structure, as exemplified in Figure 1. Predefined

information on each participant was provided to the GPT and we prompted the GPT to answer only the risk percentage rather than extensive

text narratives. Based on the 10-year CVD risk percentage, <10% was classified as low-risk, 10% and <20% as moderate-risk, and >20% as

high-risk.

Performances of each risk scoring method (GPT-4, GPT-3.5-turbo, Framingham risk score and ACC/AHA risk score) on 10-year CVD risk

prediction were evaluated and compared in both the UK Biobank and KoGES cohorts. In cases of GPT-4 and GPT-3.5-turbo, we utilized the

temperature of 0.4 as the optimal setting (the details of the process by which the optimal temperature was predetermined to be 0.4 are

described in the method details section). In the UK Biobank cohort, the highest area under the receiver operating characteristics curve

(AUROC) was found for the ACC/AHA risk score with 0.733, followed by the Framingham risk score at 0.728, GPT-4 at 0.725, and GPT-3.5-

turbo at 0.706 (Figure 2A). The DeLong test revealed statistically significant differences between GPT-3.5-turbo and both the Framingham

risk score and the ACC/AHA risk score (p < 0.001). While GPT-4 and the ACC/AHA risk score also showed statistically significant differences

in the DeLong test (p < 0.001), the difference between GPT-4 and the Framingham risk score was not statistically significant (p = 0.120). In the

KoGES dataset, the highest AUROC scores were observed for the ACC/AHA risk score at 0.674, the Framingham risk score at 0.675, GPT-4 at

0.671, and GPT-3.5-turbo at 0.664 (Figure 2B). The DeLong test indicated no statistically significant differences between GPT-3.5-turbo and

both the Framingham risk score and the ACC/AHA risk score (p = 0.715, p = 0.805). Also, no statistically significant differences were found

between GPT-4 and both the Framingham risk score and the ACC/AHA risk score (p = 0.145, p = 0.166). Detailed metrics are provided in

Table 2. In Table 2, the risk threshold for calculating accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive

value (NPV) was set at 20%, which was used to differentiate the high-risk group from the rest in all risk scoring methods.

In the UK Biobank cohort, the Pearson correlation coefficient (Pearson’s r) revealed a substantial correlation between the GPT-based score

and the ACC/AHA risk score, with a Pearson’s r value of 0.882 (Figure 2C). Similarly, in the KoGES cohort, there was a notable correlation

between the GPT-based score and the ACC/AHA risk score, evidenced by a Pearson’s r value of 0.867 (Figure 2D). As delineated in Figure S3,

correlations between the GPT-based score and the Framingham risk score were also discerned in both the UK Biobank (Pearson’s r = 0.890)
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and the KoGES (Pearson’s r = 0.896) cohorts. Furthermore, the correlation between the Framingham risk score and the ACC/AHA risk score

was 0.956 in the UK Biobank and 0.954 in the KoGES.

The Kaplan-Meier method was applied to plot survival curves for the low-, moderate-, and high-risk groups based on the risk scoring

methods (Figure 3). Distinct segregation was observed between the survival curves of the three risk categories across all risk scoringmethods,

with all pairwise comparisons yielding statistically significant differences according to the log rank test with a post-hoc Bonferroni correction.

This confirmed the risk stratification capability of the GPT-based score. However, the degree of separation was not more pronounced than

what was achieved using the Framingham risk score or the ACC/AHA risk score.

Table 1. Baseline characteristics (grouped by GPT-4 based risk category) of UK Biobank and KoGES patients

Low risk Moderate risk High risk Overall p-value

UK Biobank

N 15910 10290 21268 47468

10-year CVD incidence, n 255 (1.6) 508 (4.9) 2373 (11.2) 3136 (6.6) <0.001

Age 49 [44,54] 57 [51,61] 63 [59,66] 57 [50,63] <0.001

Sex (male) 2932 (18.4) 4536 (44.1) 13756 (64.7) 21224 (44.7) <0.001

Total cholesterol, mmol/L 5.4 [4.8,6.1] 5.9 [5.3,6.6] 5.9 [5.0,6.7] 5.7 [5.0,6.5] <0.001

HDL, mmol/L 1.5 [1.3,1.8] 1.4 [1.2,1.7] 1.3 [1.1,1.6] 1.4 [1.2,1.7] <0.001

LDL, mmol/L 3.3 [2.9,3.8] 3.7 [3.2,4.3] 3.7 [3.1,4.3] 3.6 [3.0,4.1] <0.001

Triglyceride, mmol/L 1.1 [0.8,1.6] 1.5 [1.1,2.2] 1.8 [1.3,2.5] 1.5 [1.0,2.1] <0.001

SBP, mm/hg 124 [116,134] 135 [126,143] 147 [135,158] 136 [124,149] <0.001

DBP, mm/hg 78 [72,84] 82 [76,88] 85 [79,92] 82 [75,89] <0.001

BMI, mg/kg2 25.1 [22.8,28.0] 26.8 [24.4,29.7] 27.7 [25.2,30.8] 26.6 [24.1,29.8] <0.001

Smoking (current) 904 (5.7) 900 (8.7) 3070 (14.4) 4874 (10.3) <0.001

Blood pressure medication 645 (4.1) 1333 (13.0) 6715 (31.6) 8693 (18.3) <0.001

Diabetes 15 (0.1) 119 (1.2) 2044 (9.6) 2178 (4.6) <0.001

Framingham risk score 4.9 [3.4,6.6] 10.3 [8.5,12.7] 20.1 [15.2,27.3] 11.4 [6.3,19.1] <0.001

ACC/AHA risk score 1.6 [0.9,2.5] 5.0 [3.8,6.5] 12.1 [8.5,17.2] 5.6 [2.4,11.3] <0.001

GPT-based score 2.9 [2.0,5.3] 15.6 [13.2,17.9] 27.3 [22.2,34.7] 18.0 [5.2,26.0] <0.001

KoGES

N 3070 1190 1458 5718

10-year CVD incidence, n 55 (1.8) 37 (3.1) 84 (5.8) 176 (3.1) <0.001

Age 46 [43,52] 53 [45,61] 60 [49,65] 49 [44,59] <0.001

Sex (male) 796 (25.9) 762 (64.0) 1105 (75.8) 2663 (46.6) <0.001

Total cholesterol, mmol/L 192.0 [170.0.214.0] 198.0 [176.0.221.8] 209.0 [183.0.235.0] 196.0 [174.0.221.0] <0.001

HDL, mmol/L 49.0 [43.0,57.0] 47.0 [40.0,55.0] 45.0 [39.0,53.0] 48.0 [41.0,56.0] <0.001

LDL, mmol/L 115.0 [96.2,135.8] 119.5 [98.6,142.3] 124.2 [99.5,148.8] 118.0 [97.2,140.6] <0.001

Triglyceride, mmol/L 108.0 [77.0.153.0] 132.0 [94.0.181.8] 164.0 [113.0.236.8] 124.0 [87.0.181.0] <0.001

SBP, mm/hg 114 [105,124] 122 [110,133] 129 [117,144] 118 [108,131] <0.001

DBP, mm/hg 77 [70,84] 81 [74,89] 85 [77,92] 80 [72,88] <0.001

BMI, mg/kg2 24.3 [22.5,26.3] 24.5 [22.6,26.5] 24.9 [22.9,26.9] 24.5 [22.6,26.5] <0.001

Smoking (current) 298 (9.7) 120 (10.1) 165 (11.3) 583 (10.2) 0.244

Blood pressure medication 140 (4.6) 128 (10.8) 369 (25.3) 637 (11.1) <0.001

Diabetes 9 (0.3) 44 (3.7) 273 (18.7) 326 (5.7) <0.001

Framingham risk score 3.7 [2.2,5.8] 9.6 [7.7,12.0] 18.5 [13.6,25.7] 7.0 [3.4,12.8] <0.001

ACC/AHA risk score 1.2 [0.6,2.3] 5.0 [3.7,6.6] 10.7 [7.8,15.2] 3.1 [1.1,7.0] <0.001

GPT-based score 2.2 [1.2,3.6] 15.8 [13.6,18.1] 25.1 [21.6,33.6] 7.7 [2.1,20.1] <0.001

GPT: generative pretrained transformer, UK: United Kingdom, KoGES: Korean Genome and Epidemiology Study, BMI: body mass index, SBP: systolic blood

pressure, DBP: diastolic blood pressure, HDL: high-density lipoprotein, LDL: low-density lipoprotein, MACE: major adverse cardiovascular event. Data are me-

dian (IQR) or n (%), ACC/AHA: American College of Cardiology/American Heart Association.
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Performance of GPT-4 with omission of variables in the UK Biobank cohort

To evaluate GPT-4’s adaptability when certain information cannot be obtained, we conducted further experiments deliberately omitting spe-

cific variables from the input prompt within the UK Biobank cohort. Initially, we excluded laboratory data—total cholesterol, HDL cholesterol,

LDL cholesterol, and triglycerides—resulting in an AUROC of 0.722 and an area under the precision recall curve (AUPRC) of 0.141 (Table S1).

These results are nearly consistent with GPT-4’s original performance metrics (AUROC 0.725, AUPRC 0.145). Subsequently, we omitted phys-

ical examination data—SBP, DBP, and BMI—and observed an AUROC of 0.715 and an AUPRC of 0.134, which are also comparable to the

baseline performances (Table S1). Detailed metrics can be found in Table S1.

DISCUSSION

In this study, we quantitatively evaluated the efficacy and reliability of LLMs in predicting 10-year CVD risk using real world longitudinal data,

and compared their performances with that of conventional risk prediction models. Our findings indicate that GPT-4’s performance is com-

parable to conventional risk prediction models such as the Framingham risk score (GPT-4 AUROC 0.725 vs. Framingham risk score AUROC

0.728). The Kaplan-Meier analyses confirmed the risk stratification capability of the GPT-based CVD risk score when stratified into low, mod-

erate, and high risk groups. GPT-4’s performance remained robust even with the omission of certain variables, highlighting its adaptability in

circumstances where certain information might not be acquirable.

The recent integration of AI into the medical sphere signifies a pivotal evolution in healthcare practices, particularly with recent evidence

demonstrating its proficiency in numerous prediction tasks, including the risk assessment of diseases.16,17 Of late, the rapid advancements in

LLMs, particularly the GPT series, have significantly heightened expectations regarding the potential application of LLMs in the field of med-

icine.18–21 GPT is a state-of-the-art languagemodel employingdeep learning to generate responses that closelymimic human conversation in

reaction to natural language prompts.22,23 As one of the largest language models available to the public, GPT was trained utilizing a vast

corpus of text data to understand and replicate the subtleties of human language, thus producing relevant and contextually aware responses

to a diverse range of prompts.22,23

Figure 1. Example of a GPT prompt and response

Tabular data extracted from UK Biobank and KoGES were organized and queried into a sentence format. The 10-year cardiovascular disease risk percentage was

extracted using regular expressions from the corresponding answers. GPT: generative pretrained transformer, UK: United Kingdom, KoGES: Korean Genome

and Epidemiology Study, HDL: high-density lipoprotein, LDL: low-density lipoprotein, BMI: body mass index.

Table 2. 10-year cardiovascular disease risk prediction performances of the risk scoring methods

AUROC AUPRC Sensitivity Specificity PPV NPV F1 score

UK Biobank

GPT-4 0.725 0.145 0.757 0.574 0.112 0.971 0.194

GPT-3.5-turbo 0.706 0.135 0.308 0.879 0.152 0.947 0.204

ACC/AHA risk score 0.733 0.151 0.211 0.935 0.188 0.944 0.199

Framingham risk score 0.728 0.149 0.496 0.790 0.143 0.957 0.222

KoGES

GPT-4 0.664 0.054 0.477 0.752 0.058 0.978 0.103

GPT-3.5-turbo 0.671 0.059 0.108 0.957 0.073 0.971 0.087

ACC/AHA risk score 0.674 0.059 0.662 0.974 0.071 0.970 0.066

Framingham risk score 0.675 0.061 0.278 0.893 0.077 0.975 0.120

AUROC: area under the receiver operating characteristics curve, AUPRC: area under the precision recall curve, PPV: positive predictive value, NPV: negative pre-

dictive value, UK: United Kingdom, GPT: generative pretrained transformer, ACC/AHA: American College of Cardiology/American Heart Association, KoGES:

Korean Genome and Epidemiology Study.
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GPT’s proficiency in cognitive tasks and interactive communication, nearly paralleling human capability, is increasingly recognized for its

prospective transformative impact on medical practices, prompting numerous studies and investigations in recent months to corroborate its

utility18–21: GPT has demonstrated the ability to achieve passing scores on the United States Medical Licensing Examinations, with GPT-4

Figure 2. Performance evaluation and comparison of the risk scoring methods in the UK Biobank and KoGES cohorts

GPT-4’s performance was comparable to conventional risk prediction models. Substantial correlation was found between the GPT-based risk score, ACC/AHA

risk score and Framingham risk score.

(A) AUROC curves (UK Biobank).

(B) AUROC curves (KoGES).

(C) Scatterplot (UK Biobank, GPT-4 vs. ACC/AHA risk score).

(D) Scatterplot (KoGES, GPT-4 vs. ACC/AHA risk score). UK: United Kingdom, KoGES: Korean Genome and Epidemiology Study, GPT: generative pretrained

transformer, ACC/AHA: American College of Cardiology/American Heart Association, AUROC: area under the receiver operating characteristics curve.
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exhibiting a significant improvement over its predecessor, GPT-3.5-turbo8,24; GPT provided largely accurate responses to 284 medical ques-

tions posed by physicians across 17 specialties, as evaluated by academic physician specialists, and also provided largely appropriate re-

sponses to CVD prevention questions as evaluated by cardiology clinicians10,25; when comparing GPT’s responses to patient questions

with those given by doctors on a social network, the languagemodel’s outputs were favored for their quality and empathetic tone, as assessed

qualitatively by medical professionals26; GPT has proven effective at converting various free-text radiology reports into structured formats

with minimal effort, suggesting potential applications in standardization and data mining for research purposes.27

Despite the recent upsurge in interest regarding GPT, numerous aspects of its utility in medical domains are yet to be explored. Literature

review revealed that the application of GPT inmedical predictive tasks, including its ability to predict future cardiovascular events, was largely

unexplored. Moreover, it is also important to acknowledge and address the concerns and limitations currently associated with the use of GPT

in medicine. Most importantly, due to its reliance on probabilistic algorithms, GPTmodels can yield variable results to the same prompts, and

their lack of transparency in training data and processes leads to uncertainties about their accuracy, calling for persistent humanmonitoring to

ensure reliability.11–13

In this context, our study has numerous implications. To the best of our knowledge, this study is the first to quantitatively evaluate GPT’s

performance in predicting 10-year CVD risk. The similar performance of GPT-4 in generatingCVD risk scores with that of the traditional model

is notable (GPT-4 AUROC 0.725 vs. Framingham risk score AUROC 0.728 vs. ACC/AHA risk score AUROC 0.733). Traditional models such as

the Framinghamor ACC/AHA risk scores rely onmathematical calculations based on various variables to derive their results.3,4,28 On the other

hand, GPT-4 employs a fundamentally different mechanism by vectorizing words to learn patterns and predicting the most probabilistically

appropriate next word or sentence.29 Despite these divergent methodologies, both GPT-4 and traditional regression-based models have

shown comparable effectiveness in actual CVD prediction and patient risk stratification. The capability of GPT-4 for risk stratification was

further confirmed through Kaplan-Meier analysis. To assess themodel’s efficacy in reflecting actual patient outcomes, we conducted this anal-

ysis using the same cut-off points commonly applied to Framingham risk scores, namely 10 and 20.30,31 The resulting Kaplan-Meier curves for

each risk group, as categorized by GPT-based scores, were statistically distinct, underlining the model’s usefulness in this regard. However,

before utilizing GPT-4 for actual risk stratification, it is imperative to establish carefully considered cut-off points and interpretative guidelines

to ensure the model’s effective application.

This study is also the first to quantitatively assess the variability in GPT’s predictions of 10-year CVD risk. As aforementioned, a notable

concern when comparing traditional prediction models to LLMs like GPT-4 is the variability or inconsistency in outputs from GPT-4. To accu-

rately understand this variability, thorough testing is essential. The variability in 10-year CVD risk predictions of GPT-4 is quantifiable because

the risk is expressed in numerical terms, which is what our study has rigorously analyzed. Our experiments focused on how different temper-

ature settings affected the consistency and reliability of GPT-4’s outputs. We found that lower temperature settings led to reduced variability,

as indicated by lower standard deviations and coefficients of variation. The AUROC was maximized at a temperature setting of 0.4, although

the difference was not substantial across various settings. However, lower temperature settings resulted in an undesirable clustering of GPT-

based scores around specific values, a phenomenon we refer to as ‘‘streaking,’’ which limited the model’s capacity for fine-grained risk strat-

ification. Thus, a temperature setting of 0.4 was deemed optimal, as it mitigated the ‘‘streaking’’ issue while maintaining strong overall

performance.

This study highlights GPT-4’s adaptability in managing incomplete clinical data, a common challenge in healthcare settings. Unlike tradi-

tional models that require discarding or imputing missing data, potentially leading to biases or inaccuracies, our study showed that GPT-4

maintains robust predictive performance even with missing information. This is demonstrated by the consistent performance in predicting

CVD risk even with the omission of certain key variables as shown in Table S1. GPT-4’s sophisticated algorithmic design enables flexible

administration of input prompt, which is invaluable in clinical decision-making where full datasets may not be readily available. Although

Figure 3. Kaplan-Meier curves stratified by risk categories in the UK Biobank cohort

All pairwise comparisons between curves with the log rank test with post-hoc Bonferroni correction were statistically significant.

(A) Kaplan-Meier curve stratified by GPT-4 based risk category.

(B) Kaplan-Meier curve stratified by Framingham risk score category.

(C) Kaplan-Meier curve stratified by ACC/AHA risk score category. GPT: generative pretrained transformer, ACC/AHA: American College of Cardiology/

American Heart Association, UK: United Kingdom.
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traditional models like the PCE remain relevant where computational resources are sparse, GPT-4 might offer a novel solution to data irreg-

ularities, marking an advancement in AI-driven healthcare applications.

We further validated the adaptability of GPT-4 by confirming consistent tendencies in two datasets from two different ethnic groups,

namely the UK Biobank and KoGES datasets. Traditional models are typically derived from specific cohorts, necessitating verification for

generalizability across diverse populations with varying demographic, clinical, and genetic characteristics before application.30 Similar chal-

lenges exist for GPT-4 and other LLMs, primarily because the composition of their training corpus is not fully transparent.12 Consequently,

there is a risk that an LLM model might not yield consistent results across different cohorts. Despite these potential limitations, our study

demonstrated that GPT-4 yielded consistent tendencies across datasets with varying demographic and clinical characteristics. This perfor-

mance lends support to the model’s adaptability and potential for broader applications.

The rate of advancement in LLMs has accelerated significantly in a brief period. As recently as December 2020, the GPT-Neo model set a

new precedent in theMedQAdataset, which is amedical benchmark dataset comprising questions in the style of the USMLE, with an accuracy

of 33.3%.32,33 This milestone was rapidly surpassed many times, and by December 2022, the Flan-PaLM model achieved an accuracy of

67.6%.33 By May 2023, GPT-4 marked a significant leap forward, attaining an accuracy of 86.1%.34 This study also corroborates this trajectory

of progress, revealing that GPT-4 outperforms GPT-3.5-turbo in 10-year CVD risk prediction within the UK Biobank cohort (GPT-3.5-turbo

AUROC 0.73 vs. GPT-4 AUROC 0.75). Moreover, as various studies unfold, there is accumulating evidence that LLMs can integrate extensive

medical data and patient information, potentially contributing to clinical decision-making and education in healthcare.35–37 These develop-

ments, together with the capability of GPT in medical predictive tasks that we have shown in our study, underscore the critical need for addi-

tional research to assess the unexplored potentials and broad applicability of LLMs in diverse medical contexts.

Conclusions

Our study was the first to quantitatively evaluate the efficacy and reliability of GPT-4 in predicting 10-year CVD risk, and our findings indicate

that GPT-4’s performance is comparable to conventional risk prediction models. The Kaplan-Meier analyses verified the risk stratification

capability of the GPT-based CVD risk score. The robustness of GPT-4 was maintained even after some key variables were excluded, empha-

sizing its flexibility in situations where certain information may be unavailable. Furthermore, we validated the adaptability of GPT-4 by con-

firming consistent tendencies in two datasets from two different ethnic groups. Considering the rapid pace of development in LLMs, the

future holds even greater promise, and there is a need for additional research to assess the untapped possibilities and wide usability of

LLMs in various medical fields.

Limitations of the study

This study has a few limitations. First, our experiments on GPT-4 were not conducted on the entire cohort population but rather on selected

subsets of 50,000 and 2,000 instances, introducing the possibility of selection bias. The cost of using theGPT-4model for this research is based

on a per-token pricing model for both input and output. Running multiple iterations on tens of thousands of cases would incur a substantial

expense. Given these constraints, we aimed to select an optimal sample size that would both be cost-effective and yield the strongest sta-

tistical power for our analyses. Second, we only tested a single prompt for the task. We utilized a zero-shot prompt to predict CVD risk. How-

ever, other prompt engineering techniques, such as few-shot learning and Chain of Thought, have been reported to potentially enhance the

model’s performance.6,38 This underscores the growing expectations surrounding the capabilities of LLMs, and future studies should focus on

this prompt engineering technique. Additionally, an unavoidable limitation arises from the non-disclosure of specific details regarding GPT-

4’s training data. Given that the inner workings and training corpus of GPT-4 are not publicly available, it is unclear whether the model’s pre-

dictions are influenced by direct references to ACC/AHA guidelines or other specific medical literature. This lack of detailed transparency

inherently limits our ability to fully understand the underpinnings of the model’s risk predictions, while not diminishing the overall value

and insights provided by our research. Finally, we focused solely on well-known variables when interacting with the LLMs. However, one

of the key advantages of LLMs lies in their ability to handle diverse formats of input. This aspect was not experimentally explored in our study,

limiting the scope of our findings. Unlike traditional models that depend exclusively on structured data, LLMs are capable of assimilating

various types of data, including unstructured medical records.39,40 Exploring this capacity could lead to the discovery of new risk factors

and advancements in risk prediction models. Future research may delve deeper into these facets, thereby unveiling new possibilities for

LLM-based risk prediction models.
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31. Anderson, T.J., Grégoire, J., Pearson, G.J.,
Barry, A.R., Couture, P., Dawes, M., Francis,
G.A., Genest, J., Jr., Grover, S., Gupta, M.,
et al. (2016). 2016 Canadian Cardiovascular
Society Guidelines for the Management of
Dyslipidemia for the Prevention of
Cardiovascular Disease in the Adult. Can. J.
Cardiol. 32, 1263–1282. https://doi.org/10.
1016/j.cjca.2016.07.510.

32. Jin, D., Pan, E., Oufattole, N., Weng, W.-H.,
Fang, H., and Szolovits, P. (2020). What
disease does this patient have? A large-scale
open domain question answering dataset
from medical exams. Preprint at arXiv.
https://doi.org/10.48550/ARXIV.2009.13081.

33. Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S.,
Wei, J., Chung, H.W., Scales, N., Tanwani, A.,
Cole-Lewis, H., Pfohl, S., et al. (2023). Large
language models encode clinical knowledge.
Nature 620, 172–180. https://doi.org/10.
1038/s41586-023-06291-2.

34. Singhal, K., Tu, T., Gottweis, J., Sayres, R.,
Wulczyn, E., Hou, L., Clark, K., Pfohl, S., Cole-
Lewis, H., Neal, D., et al. (2023). Towards
expert-level medical question answering with
large language models. Preprint at arXiv.
https://doi.org/10.48550/ARXIV.2305.09617.

35. Grupac, M., Zauskova, A., and Nica, E. (2023).
Generative artificial intelligence-based

treatment planning in clinical decision-
making, in precision medicine, and in
personalized healthcare. Contemp. Read.
Law Soc. Justice 15, 45.

36. Peters, M.A., Jackson, L., Papastephanou, M.,
Jandri�c, P., Lazaroiu, G., Evers, C.W., Cope,
B., Kalantzis, M., Araya, D., Tesar, M., et al.
(2023). AI and the future of humanity:
ChatGPT-4, philosophy and education –
Critical responses. Educ. Philos. Theor. 1–35.
https://doi.org/10.1080/00131857.2023.
2213437.

37. Kovacova, M., Kevicky, F., and Popescu, G.H.
(2023). Generative artificial intelligence-
driven healthcare systems in patient record
analysis, in disease diagnosis andmonitoring,
and in customized treatment plans.
Contemp. Read. Law Soc. Justice 15, 152.

38. Zhang, Z., Zhang, A., Li, M., and Smola, A.
(2022). Automatic Chain of Thought
Prompting in Large Language Models.
Preprint at arXiv. https://doi.org/10.48550/
arXiv.2210.03493.

39. Yang, X., Chen, A., PourNejatian, N., Shin,
H.C., Smith, K.E., Parisien, C., Compas, C.,
Martin, C., Costa, A.B., Flores, M.G., et al.
(2022). A large language model for electronic
health records. NPJ Digit. Med. 5, 194.
https://doi.org/10.1038/s41746-022-00742-2.

40. Jiang, L.Y., Liu, X.C., Nejatian, N.P., Nasir-
Moin, M., Wang, D., Abidin, A., Eaton, K.,
Riina, H.A., Laufer, I., Punjabi, P., et al. (2023).
Health system-scale language models are all-
purpose prediction engines. Nature 619,
357–362. https://doi.org/10.1038/s41586-
023-06160-y.

41. Steinfeldt, J., Buergel, T., Loock, L., Kittner,
P., Ruyoga, G., Zu Belzen, J.U., Sasse, S.,
Strangalies, H., Christmann, L., Hollmann, N.,
et al. (2022). Neural network-based
integration of polygenic and clinical
information: development and validation of a
prediction model for 10-year risk of major
adverse cardiac events in the UK Biobank
cohort. Lancet. Digit. Health 4, e84–e94.
https://doi.org/10.1016/S2589-7500(21)
00249-1.

42. OpenAI Platform. https://platform.openai.
com/docs/api-reference/chat/create.

43. Rademaker, D.T., Xue, L.C., ’t Hoen, P.A.C.,
and Vriend, G. (2022). Entropy and Variability:
A Second Opinion by Deep Learning.
Biomolecules 12, 1740. https://doi.org/10.
3390/biom12121740.

44. DeLong, E.R., DeLong, D.M., and Clarke-
Pearson, D.L. (1988). Comparing the areas
under two or more correlated receiver
operating characteristic curves: a
nonparametric approach. Biometrics 44,
837–845.

ll
OPEN ACCESS

iScience 27, 109022, February 16, 2024 9

iScience
Article

https://doi.org/10.3389/fmed.2020.00027
https://doi.org/10.3389/fmed.2020.00027
https://doi.org/10.1016/j.gie.2020.06.040
https://doi.org/10.1016/j.gie.2020.06.040
https://doi.org/10.1056/NEJMsr2214184
https://doi.org/10.1056/NEJMsr2214184
https://doi.org/10.3389/frai.2023.1169595
https://doi.org/10.3389/frai.2023.1169595
https://doi.org/10.1001/jama.2023.5321
https://doi.org/10.1001/jama.2023.5321
https://doi.org/10.1038/s41591-023-02448-8
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.13375
https://doi.org/10.48550/ARXIV.2303.13375
https://doi.org/10.1001/jamanetworkopen.2023.36483
https://doi.org/10.1001/jamanetworkopen.2023.36483
https://doi.org/10.1001/jamainternmed.2023.1838
https://doi.org/10.1001/jamainternmed.2023.1838
https://doi.org/10.1148/radiol.230725
https://doi.org/10.1148/radiol.230725
https://doi.org/10.1161/CIR.0000000000000678
https://doi.org/10.1161/CIR.0000000000000678
https://doi.org/10.48550/arXiv.2305.00050
https://doi.org/10.48550/arXiv.2305.00050
https://doi.org/10.1001/jama.2014.2632
https://doi.org/10.1016/j.cjca.2016.07.510
https://doi.org/10.1016/j.cjca.2016.07.510
https://doi.org/10.48550/ARXIV.2009.13081
https://doi.org/10.1038/s41586-023-06291-2
https://doi.org/10.1038/s41586-023-06291-2
https://doi.org/10.48550/ARXIV.2305.09617
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref35
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref35
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref35
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref35
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref35
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref35
https://doi.org/10.1080/00131857.2023.2213437
https://doi.org/10.1080/00131857.2023.2213437
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref37
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref37
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref37
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref37
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref37
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref37
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.1038/s41746-022-00742-2
https://doi.org/10.1038/s41586-023-06160-y
https://doi.org/10.1038/s41586-023-06160-y
https://doi.org/10.1016/S2589-7500(21)00249-1
https://doi.org/10.1016/S2589-7500(21)00249-1
https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create
https://doi.org/10.3390/biom12121740
https://doi.org/10.3390/biom12121740
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref44
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref44
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref44
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref44
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref44
http://refhub.elsevier.com/S2589-0042(24)00243-8/sref44


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Dukyong Yoon (dukyong.yoon@yonsei.ac.kr).

Materials availability

This study did not generate new materials.

Data and code availability

The UK Biobank data access has been approved. The application number for UK Biobank is 85037. And The KoGES data access has been

approved. The application number for KoGES is 6635-302.

All original code has been deposited at https://github.com/CMI-Laboratory/GPTCVD/ and is publicly available as of the date of publica-

tion. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participant data information

TheUKBiobank is a large-scale prospective cohort study initiated in 2006 to investigate the genetic and non-genetic determinants of diseases

common inmiddle-aged and older populations. The study compiled health data from around 500,000 participants, ranging in ages from 40 to

70 years, from diverse socioeconomic and ethnic backgrounds across the United Kingdom. The collection process spanned across England,

Scotland, and Wales at 22 assessment centers. The assessment involved both self-completed touchscreen questionnaires and face-to-face

interviews to garner detailed information. Additionally, physical and functional measures were taken, and a variety of biological samples

were collected.15

The KoGES is a community-based cohort study that has collected health-related information from over 10,000 Korean participants aged 40

and over since 2001. This study conducts recurrent health screenings and surveys every 2 to 4 years and employs passive follow-up through

linkage with other national databases.14

In this study, we used data from 47,468 participants from the UK Biobank and 5,718 participants from KoGES, focusing on completeness of

records for cardiovascular disease diagnosis, age, sex, cholesterol levels, systolic and diastolic blood pressure, body mass index, smoking

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UK Biobank dataset https://www.ukbiobank.ac.uk/ The UK Biobank data access has been

approved. The application number is 85037.

KoGES dataset https://nih.go.kr/eng/ The KoGES data access has been approved.

The application number is 6635-302.

Software and algorithms

Python https://www.python.org/ Version 3.10.6

scikit-learn https://scikit-learn.org/ Version 1.2.2

Scipy https://scipy.org/ Version 1.10.1

lifelines https://pypi.org/project/lifelines/ Version 0.27.7

matplotlib https://matplotlib.org/ Version 3.7.1

openai https://openai.com/blog/openai-api/ Version 0.27.8

gpt-4 https://platform.openai.com/docs/models/

gpt-4/

Version gpt-4-0613

gpt-3.5 https://platform.openai.com/docs/models/

gpt-3-5/

Version gpt-3.5-turbo-0613

R https://www.r-project.org/ Version 4.2.0

pROC https://github.com/cran/pROC/ Version 1.18.4
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status, hypertension medication usage, and diabetes status. More detailed information related to participants is provided in the ‘‘method

details’’ section of this paper.

METHOD DETAILS

Data sources and outcome

We used data from the UK Biobank cohort, a large-scale biomedical database of the UK general population. Established in 2006, the UK Bio-

bank cohort is one of the major international health resources that has collected extensive data and biological samples from approximately

500,000 participants aged between 40 and 69 years at the time of assessment (Figure S1). We used the UK Biobank database to extract data

pertaining to age, sex, diabetes diagnosed by a doctor, blood pressure medication, smoking status, total cholesterol, HDL cholesterol, LDL

cholesterol, triglycerides, SBP, DBP, standing height, weight, date of attending the assessment center, and date of death.

Utilizing the UK Biobank, the outcome was 10-year CVD risk defined by MACE, which represents the most fatal and predominant occur-

rence of CVD.41 A MACE is defined as a composite outcome comprising myocardial infarction or ischemic stroke. For extracting a MACE, we

employed an outcome variable known as first occurrences, which consolidates data from various sources within the UK Biobank, including

primary care and hospital inpatient records, the death register, and self-reported medical conditions. This outcome is organized based on

the earliest recorded instance for each condition, as classified by the International Classification of Diseases, 10th Revision (ICD-10) codes.

For our analysis, we focused on the ICD-10 codes I21, I22, I23, I24, and I25 for fatal or non-fatal myocardial infarction, and I63 and I64 for

ischemic stroke. A total of 103,817 participants with missing data were excluded (Figure S1). Of the remaining participants, after randomly

selecting 50,000 participants, 2,532 patients who had previously experienced MACEs were further excluded, leaving 47,468 subjects for

the analysis.

In addition, we used KoGES data as an additional validation cohort. The KoGES is a large-scale prospective study designed to investigate

the genetic and environmental factors contributing to chronic diseases in the Korean population.14 We used baseline data from the KoGES

cohort collected between 2001 and 2002 to extract variables analogous to those used in the UK Biobank. These variables included age, sex,

diagnosis of diabetes by a physician, blood pressure medication use, smoking status, total cholesterol, HDL cholesterol, triglycerides, SBP,

DBP, height, and weight. LDL cholesterol levels were calculated based on total cholesterol, HDL cholesterol, and triglyceride levels. In align-

ment with the criteria established by the KoGES, the onset of MACEwas defined as the occurrence of either myocardial infarction or ischemic

stroke subsequent to the investigation date. Out of an initial 10,030 participants, 875 with missing data were excluded (Figure S2). An addi-

tional 3,437 participants, who were not followed up at the 10-year mark, were also omitted, resulting in a final cohort of 5,718 subjects for

subsequent analysis.

Cardiovascular risk calculation with conventional risk prediction models

The Framingham and the ACC/AHA risk scores are widely accepted algorithms for estimating an individual’s 10-year risk of developing CVD.

For the calculation of these risk scores, we referred to the guidelines outlined by Anderson et al. (2016) for Framingham risk score and Arnett

et al. (2019) for ACC/AHA risk score.28,31 These risk assessment tools incorporate multiple variables such as age, sex, blood pressure, choles-

terol levels, smoking status, and the presence of diabetes to generate a risk percentage. For the Framingham risk score, individuals were

categorized into low, moderate, or high-risk groups based on calculated risk percentages, utilizing thresholds of 10% and 20%. On the other

hand, the ACC/AHA risk score used thresholds of 7.5% and 20%. It should be noted that the original ACC/AHA risk score guidelines cate-

gorize risk as lowest for scores below 5% and borderline for scores between 5% and 7.5%. For the purpose of this study, we have simplified

the categories to low, moderate, and high risk and have considered scores below 7.5% as low risk.

Cardiovascular risk prediction leveraging GPT-3.5-turbo and GPT-4

To predict the incidence of CVDs using GPT, we transformed the variables into a sentence structure, as exemplified in Figure 1. The decision

to use this conversion was based on the inherent language model nature of LLMs. We prompted the GPT to answer only the risk percentage

rather than extensive text narratives. Information on each participant (age, sex, diabetes, hypertension, smoking status, total cholesterol, LDL

cholesterol, HDL cholesterol, triglycerides, systolic blood pressure, diastolic blood pressure, and BMI (calculated from height andweight) was

provided to the LLMs, and the 10-year CVD risk percentage was extracted using regular expressions from the corresponding answers. Based

on the 10-year CVD risk percentage, <10% was classified as low risk, 10% and <20% as moderate risk, and >20% as high risk.

Determining the optimal temperature settings for GPT-4

For using GPT, we used the OpenAI application programming interface (API) (GPT-3.5-turbo and GPT-4) in a Python environment to stream-

line the extraction of results. In the GPTmodel, various hyperparameters are available to control the variability of responses, notably the ’tem-

perature’ and ’top-k’ settings. The temperature parameter in GPT-4 adjusts the model’s output diversity, acting as a measure of ’creative

freedom’, while top-k limits the word choices to enhance prediction accuracy.42 Given that the significance of the top-k setting tends to

be greater when the temperature is high, we chose to keep the top-k setting at its default value for this experiment. We aimed to find the

optimal temperature settings for GPT-4 as follows:

In the UK Biobank cohort, prior to our main experiments involving 47,468 subjects as depicted in Figure S1, we initially selected a random

sample of 2,000 individuals from this 47,468 subjects to determine the optimal temperature settings for GPT-4 and to assess GPT’s response

ll
OPEN ACCESS

iScience 27, 109022, February 16, 2024 11

iScience
Article



variability. We adjusted the temperature in increments of 0.2, ranging from 0 to 1, and for each setting, we performed five iterations of the

10-year CVD risk prediction using GPT on the same sample. Firstly, we computed the average risk score from the five iterations for each sub-

ject and then calculated the AUROC for this average risk score in predicting 10-year CVD incidence. Secondly, we determined the coefficient

of variation (CV) for the iterations per subject and calculated the averageCV across all subjects to quantify the variability of theGPT-based risk

score. Third, we calculated the entropy of the average risk score from the five iterations for each subject to statistically assess the spread and

distribution of the GPT-based predictions.43 The calculated AUROC, CV and entropy values are shown in Figure S4A. The CV and entropy

increased gradually with higher temperature settings: from 0.087 to 8.233 at a temperature of 0.0, to 0.179 and 10.021 at a temperature of

0.4, and 0.290 and 10.196 at a temperature of 1.0. The highest AUROC was observed at a temperature of 0.4 (0.735), while the lowest was

at a temperature of 1.0 (0.717).

To determine the optimal temperature setting, we juxtaposed CV, entropy, and AUROC within a single graph (Figure S4B). To align the

trends of CV, in which an increase in value indicates increased variability of the GPT-based risk score, with that of entropy, in which an increase

in value indicates a more evenly distributed spread of the predicted scores (more fine-grained), and AUROC, in which an increase in value

indicates an increase in GPT’s 10-year CVD prediction performance, we inverted the CV values, representing them as -CV in Figure S4B

for a coherent comparison. A tradeoff between entropy and -CV values can be observed as temperature increases. We identified the tem-

perature setting of 0.4 as the confluence point where entropy and -CV intersect, also with the highest AUROC values, signifying it as the

optimal juncture for the model’s performance, as elucidated in Figure 2B. Examining the distribution of answers via scatterplots at different

temperature settings, we observed that at lower temperatures such as 0.0 or 0.2, the answers were not uniformly distributed. Instead, they

were more likely to cluster around specific values (e.g., 10, 20), which we call the ‘streaking’ phenomenon, as illustrated in Figures S4A

and S5. GPT-4 risk score derived from an experiment with one iteration from the samples resulted in a more accentuated ‘streaking’ than

GPT-4 risk score derived from an experiment with five iterations from the samples (Figure S6).

For the evaluation of GPT-4’s 10-year CVD risk prediction capabilities using the optimal temperature setting determined by the above

procedure, we conducted five iterations for bothGPT-3.5-turbo andGPT-4models on the selectedUKBiobank and KoGES study populations

(Figures S1 and S2), comparing their predictive performance for MACEs against established models such as the Framingham and ACC/AHA

risk scores. The average risk score from the five iterations for each subject was determined to be the final risk score.

Performance evaluation

To assess the predictive accuracy of each scoring method for MACE, receiver operating characteristic (ROC) curve analysis was conducted.

The AUROC and AUPRC was calculated to quantify the overall discriminative ability of each scoring system. The risk threshold for calculating

accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) was set at 20%, which was used to differ-

entiate the high-risk group from the rest in all risk scoring methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

To rigorously assess the statistical significance of differences in baseline characteristics among the risk groups, we conducted tests tailored to

the characteristics of each variable. As all continuous variables failed to meet the criteria for normality as assessed by the Shapiro–Wilk

method, we employed the Kruskal–Wallis test for comparisons across different risk groups. For categorical variables, the chi-squared test

was used to evaluate the statistical significance of differences among the groups. To compare the AUROCs between different scoring sys-

tems, the DeLong test was conducted.44 The relationships between the scoring systems (GPT-4, GPT-3.5-turbo, Framingham, and ACC/

AHA risk scores) were evaluated by plotting scatterplots and calculating Pearson’s correlation coefficient. The Kaplan–Meier method was

applied to plot survival curves for the low-, moderate-, and high-risk groups based on the risk scoring methods. To statistically compare

the survival functions across these risk groups, the pairwise log rank test with post-hoc Bonferroni correction was utilized. A p-value <0.05

was considered significant in all tests.
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