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Abstract
The 3D modeling of orbital bones in facial CT images is essential to provide a customized implant for reconstructions of orbit 
and related structures during surgery. However, 3D models of the orbital bone show an aliasing effect and disconnected thin 
bone in the inter-slice direction because the slice thickness is two to three times larger than the pixel spacing. To improve 
the inter-slice resolution of facial CT images, we propose a method based on a 2D convolutional neural network (CNN) that 
uses the spatial information on the sagittal and axial planes and the orbital bone edge-aware (OBE) loss. First, intermediate 
slices are generated on the sagittal plane. Second, the generated intermediate slices are transformed to an axial image, which 
is then compared with the original axial image. To generate intermediate slices with an accurate orbital bone structure, the 
OBE loss considering the orbital bone structure on the sagittal and axial planes is used. To improve the perceptual quality 
of the generated intermediate slices, the feature map difference loss is additionally used on the axial plane. In the experi-
ment, the proposed method showed the best performance among bilinear and bicubic interpolations, 3D SRGAN, and a 2D 
CNN-based method. Experimental results confirmed that the proposed method can generate intermediate slices with clear 
edges of thin bones as well as cortical bones on both the sagittal and the axial plane.

Keywords  Facial CT · Orbital bone · Thin bone · Inter-slice resolution · Convolutional neural network

Introduction

The orbit is a socket of the skull with a four-sided pyramid 
structure that protects the eyes and blood vessels. As shown 
in Fig. 1a, the orbit is composed of the orbital roof, the 
orbital lateral wall, the orbital medial wall, and the orbital 
floor. In particular, the thin bones of the orbital medial wall 
and the orbital floor are easily fractured, even with a weak 
impact. In order to reconstruct the orbit surgically, it is nec-
essary to create a customized implant by reconstructing the 

orbital bone into a 3D model [1]. However, as shown in 
Fig. 1b, the 3D model of the orbital bone shows an aliasing 
effect and disconnected thin bone in the inter-slice (z-axis) 
direction, as the slice thickness of the CT image is two to 
three times larger than the pixel spacing. Therefore, it is 
necessary to improve the inter-slice resolution of facial CT 
images before reconstructing the orbital bone into a 3D 
model.

Interpolation is a conventional method used to improve 
the inter-slice resolution, and bilinear interpolation [2] and 
bicubic interpolation [3] are the most commonly used forms 
with two-dimensional images. Bilinear interpolation is a res-
ampling method that estimates a new pixel value using the 
distance-weighted average of the four nearest pixel values. 
Bicubic interpolation is a resampling method that estimates 
new pixel values using a cubic spline with the weighted 
sum of the sixteen nearest pixel values. These methods 
are fast and convenient but often generate over-smoothed 
boundaries.

Recently, deep-learning-based methods such as the con-
volutional neural network (CNN) or generative adversarial 
network (GAN) have been proposed to improve the inter-slice 
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resolutions of medical images. In the CNN-based method, 
Bae et al. [4] proposed a 2.5D network based on a fully resid-
ual CNN to improve the inter-slice resolution of chest CT 
images and used it to detect lung nodules. The 2.5D network 
uses consecutive coronal images as input to consider the 
spatial correlation between the coronal and sagittal planes. 
Georgescu et al. [5] proposed a 2D CNN-based network to 
improve the inter-slice resolution of brain MRI. The pro-
posed 2D CNN takes coronal images as input. The network 
consists of two convolutional blocks. The first convolutional 
block is for generating images with improved inter-slice reso-
lutions, and the second convolutional block is for refining 
the detail differences between the generated image and the 
original image. Jurek et al. [6] proposed a 2D CNN-based 
method to improve the inter-slice resolution of brain MRI 
and utilized it for vessel radius estimations. Yun et al. [7] 
proposed Orbital Bone-Super Resolution (OB-SR) based on 
a 2D CNN with sagittal Thin-Bone Structure Aware (TSA) 
loss to improve the inter-slice resolution of head-and-neck 
CT images. These 2D CNN-based methods produce images 
of much higher quality than interpolation-based methods. 
However, because these methods only use spatial informa-
tion on one plane, such as the coronal or sagittal plane, the 
boundaries are jagged on the axial plane of the generated 
intermediate slices. The basic idea of the GAN is to train 
the generator to produce images with improved inter-slice 
resolutions while simultaneously training the discriminator 
to distinguish a given image as either original or generated. 
Li et al. [8] proposed 3DSRGAN based on a super-resolution 
GAN (SRGAN) to improve the inter-slice resolution of T2 
FLAIR head MRI. Delannoy et al. [9] proposed segSRGAN 
to improve the inter-slice resolution of neonatal brain MRI 
and to segment the brain in the generated image. van der 
Ouderaa et al. [10] applied a reversible GAN (RevGAN) to 
improve the inter-slice resolutions of chest CT images. Kudo 
et al. [11] proposed the Virtual Thin Slice (VTS) method 
based on a conditional GAN (cGAN) to improve the inter-
slice resolutions of CT images of various body parts. These 

methods typically use the mean squared error (MSE) or mean 
absolute error (MAE) as the loss function. Given that the 
MSE and MAE are defined based on the difference in the 
intensity values in pixels, they cannot restore fine details such 
as edges [12]. Several GAN-based methods have been pro-
posed to generate images with clear edges using the gradient 
difference as a loss function of the generator. Liu et al. [13] 
proposed Edge-Enhanced SRGAN (EE-SRGAN), a 2D net-
work that uses a hybrid loss function, which is a combination 
of the MSE loss and the edge loss, to improve the inter-slice 
resolutions of brain MRI. Chai et al. [14] proposed a 2D net-
work, Edge-Guided GAN (EG-GAN), to improve the inter-
slice resolutions of brain MRI. The input of EG-GAN is a 
coronal image with the intermediate slices being blank rows. 
EG-GAN estimates a gradient map of the blank rows and 
then estimates the intensity values of the blank rows based on 
the estimated gradient map. Although these methods generate 
images with sharper boundaries than methods that use only 
MSE or MAE as the loss function, they are insufficient when 
used to consider small objects such as thin bones, as they 
minimize the gradient difference in the entire image.

In this paper, we propose a method for improving the 
inter-slice resolution to reduce the aliasing effect of the 
3D-reconstructed orbital bone. To improve the inter-slice 
resolutions of facial CT images, intermediate slices are 
generated using spatial information of the sagittal plane. To 
generate intermediate slices with an accurate orbital bone 
structure on the axial and sagittal planes, the generated 
intermediate slices are transformed to the axial planes and 
compared with the original axial images. To generate inter-
mediate slices with clear edges of thin bones as well as the 
cortical bone, an orbital bone label mask is used to consider 
the information of the orbital bone structure. To improve 
the perceptual quality of the generated intermediate slices 
on the axial plane, the feature map difference is used as an 
additional loss function.

Materials

Our study was approved by the Institutional Review Board 
of Severance Hospital, Yonsei University College of Medi-
cine, Seoul, Korea (IRB number: 4–2016-0603). The data-
set used in this paper included facial CT images of 355 
patients, consisting of 217 men and 138 women, aged 13 to 
83 years with a mean age of 34.4 years. The CT images were 
acquired from six different CT scanners, including those by 
GE Medical Systems (Revolution EVO, Revolution CT), 
Siemens (Sensation 64, Somatom Definition Flash, Defini-
tion AS +), and Philips (Philips iCT 256 scanner), with set-
tings of 100 kVp and 100 ~ 300 mAs. The CT images were 
reconstructed using the following seven kernels: STAND-
ARD, H30f, H31f, H31s, H40s, UB, and ULTRA. Each CT 

Fig. 1   Characteristics of the orbital bone: a structure of orbit, 
b 3D-reconstructed model of the orbital bone from CT images with 
a thick slice thickness. The red arrow indicates the disconnection of 
the orbital floor
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image had a matrix size of 512 × 512 pixels with in-plane 
resolutions ranging from 0.4 to 0.619 mm and with a slice 
thickness of 1 mm. The dataset was randomly divided into 
228 datasets for training, 56 datasets for validation, and 71 
datasets for testing.

Methods

Overview

The proposed method, shown in Fig. 2, consists of two 
major stages: intermediate slice generation on the sagittal 
plane and orbital bone quality improvement on the axial 
plane. In the first stage, intermediate slices with clear edges 
of the orbital bone are generated using consecutive sagit-
tal CT images and orbital bone label masks. In the second 
stage, to refine the edges of the orbital bone, the generated 
intermediate slices are transformed to the axial plane image 
and compared with the original axial image in the orbital 
bone area.

Data Preprocessing

The intensity values of trabecular and thin bone are dis-
tributed in the range of 50 ~ 200 HU, the intensity values 
of soft tissue are distributed in the range of − 200 ~ 100 
HU, and the intensity values of cortical bone are mostly 
over 1000 HU. To highlight the orbital bone and surround-
ing tissue regions in the facial CT image, the intensity 

range of [− 200 HU, 400 HU], which includes the inten-
sity values of thin bone, surrounding soft tissues, cortical 
bone, and trabecular bone, is rescaled to the gray scale [0, 
255]. Intensity rescaling is performed using the following 
equation:

where I is the intensity value of the CT image before inten-
sity rescaling and Imin and Imax are – 200 HU and 400 HU, 
representing the minimum and maximum intensity values of 
the range to be rescaled, respectively.

In order to consider only the orbital bone area in the 
facial CT image, the region of interest (ROI) is defined as 
172 × 205 × 48 in size, which is the maximum size to account 
for the orbital bones of all patients. To generate the input 
image of the proposed network, the CT images are down-
sampled to half the size of the original image in the inter-
slice direction. To consider as well the information of orbital 
bone area, an orbital bone label mask with a 1-pixel dilation 
level is also used as input.

Intermediate Slice Generation in Sagittal Plane

When using typical loss functions such as MSE or MAE, 
which account for intensity differences, the edges of thin bones 
may be blurred in the generated intermediate slices because 
thin bones have low intensity values, similar to those of the 
surrounding soft tissues. Therefore, to consider a thin bone 
with a small area, the orbital bone edge-aware (OBE) loss is 

(1)Inew =

(
I − Imin

Imax − Imin

)
× 255

Fig. 2   Architecture of the proposed network. Green and red arrows 
indicate the convolutional and up-sampling layers, respectively. The 
blue arrow with the solid line indicates a long-skip connection and 

the blue arrows with the dashed lines indicate short-skip connections. 
The numbers below the output after the convolutional layer (green 
arrow) indicate the number of feature maps in each convolution layer
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used together with the orbital bone label mask to minimize the 
gradient differences of the orbital bone.

A 2D CNN consists of six convolutional layers for feature 
extraction, an up-sampling layer to generate the intermediate 
slices, and four convolutional layers for image detail refine-
ment. To extract the feature maps, convolutional layers with a 
3 × 3 kernel size are used, with zero-padding applied to keep 
the size of each feature map equal to the input image. In the 
first six convolutional layers, each convolutional layer from the 
first to fifth extracts 32 feature maps, and the sixth convolu-
tional layer extracts two feature maps. To maintain information 
from low-level feature maps such as textures and gradients, a 
short skip connection and a long skip connection add the fea-
ture map of the first convolutional layer to the feature maps of 
the third and fifth convolutional layers, respectively. After the 
sixth convolutional layer is completed, an up-sampling layer 
using sub-pixel convolution [15] is completed to double the 
resolution in the inter-slice direction. To improve the differ-
ences that still remain in the details between the original image 
and the output image of the up-sampling layer, four additional 
convolutional layers using a 3 × 3 kernel size are completed. 
The first to third convolutional layers generate 32 feature maps, 
and the last convolutional layer outputs the final image of one 
channel.

The sagittal loss function consists of two MAE losses and 
the OBE loss. The MAE loss is calculated the difference in 
intensity between the original image and the generated image 
using Eq. (2). To refine the image detail, another MAE loss 
value is calculated as the intensity difference between the 
original image and the output image of the up-sampling layer 
using Eq. (3).

(2)LSAG
MAE

=
1

WH

W∑

i=1

H∑

j=1

|||SR
S
i,j
− OS

i,j

|||

(3)L
SAG∕UP

MAE
=

1

WH

W∑

i=1

H∑

j=1

|||SR
UP
i,j

− OS
i,j

|||

In these equations, W  and H are respectively the width 
and height of the original sagittal image and i and j are 
likewise the indices of the pixel location. SRUP is the out-
put image of the up-sampling layer, SRS is the final output 
image of the last convolutional layer, and OS is the original 
sagittal image.

To minimize the gradient difference only in the orbital 
bone area, the orbital bone label mask is used as an indicator 
of the orbital bone area. The OBE loss is calculated using 
Eq. (4).

where W  and H are correspondingly the width and height 
of the original sagittal image, i and j are the indices of the 
pixel location, SRS is the final output image of the last con-
volutional layer, and OS is the original sagittal image. Addi-
tionally, E(SRS) and E(OS) are respectively the edge maps 
extracted from SRS and OS using Sobel operator and MS is 
the orbital bone label mask of the sagittal image, where the 
orbital bone area is 1 and the background is 0.

Orbital Bone Quality Improvement in Axial Plane

As shown in Fig. 3, intermediate slices generated using only 
the spatial information of the sagittal plane have problems 
such as jagged edges of cortical bone and disconnected 
edges of thin bone. To solve these problems, the generated 
intermediate slices are refined using additional axial loss 
functions to consider the structural information of the orbital 
bone on the axial plane.

The axial loss function consists of the axial MAE loss, 
the axial OBE loss, and the feature map difference loss. 
The axial MAE loss is calculated using Eq. (5). To gener-
ate intermediate slices with clear edges of the orbital bone 
on the axial plane, the axial OBE loss is calculated using 
Eq. (6). To refine the fine details and edges of the generated 

(4)LSAG
Edge

=

W∑

i=1

H∑

j=1

|||E(SR
S)i,j − E(Os)i,j

||| ∗ MS
i,j

Fig. 3   Examples of blurry edges and disconnections of the orbital 
bone caused by generating intermediate slices using only spatial 
information from the sagittal plane: a original slice of cortical bone, 

b blurred edges of the cortical bone in the intermediate slice, c origi-
nal slice of the thin bone of the orbital floor, and d disconnected 
edges of the thin bone of the orbital floor
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intermediate slices, the feature map difference loss is calcu-
lated as the difference from the feature map extracted by a 
pre-trained VGG16 [16] network using Eq. (7). The VGG16 
network is a classification model trained using the ImageNet 
dataset [17]. The feature maps extracted from the VGG16 
network contain high-level image feature representations 
inferred from the deep CNN; minimizing the differences in 
the feature maps helps to generate images that are perceptu-
ally close to the original image.

Here, SRA is the generated intermediate slice, OA is the 
original axial image, i and j are the pixel positions, and W 
and H are the width and height of the original axial image, 
respectively. MA the orbital bone label mask of the axial 
image, where the orbital bone area is 1 and the background 
is 0. �x,y indicates the feature map obtained by the x th con-
volutional layer before the y-th maxpooling layer within the 
VGG16 network. Wx,y and Hx,y are width and height of the 
feature map �x,y , and x and y are set to 3.

Results

We trained the proposed network with the Adam optimizer 
by setting �1 = 0.9, �2 = 0.999, and � = 10−8 . The learn-
ing rate was set to 10−3 . The proposed network was imple-
mented in Python 3.6.9 and Tensorflow and trained using 
four GeForce GTX 1080Ti GPUs.
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To validate the performance of the proposed method, the 
generated images were evaluated qualitatively and quantita-
tively. For the comparison methods, bilinear interpolation, 
bicubic interpolation, 3D SRGAN [18], and the 2D CNN-
based method proposed by Georgescu et al. [5] were used. 
For the accurate performance evaluation, the evaluation ROI 
was divided into the three evaluation ROIs of the whole 
orbital bone, the thin bone of the orbital medial wall, and 
the thin bone of the orbital floor (Fig. 4). The evaluation 
ROI of the whole orbital bone was defined for each patient 
as the maximum size to include the whole orbital bone label 
mask, and the evaluation ROIs of the orbital medial wall 
and the orbital floor are manually defined for each patient to 
include the orbital medial wall and the orbital floor between 
the eyeball and nasal cavity. For a quantitative evaluation, 
the generated images were compared to the original images 
using three evaluation metrics: the peak signal-to-noise ratio 
(PSNR) [19], the structural similarity index (SSIM) [20], 
and the visual information fidelity (VIF) [21]. The PSNR is 
measured for the intensity difference based on MSE (Eq. (8)) 
and is calculated as the ratio between the maximum intensity 
value of the original image and the intensity difference using 
Eq. (9). The higher the PSNR value is, the closer it is to the 
original image. The SSIM measured structural differences 
and captured the similarities between the generated image 
and the original image by considering the intensity, contrast, 
and structure using Eq. (10). The SSIM value is between 0 
and 1, where a value of 1 means that the original image and 
the generated image are identical. The VIF was measured for 
perceptual differences such as noise and blur; to reflect the 
human perception, it uses human visual system (HVS) based 
on a Gaussian scale mixture model. The VIF is calculated 
as Eq. (11) and the value is between 0 and 1, where a value 
of 1 means that the original image and the generated image 
are identical.

(8)MSE =
1

PQ

P∑

i=1

Q∑

j=1

(xi,j − yi,j)
2

Fig. 4   Three evaluation ROIs 
for the inter-slice resolution 
improvement of the orbital bone 
in facial CT images: a evalua-
tion ROI of the whole orbital 
bone, b the orbital medial wall, 
and c the orbital floor
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In these equations, x is the image with the improved inter-
slice resolution and y is the original image, i and j are the 
pixel positions, P and Q are the width and height of the 
orginal image, MAX2

I
 is the square of the maximum intensity 

value, �x and �y are the mean pixel values of x and y , �2
x
 and 

�2
y
 are the variance values of x and y , �xy is the covariance 

between x and y , and C1 and C2 are variables to stabilize the 
division with a weak denominator. X and Y  are the outputs 
of HVS when the inputs are x and y, considered as the visual 
signal. �⃗yN,j is the result of the wavelet decomposition of y ; j 
denotes the indices of the subbands in �⃗yN,j , and N represents 
the indices of the element in subband j . I(�⃗yN,j; �⃗X

N,j
|sN,j) is the 

mutual information of y and X , which is considered as the 
information extracted by the brain when the generated image 
is observed by a human. Likewise, I(�⃗yN,j; �⃗Y

N,j
|sN,j) is the 

mutual information of y and Y  , which is considered as the 
information extracted by the brain when the original image 
is observed by a human. sN,j is the HVS model parameter.

Figure 5 shows the qualitative evaluation results of sagit-
tal images with improved inter-slice resolutions using the 
comparative methods and the proposed network. With the 
use of the bilinear and bicubic interpolation methods, the 
aliasing effect remained in the sagittal images. For the 3D 
SRGAN method, the aliasing effect was reduced in the sag-
ittal image, but the edges are blurred compared to those in 

(9)PSNR = 10 ⋅ ���10(
MAX2

I

MSE
)

(10)SSIM =
(2�x�y + C1)(2�xy + C2)

(�2
x
+ �2

y
+ C1)(�

2
x
+ �2

y
+ C2)

(11)VIF =

∑
j∈subbandsI(�⃗y

N,j
; �⃗X

N,j
�sN,j)

∑
j∈subbandsI(�⃗y

N,j
; �⃗Y

N,j
�sN,j)

the original image. With the 2D CNN-based method, the 
resulting images are similar to the original image and the 
edges are clearer than in the 3D SRGAN case. When using 
the proposed network, the resulting images are similar to the 
original images and show higher contrast on the edges of the 
thin bone compared to the 2D CNN-based method.

Figure 6 shows the intermediate slice images generated 
using the comparative methods and the proposed network. 
The first to third rows represent the cortical bone, the thin 
bone of the orbital medial wall, and the thin bone of the 
orbital floor, respectively. When using the bilinear and bicu-
bic interpolation methods, the edges of the orbital bone are 
unclear and different from those in the original image. With 
the 3D SRGAN method, the generated intermediate slice 
images are more structurally similar to the original images 
than the images generated by the interpolation methods but 
still show blurry edges of the orbital bone. For the 2D CNN-
based method, the edges are clearer than those by the 3D 
SRGAN method but are still jagged for the cortical bone 
and show a disconnection of the edge of the thin bone. In 
the case of the proposed network, the generated intermediate 
slice images have clear edges for both the cortical and thin 
bone, similar to the original images, without any disconnec-
tions at the edges of the orbital bone.

Table 1 shows the results of the quantitative evaluation of 
images with the improved inter-slice resolutions generated 
by the proposed network and by the comparison methods. 
In the whole orbital bone, the PSNR, SSIM, and VIF of 
the proposed network showed the best performance, which 
were estimated as 33.56, 0.9883, and 0.7428, respectively. 
Compared to 3D SRGAN, the proposed method shows cor-
responding improvements of 24.7%, 2.9%, and 39% for the 
PSNR, SSIM, and VIF. The percentage increase is especially 
high in the VIF case, as the 3D SRGAN method generated 
blurry images. Compared to the 2D CNN-based method, 
the proposed method showed corresponding improvements 

Fig. 5   Qualitative evaluation results of the inter-slice resolution improvement on the sagittal planes: a original image, b bilinear interpolation, c 
bicubic interpolation, d 3D SRGAN [16], e 2D CNN [5], and f the proposed network
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of 1.5%, 0.1%, and 1.2% for the PSNR, SSIM, and VIF. In 
the thin bone of the orbital medial wall, the PSNR, SSIM, 
and VIF outcomes by the proposed network showed the 
best performance. Compared to the 3D SRGAN method, 
the proposed method was better by 19.8%, 2.8%, and 23.6% 
in terms of the PSNR, SSIM, and VIF. Compared to the 
2D CNN-based method, the proposed method was better 
by 5.3%, 0.1%, and 0.9% for the PSNR, SSIM, and VIF, 
exceeding the percentage increase of PSNR for the whole 
orbital bone. In the thin bone of the orbital floor, the pro-
posed method showed the best performance, and the PSNR, 
SSIM, and VIF outcomes were higher than those of the 
orbital medial wall. Compared to the 3D SRGAN method, 
the proposed network showed improvements of 23.8%, 2.8%, 
and 37.9% for the PSNR, SSIM, and VIF. Compared to the 
2D CNN-based method, the proposed network was better 
by 1.7% and 1.2% for the PSNR and VIF, exceeding the 
percentage increase of VIF in the orbital medial wall. In the 
comparison between the 2D CNN-based method and the 
proposed network, the percentage increases for PSNR in thin 
bone were higher than those in the whole orbital bone. These 
outcomes demonstrate that the proposed network can effec-
tively generate intermediate slice images with clear edges of 
thin bone areas as well as the cortical bone area.

Discussion

In this paper, we proposed a method to improve the inter-
slice resolution of facial CT images by considering the 
structural information of the orbital bone on the sagittal 
and axial planes. The contribution of the proposed method 
can be summarized in two ways. First, the proposed method 
generates an intermediate slice using spatial information not 
only on the sagittal plane but also on the axial plane. Typi-
cal 2D CNN-based methods use spatial information from 
one plane, such as the sagittal or coronal plane, to infer the 
intermediate slice; accordingly, the axial plane of the inter-
mediate slice has jagged or blurry edges. To rectify this, 
the proposed method uses an additional axial loss function 
to minimize the image difference between the generated 
intermediate slice and the original axial image. Second, 
the proposed method uses a combination of the OBE loss 
and the feature map difference loss to generate intermediate 
slices with orbital bones that are perceptually similar to the 
original image. Using the typical gradient difference loss, 
the edges of the thin bones may not be significantly consid-
ered because they have a small area and low intensity values 
similar to the surrounding tissues. The OBE loss can greatly 
account for the edges of thin bones given its use of an orbital 

Fig. 6   Qualitative evaluation results of inter-slice resolution improvement on the axial planes: a original image, b bilinear interpolation, c bicu-
bic interpolation, d 3D SRGAN [16], e 2D CNN [5], and f the proposed network
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bone label mask to minimize the gradient difference only 
in the orbital bone area. The feature map difference loss is 
additionally used on the axial plane to improve the percep-
tual quality of the generated intermediate slices. The feature 
map difference loss function provides structural informa-
tion of the images, which is difficult to consider when using 
pixel-wise losses such as the MAE or MSE only as the loss 
functions. By minimizing the difference in the feature map 
containing the feature representation of the orbital bone in 
the CT images, it helps to consider the structural information 
of the thin bone on the axial plane and to generate an inter-
mediate slice with an accurate orbital thin bone structure 
that is perceptually similar to the original image.

In the experiment conducted here, we evaluated facial 
CT images generated from down-sampled facial CT images 
using PSNR, SSIM, and VIF as evaluation metrics in three 
evaluation ROIs, in this case, the whole orbital bone, the 
thin bone of the orbital medial wall, and the thin bone of 
the orbital floor. As shown in Table 1, the proposed method 
achieved the highest score in terms of the PSNR, SSIM, and 
VIF and showed the best result for the three evaluation ROIs. 
Compared with bilinear and bicubic interpolation and the 3D 
SRGAN method, the proposed method showed improvement 
of 51.7% and 51.2% and 39.1%, respectively, for the VIF of 
the whole orbital bone, an outcome significantly higher than 
the percentage increases for the PSNR and SSIM metrics. 
This confirms that the proposed method generates CT images 
with an accurate orbital bone structure and clear edges of the 
orbital bones, as VIF captures perceptual differences such as 
noise and blur. Compared to the 2D CNN-based method, the 
proposed method showed improvements of 5.3% and 1.7% 
in the thin bone of the orbital medial wall and the thin bone 
of the orbital floor, respectively, in terms of the PSNR. These 
percentage increases of the PSNR were higher than those of 
the SSIM and VIF due to the very small area of the thin bone, 
and the numerical difference is greater in terms of the pixel-
wise difference than the structural or perceptual difference. 
These results confirm that the proposed method can effec-
tively generate intermediate slices with accurate structures 
and clear edges of thin bones as well as cortical bones.

Although the proposed method achieved the best score 
in the quantitative assessment, the numerical difference 
between the PSNR, SSIM, and VIF metrics may seem insig-
nificant compared to the 2D CNN-based method. Figure 7 
shows the results of a qualitative evaluation of intermedi-
ate slices with enlarged thin bone areas. This figure shows 
that the proposed method generated intermediate slices with 
smooth thin bone edges, whereas the 2D CNN-based method 
generated intermediate slices with jagged or disconnected 
edges of thin bones. This confirms that the proposed method 
is effective when used to generate intermediate slices with 
clear thin bone edges as it accounts for the structure of the 
orbital bone on the axial plane.Ta
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Conclusion

In this paper, we proposed a method to improve the inter-
slice resolution of facial CT images by considering the 
structural information of the orbital bone on the sagittal 
and axial planes. To consider the spatial information of the 
sagittal and axial planes, the proposed method generates 
intermediate slices on the sagittal plane and the generated 
intermediate slices are then transformed to the axial plane 
to compare them with the original axial images. To gen-
erate CT images with an accurate orbital bone structure, 
the OBE loss using an orbital bone label mask is used 
on the sagittal and axial planes to minimize the gradient 
difference only in the orbital bone area. To improve the 
perceptual quality of intermediate slices on the axial plane, 
the feature map difference loss is additionally used. The 
experimental results indicate that the proposed method 
outperformed in quantitative and qualitative evaluations 
among several compared methods. It is confirmed that the 
proposed method can reconstruct an accurate 3D model for 
orbital surgery caused by acute orbital trauma or orbital 
fractures by solving the problems of the aliasing effect and 
thin bone disconnection in facial CT images with thick 
slice thickness. Our method can therefore be utilized to 
provide an accurate customized bone plate for surgical 
reconstructions of fractured orbital thin bones.
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