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Abstract: Terahertz (THz) waves are electromagnetic waves in the 0.1 to 10 THz frequency range,
and THz imaging is utilized in a range of applications, including security inspections, biomedical
fields, and the non-destructive examination of materials. However, THz images have a low resolution
due to the long wavelength of THz waves. Therefore, improving the resolution of THz images is
a current hot research topic. We propose a novel network architecture called J-Net, which is an
improved version of U-Net, to achieve THz image super-resolution. It employs simple baseline
blocks which can extract low-resolution (LR) image features and learn the mapping of LR images
to high-resolution (HR) images efficiently. All training was conducted using the DIV2K+Flickr2K
dataset, and we employed the peak signal-to-noise ratio (PSNR) for quantitative comparison. In our
comparisons with other THz image super-resolution methods, J-Net achieved a PSNR of 32.52 dB,
surpassing other techniques by more than 1 dB. J-Net also demonstrates superior performance on
real THz images compared to other methods. Experiments show that the proposed J-Net achieves a
better PSNR and visual improvement compared with other THz image super-resolution methods.

Keywords: terahertz images; image super-resolution; convolutional neural network (CNN); deep
learning

1. Introduction

Terahertz (THz) imaging, operating within the 0.1 to 10 THz frequency range, is a
rapidly evolving field with applications spanning from security inspections to biomedical
and materials science. The unique characteristics of THz waves, bridging the gap between
microwaves and infrared radiation, offer distinct advantages in these applications. Despite
its potential, THz imaging is hindered by inherent limitations in resolution due to the
longer wavelengths of THz waves compared to visible light. This results in images that are
typically low in resolution, blurred, and noisy, making detailed analysis challenging.

The quest to enhance the resolution of THz images has led to a bifurcated approach:
enhancing the imaging hardware and adopting super-resolution techniques. While hard-
ware advancements can yield improvements, they often come with increased costs and
complexity. Super-resolution methods, on the other hand, provide a more economical
and flexible alternative, leveraging existing imaging systems to achieve high-resolution
(HR) image reconstruction. Traditional methods, including deconvolution techniques like
the Lucy–Richardson algorithm and various interpolation methods, have been instrumen-
tal in initial improvements. However, these approaches often fall short in recovering
high-frequency details and handling noise variations [1–3].

The advent of deep learning and convolutional neural networks (CNNs) has revolu-
tionized the field of image super-resolution. Pioneering techniques like the SRCNN [4],
and subsequent advancements like the VDSR [5] and ESPCN [6] networks, have demon-
strated superior performance in feature extraction and nonlinear modeling, significantly
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outperforming traditional methods. Numerous studies in THz imaging frequently adopt
models originally proposed for optical image super-resolution in their research [7,8]. How-
ever, the direct application of these networks to THz imaging has been limited due to
the unique degradation model of THz images, which includes blurring, downsampling,
and noising with spatially variable characteristics.

In light of these challenges, our work introduces a novel network architecture, J-Net,
an enhanced version of the U-Net framework [9]. U-Net has demonstrated exceptional
performance in the field of image restoration [10–14]. Consequently, it is considered to be
effectively applicable for image super-resolution as well, specifically tailored for THz image
super-resolution. This is because image super-resolution is a subset of image restoration,
focusing on enhancing resolution and detail, which is particularly relevant in the context
of THz imaging where fine details are crucial. J-Net is designed to efficiently extract
features from low-resolution THz images and learn the mapping to HR images. Unlike
previous methods, J-Net is equipped with unique characteristics for super-resolving THz
images, handling degradation models incorporating elements that address blurring, noise,
and downsampling.

Through rigorous experimentation and comparison with established super-resolution
methods, including the Lucy–Richardson deconvolution, Long et al. [7], and Ruan et al. [8],
J-Net demonstrates superior accuracy and visual improvement in THz image super-
resolution. This paper presents a comprehensive analysis of J-Net’s performance, showcas-
ing its effectiveness through quantitative metrics such as peak signal-to-noise ratio (PSNR)
on the DIV2K+Flickr2K dataset, along with qualitative assessments on real THz images.

2. Proposed Method

In this section, we begin by introducing the terahertz imaging system employed in this
study, followed by an overview of the degradation model used to construct our training
dataset. Subsequently, we provide a detailed explanation of the overall architecture of the
proposed J-Net.

2.1. Terahertz Imaging System

We used a reflection-mode THz imaging system to acquire images and THz waveforms,
as shown in Figure 1. The THz pulse was obtained using a femtosecond laser and a
photoconductive antenna. The femtosecond laser had a central wavelength of 1.5 µm and a
pulse width of 80 fs. A fiber-coupled antenna (TERA15-TX-FC, Menlo Systems) was used
as a photoconductive antenna for THz pulse generation, and another fiber-coupled dipole
antenna (TERA15-RX-FC, Menlo Systems) was used to detect the THz signal. To rapidly
acquire the THz signal, we used an ultra-fast scanner with frequency and time-width
settings of 20 Hz and 30 ps, respectively.

The THz signal was amplified through a low-noise current preamplifier (SRS570,
Stanford Research) and then digitized via a data acquisition board. The generated THz
pulses were guided through a polymethylpentene (TPX) lens and plate mirrors. The TPX
lens focused the THz signal onto the sample stage, and the signal reflected from the
sample was guided through a silicon beam splitter, another TPX lens, and into the detector.
In particular, all components of the system, except the sample, were placed within a dry-air
chamber to avoid signal distortion due to water vapor absorption. The sample was placed
in a 3 mm thick crystallized z-quartz window (subject to change). The time-domain signal
obtained at each pixel was converted to the frequency domain via fast Fourier transform
(FFT), thereby endowing each pixel with broadband THz wave characteristics. The sample
was moved along the x and y axes to form a 2D image based on the response of the THz
pulse signal. Each pixel’s time-domain signal can be transformed into the frequency domain
through FFT, giving each pixel in the image its unique broadband THz signal characteristics.
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Figure 1. THz imaging system.

2.2. Degradation Model

To train a model for reconstructing low-resolution (LR) images into high-resolution
(HR) images, pairs of HR and LR images are needed. However, obtaining these pairs from
THz images is challenging. Therefore, it is necessary to degrade HR images to create LR
images that closely resemble the characteristics of THz images. This enables the training of
the model using these artificially created pairs. The degradation model used in this process
is of great importance. It must be effectively designed to simulate the real-world behavior
of THz images to ensure the model’s performance and accuracy in practical applications.

In the context of image super-resolution, the degradation model is typically repre-
sented by the following equation:

ILR = (IHR ∗ k) ↓s +n (1)

where ILR denotes the LR image, IHR represents the HR image, k is the blurring kernel, ∗
refers to the convolution operation, ↓s signifies downsampling by a scaling factor, and n
is the additive Gaussian noise. This model describes how a high-resolution image is
transformed into its low-resolution counterpart. It involves the application of a blurring
kernel k to the high-resolution image, followed by downsampling with a scaling factor s,
and finally the addition of noise n. The goal of THz image super-resolution is to restore the
IHR from the ILR.

The Gaussian blur kernel is often treated as the point spread function (PSF) of the
THz imaging systems. The PSF depends on the imaging system and usually can be
approximately an isotropic Gaussian blur kernel [7]. Given the presence of defocusing in
real-world imaging and the use of a frequency-seeping source by the system, the blur kernel
undergoes changes within a specific range. As a result, to enhance the model’s robustness,
all conceivable blur kernels should be included in the training set. Because obtaining
all the blur kernels experimentally is challenging, and THz beams usually follow the
Gaussian distribution [15,16], we substitute the actual PSF with the Gaussian blur kernels.
The equation is as follows:

G(x, y) =
1

2πσ2 exp [− (x2 + y2)

2σ2 ], (2)
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where σ represents the standard deviation, which is the width of the Gaussian kernel. It is
important to include multiple levels of noise in the training set, as THz waves may produce
varying levels of noise when interacting with different substances.

When forming a Gaussian blur kernel, the standard deviation σ is randomly selected
from a range between α and β. This can be mathematically represented as

σ ∼ U (α, β) (3)

where U (α, β) denotes the uniform distribution in the range. The random selection of
σ introduces variability in the blurring process, which is a crucial aspect in simulating
different levels of image degradation.

2.3. Network Architecture

In this section, we build a novel architecture for THz image super-resolution. We
modify the U-Net [9] architecture by incorporating an additional expansive path at the end.
This modification is aimed at increasing the size of the feature map for super-resolution.
This results in a shape that resembles the letter “J” rather than “U”, as shown in Figure 2.
The original U-Net architecture is a convolutional neural network (CNN) often used for
image restoration. Its structure, shaped like the letter “U”, comprises two parts: the
contraction path for downsampling and the expansive path for upsampling.

1. Contraction path: This section captures contextual information from the image, utiliz-
ing convolutional layers followed by max pooling. This process reduces the image’s
spatial dimensions, enabling the network to extract essential features, which is crucial
for restoring degraded parts of an image.

2. Expansive path: In this part, the network upscales the feature maps to reconstruct the
image at its original resolution. The use of transposed convolutions or up-convolution
layers is common here. This path also involves the concatenation of feature maps
from the contraction path, allowing the network to utilize both high-level and detailed
information, which is critical for accurately restoring image details.

3. Skip connections: A standout feature of U-Net is its use of skip connections. These
connections help transfer detailed information by linking feature maps from the
contraction path directly to the expansive path. This feature is particularly beneficial
in image restoration as it allows for the preservation and incorporation of fine details
in the restored image.

The key differences from the basic U-Net in our approach lie in the addition of an
extra expansive path towards the end and the building blocks used. We adopted the
building block as the simple baseline block [10]. The details of the block are described in
the following subsection.

2.4. Building Block

The J-Net framework utilizes a simple baseline block [10] that extends beyond mere
convolution layers. This essential block combines innovative components used in the latest
image restoration methods. First, it incorporates layer normalization (LN) [17], which
not only streamlines the block’s configuration but also stabilizes the training phase. This
stability allows for an increased learning rate, boosting it from 0.0001 to 0.001, enhancing
both its deblurring and noise reduction capabilities [10]. Secondly, the incorporation of
channel attention in our approach enhances the computational efficiency and imparts
global context to the feature maps. Thirdly, instead of using nonlinear activation functions
like GELU [18], we employ a straightforward gate, which involves an element-wise mul-
tiplication of feature maps. This gate effectively mimics the role of nonlinear activation
functions and contributes to improved performance. Lastly, the block is composed of layer
normalization (LN), convolution, the simple gate, and a streamlined version of channel
attention, termed simplified channel attention (SCA). This configuration excels in image
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restoration tasks, striking a remarkable balance between simplicity and efficacy. This block
and its components are described in Figure 3.
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Figure 2. Network architecture of the proposed J-Net.



Sensors 2024, 24, 932 6 of 13

C
on
v1
×
1

W

H

C/
2

W

H

C/
2

WC/
2

H

(b)

(a)
(c)

Figure 3. Description of building block used in J-Net. (a) Baseline block used in J-Net; (b) simplified
channel attention (SCA) module; (c) simple gate.

3. Experimental Results
3.1. Datasets

Our research utilized a combination of the DIV2K [19] and Flickr2K [20] datasets
for training the THz image super-resolution model. These datasets, integral in the image
processing domain, provided a rich variety of scenarios. DIV2K, with its 1000 diverse
images, including 800 for training and 200 for testing and validation, offered high-quality
2K resolution images. Flickr2K complemented this with additional versatility, allowing for
the creation of datasets from training or validation sets and encompassing both low- and
high-resolution images. This comprehensive approach using both datasets was crucial for
effectively training our THz image super-resolution model.

To test the proposed method, we measure a metal knife (shown in Figure 4) using a
THz time-domain spectroscopy (TDS) system.



Sensors 2024, 24, 932 7 of 13

Figure 4. Optical image of a metal knife used for measuring THz image.

3.2. Implementation Details

During the training phase, we converted the RGB images to the YCbCr color space and
then used only the Y channel. Additionally, we enhanced the DIV2K [19] and Flickr2K [20]
datasets through data augmentation, employing random flipping and rotation with a
probability of 0.5. We standardized the number of baseline blocks to 2 and maintained
a uniform width of 64 in each block. The batch size was set to 32, and image patches
of 96 × 96 were randomly cropped from high-resolution (HR) images for training. We
initiated the training with a learning rate of 1× 10−3, which was progressively decreased to
1× 10−6, following a cosine annealing schedule, as per Loshchilov et al. [21]. The training
was extended up to 200,000 iterations. For implementation, we used the PyTorch deep
learning framework [22], and the experiments were performed using eight NVIDIA A100
GPUs. The optimization was carried out using the Adam optimizer [23], with settings
β1 = 0.9, β2 = 0.99, and a weight decay of 1× 10−4, targeting the minimization of the loss
function:

LMSE =
1
N

n

∑
i=1
||IHR − ISR||2, (4)

where N denotes the number of training samples, IHR denotes the HR image, and ISR
represents the image predicted by a trained super-resolution (SR) model. LMSE denotes the
mean squared error between the HR images and the predicted SR images.

3.3. Results and Discussion
3.3.1. U-Net vs. J-Net

To show the effectiveness of the proposed J-Net, we have compared the original U-
Net [9] and J-Net. In this section, naive convolution layers are used as the building blocks
of the network. U-Net was originally designed for medical image semantic segmentation;
however, it also achieves great performance on image restoration. So, the U-shaped network
structure is widely used in the image restoration field [10–12,24–26]. Since the process
of image super-resolution is one of image restoration, U-Net also could be effective for
image super-resolution. We conducted experiments for three types of network architecture
structures: a series of basic convolution layers followed by a PixelShuffle (PS) layer [6]
called Flat U-Net; U-Net with the PS layer; and J-Net. We measured the peak signal-to-noise
ratio (PSNR) on the DIV2K validation set. Table 1 shows the PSNR results on the DIV2K
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validation set, and indicates that J-Net is more efficient than other structures in image
super-resolution.

Table 1. U-Net vs. J-Net.

Flat U-Net U-Net J-Net

PSNR 30.17 31.38 31.53

3.3.2. Variation of Degradation Parameter

We randomized the standard deviation σ value of the Gaussian blur between α and β.
We show qualitative and quantitative results for different values of α and β. The range for
the alpha and beta values was determined based on the actual full width at half maximum
(FWHM) measurements used to estimate the point spread function (PSF), as illustrated in
Figure 5. For accurate measurement of the PSF, it is necessary to examine the cross-sectional
image of the object taken at a right angle. In our work, we focused on the central gap of the
blade, highlighted by the red line in Figure 5a, and present the cross-sectional image of this
gap in Figure 5b. Following this, Figure 5b was processed to derive Figure 5c, in which the
PSF is modeled as a Gaussian distribution, enabling the estimation of its standard deviation.
Although the precision of this estimation is somewhat constrained by the limited pixel
count within the blade’s central gap, it still provides sufficient information to establish a
range of standard deviations for use in our experiments. The estimated standard deviation
value of the PSF, assumed to be a Gaussian distribution in Figure 5c, is 0.7. In Table 2,
the smaller the difference between alpha and beta, the higher the PSNR value, and if the
difference is the same, the PSNR is higher for higher alpha–beta values. You can see that
the PSNR is significantly higher when alpha is 0.1 than when it is 0. Figure 6 shows the
inference results using the model in the table: (a) is the original and the rest are the results
of doubling the image resolution compared to the original image. Note the smoother
boundaries compared to the original. It can be seen that the results for α = 0 all tend to
follow the noise of the original image, while for α = 0.1 the noise is smoothed out. At an
alpha of 1, the results do not seem to fully reflect the PSF of the THz system. Therefore, it is
important to choose appropriate values for α and β.

(a) THz image. (b) Pixel intensity values 
from the specified row of (a).

(c) Derivative of the pixel values 
from the specified row of (a).

Figure 5. Estimated point spread function (PSF) based on the actual full width at half maximum
(FWHM).
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Table 2. Comparison of performance based on the values of α and β in the DIV2K validation set.

α β PSNR

0 1 34.96
0 3 34.41
0 5 33.13
0 10 30.09

0.1 1 35.44
0.1 3 35.32
1 2 35.08

(b)(a) (c) (d)

(e) (f) (g) (h)

Figure 6. Experimental results on real THz image of metal knife. (a) Original THz image obtained
at a frequency of 1.0 THz; (b) α = 0, β = 1; (c) α = 0, β = 3; (d) α = 0, β = 5; (e) α = 0, β = 10;
(f) α = 0.1, β = 1; (g) α = 0.1, β = 3; (h) α = 1, β = 2.

3.3.3. Model Comparison

We evaluate the effectiveness of our proposed method by comparing it with several
established techniques, the bicubic interpolation algorithm, the widely recognized Lucy–
Richardson algorithm, Long et al. [7], and U-Net, particularly focusing on real-world THz
images. Since the Lucy–Richardson algorithm is primarily a deconvolution method that
does not enhance image resolution, bicubic interpolation is used after its application to
upscale the image. Table 3 shows that our J-Net surpasses other deep-learning-based
methods [7,8] in terms of the peak signal-to-noise ratio (PSNR). The J-Net model, our
proposed method, has a PSNR of 32.52 and a computational complexity of 9.29 GMac.
While this complexity is notably higher than that of Ruan et al.’s method, which is at
1.39 GMac, it is significantly lower than Long et al.’s model at 126.36 GMac. This positions
J-Net as a balanced approach, offering a superior PSNR with a moderate increase in
computational demand, thereby providing an advantageous trade-off between performance
and complexity. Moreover, Figure 7 presents a visual comparison of a THz image of
a metal knife, clearly indicating that our method effectively recovers image sharpness,
while the Lucy–Richardson algorithm results in distorted artifacts. Figure 8 presents the
Fourier transform outcomes of the original terahertz image and the image inferred by
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J-Net. The original image, represented by Figure 8a, exhibits a comparatively confined
central bright area with less noticeable spread of high-frequency components, indicating
a resolution of average level with less emphasis on fine details and edges. In contrast,
Figure 8b, depicting the inference result from J-Net, shows a significantly more extensive
central bright area, especially marked along the horizontal and vertical axes by pronounced
high-frequency components. This distinct distribution of high-frequency components
suggests the image encompasses a richer level of detail and sharpness, thus evidencing a
superior spatial resolution. Consequently, Figure 8 demonstrates that the inference result
from J-Net possesses a higher spatial resolution in comparison to the original, retaining
sharper edges within the terahertz imaging.

Table 3. Comparison of PSNR performance with other THz image super-resolution methods.

Long et al. [7] Ruan et al. [8] J-Net

PSNR 32.42 30.58 32.52
Complexity 126.36 1.39 9.29

(b)(a) (c)

(e)(d) (f)

Figure 7. Experimental results on real THz image of metal knife. (a) Original THz image obtained
at a frequency of 1.0 THz; (b) bicubic interpolation; (c) Lucy–Richardson deconvolution; (d) Long
et al. [7]; (e) Ruan et al. [8]; (f) J-Net.
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(a) (b)

Figure 8. Fourier transform spectrum on real THz image of metal knife. (a) Original THz image
obtained at a frequency of 1.0 THz; (b) J-Net.

4. Conclusions

Our study introduces J-Net, a new neural network architecture tailored for enhancing
the resolution of THz images. In comparison with traditional methods and other deep
learning approaches, J-Net shows superior performance in improving image clarity, as evi-
denced by its higher peak signal-to-noise ratio (PSNR) in tests using the DIV2K+Flickr2K
dataset and real-world THz images. The success of J-Net demonstrates its potential to
significantly improve the quality of THz imaging in various applications, including security,
medical imaging, and materials analysis, making it a noteworthy advancement in the field
of image super-resolution.
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