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a b s t r a c t

The ongoing COhort for Childhood Origin of Asthma and allergic diseases (COCOA) study is a prospective
birth cohort investigating the origin and natural courses of childhood allergic diseases, including atopic
dermatitis, food allergy, allergic rhinitis and asthma, with long-term prognosis. Initiated under the
premise that allergic diseases result from a complex interplay of immune development alterations,
environmental exposures, and host susceptibility, the COCOA study explores these dynamic interactions
during prenatal and postnatal periods, framed within the hygiene and microbial hypotheses alongside
the developmental origins of health and disease (DOHaD) hypothesis. The scope of the COCOA study
extends to genetic predispositions, indoor and outdoor environmental variables affecting mothers and
their offsprings such as outdoor and indoor air pollution, psychological factors, diets, and the micro-
biomes of skin, gut, and airway. We have embarked on in-depth investigations of diverse risk factors and
the pathophysiological underpinnings of allergic diseases. By employing multi-omics approach-
esdproteomics, transcriptomics, and metabolomicsdwe gain deeper insights into the distinct patho-
physiological processes across various endotypes of childhood allergic diseases, incorporating the
exposome using extensive resources within the COCOA study. Integration with large-scale datasets, such
as national health insurance records, enhances robustness and mitigates potential limitations inherent to
birth cohort studies. As part of global networks focused on childhood allergic diseases, the COCOA study
fosters collaborative research across multiple cohorts. The findings from the COCOA study are instru-
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diseases; DOHaD, developmental origins of
health and disease; ECHO, Exposome and

Child Health with Omics;
ETS, environmental tobacco smoke;
GST, glutathione-S-transferase;
LTL, leukocyte telomere length;
NACMAAS, National Asthma Campaign
Manchester Asthma and Allergy Study;
PSKC, Panel Study on Korean Children;
PM, particulate matter; PM2.5, particulate
matter with a diameter of less than 2.5 mg;
PM10, particulate matter with a diameter of
less than 10 mg; TEWL, transepidermal
water loss; TRAP, traffic-related air pollution
mental in informing precision medicine strategies for childhood allergic diseases, underpinning the
establishment of disease trajectories.
© 2023 Japanese Society of Allergology. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The escalating prevalence of allergic diseases has frequently
been attributed to environmental shifts, particularly urbanization
and industrialization. Recent data from Western nations, however,
indicate that this trend may be reaching a plateau or even experi-
encing a decline.1 Nevertheless, many AsiaePacific countries,
including Korea, continue to undergo such environmental transi-
tions. The precise factors underlying the elevated and rising inci-
dence of allergic diseases in these regions remain elusive.
Comprehensive exploration of the causal elements and mecha-
nisms necessitates prospective, long-term birth and child cohort
studies. A significant number of such population-based studies
have been initiated over recent decades, designed to enhance our
understanding of the natural course of allergic diseases and to
identify specific determinants and factors influencing their
persistence or transient nature across an individual's lifetime.

The COhort for Childhood Origin of Asthma and allergic dis-
eases (COCOA) study, initiated in November 2007, is an ongoing
birth cohort concentrating on elucidating the etiological aspects of
allergic diseases. It evaluates the dynamic interaction between
genetic predispositions and environmental factors,2 thereby
affirming the developmental origins of health and disease
(DOHaD) hypothesis, postulating that prenatal development
significantly influences future health outcomes. Over its 15-year
duration, the COCOA study has been steadfastly committed to
evaluating the consequential effects of assorted environmental
factors on the manifestation and progression of allergic diseases
(Fig. 1). These factors include indoor environment exposures, such
as house dust mites, environmental tobacco smoke (ETS), and air
pollutants (Table 1). Additionally, outdoor air pollutants, maternal
and child psychosocial stress, dietary patterns, microbiome,
environmental chemicals, and heavy metals have also been
examined. In the critical stages of life, by scrutinizing the inter-
action between these factors and the child's genetic/epigenetic
background, the COCOA study seeks to augment our knowledge of
allergic disease pathogenesis. Simultaneously, we are actively
elucidating the underlying mechanisms of these interactions using
multi-omics techniques. Our aim is to identify biomarkers asso-
ciated with new biological significance that can predict the onset
and prognosis of allergic diseases in early life. This methodology
offers the potential for the discovery of meaningful indicators that
could facilitate early diagnosis and intervention in allergic
diseases.

Many risk alleles and loci associated with allergic diseases have
been identified via genome-wide association studies (GWAS),3

including those in recent studies focusing on Korean children.4,5

However, the GWAS approach is generally limited to detecting
common variants with small effect sizes and employs inherently
circumscribed statistical methods, regardless of geneegene and
geneeenvironment interactions. Our research has identified
numerous interactions between candidate genetic variants and
environmental factors relevant to allergic diseases, occurring in
prenatal6e8 and early life9,10 periods. By leveraging the multi-
layered omics data amassed from the COCOA cohort, we plan to
elucidate gene-environment interactions implicated in allergic
diseases.

This review outlines the strategic approach and key findings of
the COCOA study, underscoring their potential applicability in the
clinical context. Additionally, we propose future research trajec-
tories to further deepen our understanding of allergic diseases.

Outdoor environmental factors in allergic diseases

An abundance of international studies underscores the adverse
health impacts caused by ambient air pollution. Evidence from a
comprehensive, nationwide, prospective epidemiological study in
Korean children indicates a correlation between residential prox-
imity to high-traffic roadways and an increased risk of developing
airway hyperresponsiveness (AHR).11 In the COCOA study, traffic-
related air pollution (TRAP), a principal source of outdoor air
pollution, was evaluated via its marker, particulate matter (PM).
The study suggests that the impact of PM on allergic diseases could
vary based on the exposure dose and critical timing of exposure in
susceptible individuals.12

Previous investigations into the association between air pollu-
tion and atopic dermatitis (AD) have yielded inconsistent results,
largely dependent on the specific types of air pollution, the expo-
sure dose, and the period of exposure.13 Early-life environmental
exposure can influence structural and immune development,
potentially inciting allergic diseases.14 Our results from the COCOA
study elucidate that prenatal exposure to PM with a diameter of
less than 2.5 mg (PM2.5) was associated with the development of AD
in early childhood. This association was modulated by a range of
factors, including gender, maternal anxiety, and vitamin D levels in
cord blood.15,16 Furthermore, exposure to outdoor PM2.5 and PM
with a diameter of less than 10 mg (PM10) during pregnancy,
particularly in the first trimester, heightened the risk of early life AD
through skin barrier dysfunction, as indicated by transepidermal
water loss (TEWL).17

Aligned with embryological differentiation, the structural evo-
lutionof airways during the saccular (27e36weeks of gestation) and
alveolar stages (from 36 weeks of gestation to 2 years postpartum)
potentially represent vulnerable windows for the development of
asthma in response to environmental factors.18 A Taiwanese birth
cohort study indicated that both prenatal and postnatal exposure to
PM2.5 heightened the risk of preschool asthma development.19

Furthermore, both prenatal and postnatal PM10 exposure were
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Fig. 1. An overview of the COCOA study.
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linked with AHR in a Korean schoolchildren cohort study, with the
risk of a newly diagnosed asthma in children aged 7 with AHR
significantly amplified by PM10 exposure during the second
trimester.20 An investigation within the Asthma Coalition on Com-
munity, Environment, and Social Stress (ACCESS) project associated
childhood asthma with PM2.5 exposure at 16e25 weeks of gesta-
tion.21 In the context of the COCOA study, PM10 exposure during
26e28 weeks of gestation was tied to childhood asthma, with the
association modulated by gender and NRF2 genotype.6

Air pollution's contribution to the pathogenesis of allergic dis-
eases is potentially mediated through several mechanisms
including oxidative stress, airway remodeling, and inflammatory
and immunological responses (Fig. 2).6,22 Genetic and epigenetic
alterations elicited by air pollution have also been postulated as
potential pathways contributing to allergic disease development.23

In the COCOA study, high levels of prenatal PM2.5 exposure during
the first trimester, in conjunction with low vitamin D levels in cord
blood, were implicated in the development of early-onset persis-
tent AD, mediated by alterations in placental deoxyribonucleic acid
(DNA) methylation.16 Moreover, fetal growth retardation was
influenced by alterations in placental ARRDC3 methylation due to
PM2.5 exposure during mid-pregnancy,24 a condition that may also
serve as a risk factor for allergic diseases.25 These results underline
the importance of considering a multitude of interacting factors
concurrently with air pollution exposure. It is also paramount to
extend future research to explore the influence of these factors on
lung development, as well as their linkage to adult respiratory
health within ongoing birth cohort studies.

Indoor environment factors in allergic diseases

Children reportedly spend nearly 80% of their time in indoor
environments26 where concentrations of specific pollutants often
exceed outdoor levels by two to five-fold.27 Energy-efficient
building designs and the incorporation of synthetic building ma-
terials, in conjunction with the use of pesticides and household
cleaners, may further augment the concentrations of certain indoor
pollutants.28 The 2019 Coronavirus Disease (COVID-19) pandemic
has drastically modified lifestyles, with an observed shift toward
increased indoor living and reliance on food delivery services
employing single-use packaging, a potential source of chemical
agent release. Consequently, rising apprehension over the health
impacts of indoor environments, particularly in relation to air
quality, has triggered a need for further investigations into the
correlation between indoor environmental factors and the rise of
childhood allergic diseases.29,30

Indoor environmental factors encompass aeroallergens (such as
house dust mites, animal dander, mold, cockroach and rodents),
chemical pollutants (including nitrogen dioxide, carbon monoxide,
particulate matter, ozone, and volatile organic compounds), bac-
teria, and ETS. The COCOA study has documented the detrimental
impact of lead and chromium in cord blood on the persistence and



Table 1
Data collection instruments and timeline of the COCOA study.

Age 26 w 36 w 0 1 M 6 M 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8 Y 9 Y 10 Y 11 Y 12 Y 13 Y 14 Y 15 Y 16 Y 17 Y 18 Y 19 Y

Enrollment O
Physical examination O O O O O O O O O O O O O O O O O O O O O
Questionnaires Health/Environmental questionnaire O O O O O O O O O O O O O O O O O O O

Dietary O O O O O O O O O
Psychological development/
Maternal stress

O O O O O O O O O O O
CESD, PSS CESD,

CBCL
CESD CESD,

CBCL
CESD,
CBCL

CNT CNT YSR CNT

Air pollution Indoor dust/pollutants collection O O O
Outdoor air pollution O O O O O O O O

Clinical test Skin prick tests O O O O O O O
Total/Specific IgE O O O O O O O O
Transepidermal water loss O O O O O O O O O
Impulse oscillometry O
FeNO O
Bronchial challenge test O
Pulmonary function test O O O O
Bone age O O
Body composition analysis O O O O
Sex hormones/Lipid profile O

Sample collection Blood (serum, plasma, DNA/RNA
stabilization tube)

O Cord blood O O O O O O O

Urine O O O O O O O O
Stool O O O O O O O O O O O
Skin swab O O O O O O O O O O
Oropharyngeal swab O O O O O O
Nasopharyngeal swab O O O O
Tape strips O O O O O

CBCL, Child Behavior Checklist; CESD, Center for Epidemiologic Studies Depression; CNT, Complexity navigation test; DNA, Deoxyribonucleic acid; FeNO, Fractional exhaled nitric oxide; IgE, Immunoglobulin E; M, month; PSS,
Perceived Stress Scale; RNA, Ribonucleic acid; Y, Years; YSR, Youth Self-Report.
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Fig. 2. The impact of particulate matter exposure during the critical periods on the development of allergic diseases.
NO2, nitrogen dioxide; PM, particulate matter; SO2, sulfur dioxide.
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severity of AD.31 Moreover, dog ownership, during any phase from
pregnancy up to the child's first year, was found to reduce the risk
of sensitization to aeroallergens while concomitantly increasing
the risk of non-atopic AHR and non-atopic asthma at seven years of
age.32

Despite a limited number of studies elucidating the role of early
life mold exposure on the risk of childhood asthma and rhinitis,33,34

investigations concerning AD have been notably scarce. Within the
framework of the COCOA study, it was determined that prenatal
mold exposure heightened the risk of AD during the first two years
of life, particularly in infants exhibiting elevated TEWL levels. This
suggests that exposure tomold during critical prenatal periodsmay
precipitate AD development in concert with skin barrier dysfunc-
tion.35 Infants with AD who were exposed to mold during preg-
nancy exhibited significantly increased total serum IgE levels,
indicating the potential influence of mold on AD via IgE-mediated
allergic inflammation.36 An association was also discerned be-
tween the environmental mycobiome at 36 weeks of pregnancy
and AD.36

A plethora of factors, including weather conditions, outdoor
pollutants, socioeconomic status, lifestyle modifications, and ac-
tivities (e.g., smoking, heating, and cooking), significantly impact
indoor air quality.27,37,38 The health consequences of indoor air
pollutants can markedly vary, contingent on their sources, levels,
compositions, and the races or ethnicities of the exposed popula-
tion.39,40 As such, the exploration of the role of indoor air pollutants
in childhood allergic diseases across different geographical and
cultural contexts is essential. To fully understand this relationship,
researchers should supersede single-exposure methodologies and
adopt an exposomal approach within birth cohorts. Awaiting the
findings of the exposome research conducted as part of the COCOA
cohort study, specifically the Exposome and Child Health with
Omics-COCOA (ECHO-COCOA) study, we anticipate garnering
invaluable insights regarding the role of the indoor environment in
the etiology of childhood allergic diseases. Birth cohort studies with
long-term follow-ups afford the opportunity to identify causal as-
sociations between early life or lifelong exposure to diverse indoor
environments and childhood allergic diseases, in addition to
elucidating their natural courses.
Nutritional factors in allergic diseases

Dietary habits indisputably represent a crucial environmental
exposure. Historically, research exploring the correlation between
diet and allergic diseases in children predominantly concentrated
on examining individual foods, either as single nutrients or
allergens.41e43 The principal objective of these studies was to
ascertain whether specific foods or nutrients either incite or
impede the onset of allergic disease (Fig. 1). With the COCOA study,
we scrutinized both maternal diet during pregnancy and the child's
diet at varying ages to evaluate the hypothesis that interplay with
factors, both dietary and non-dietary, could influence the devel-
opment of allergic diseases (Table 1). We uncovered a correlation
between prenatal antioxidant intake and the occurrence of respi-
ratory diseases during infancy44 and observed that dietary patterns
during pregnancy can influence the onset of allergic diseases in
infants.7 Our findings suggest that prenatal antioxidant intake may
exert a protective influence against respiratory tract infections in
early childhood, contingent on genetic mutations linked to innate
immunity, such as CD14.44 Though the correlation is not exclusive
to prenatal antioxidant intake, we additionally identified a rela-
tionship between antioxidant consumption and AR in school-age
children.45,46 These findings infer that antioxidant intake might
potentially mitigate respiratory tract infections and assuage
symptoms of allergic diseases in children.45

Traditional investigations into the effects of dietary factors on
health tend to focus on individual nutrients. But, their overall
impact on health warrants assessment via an analysis of dietary
patterns. Maternal dietary patterns, such as theMediterranean diet,
can confer a protective effect against the development of allergic
diseases in children.46,47 However, most dietary pattern studies are
cross-sectional studies, and longitudinal studies on the effects of
maternal diet patterns during pregnancy on allergic diseases in
offspring are few and show inconsistent results.48e51 These few
longitudinal studies have presented inconsistent results, possibly
attributable to the lack of consideration of individuals' genetic
backgrounds.48e51 Specific genetic polymorphisms, particularly in
CD14, which regulate the pro-inflammatory response, and in
glutathione-S-transferase (GST), which is instrumental in



Fig. 3. Effects of maternal diet during pregnancy and child's diet at various ages on allergic disease development and potential underlying mechanisms.
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detoxification pathways, could potentially heighten susceptibility
to food allergy in infants whose mothers follow a confectionery-
rich diet.7 Conversely, a vegetable-rich dietary pattern during
pregnancy has been associated with a protective effect against the
development of allergic diseases, particularly in individuals with
low genetic susceptibility.46 Therefore, future assessments of diet's
influence on allergic diseases should consider the interplay be-
tween diet and genetic factors.

The COCOA study has primarily focused on investigating the
impact of maternal diet during pregnancy on offspring's health.
Going forward, the study aims to elucidate how children's diet at
specific ages can influence the development and natural course of
allergic diseases. In addition, the study has explored dietary intake,
including feeding type, as a critical determinant of gut microbiome
composition, which in turn plays a substantial role in the devel-
opment of allergic diseases.52 The gut microbiome can modulate
the development of the human immune system through direct
interactions or by generating metabolites that partake in immune
processes.53 Thus, diet-induced shifts in microbiota partly explain
the mechanisms through which diet can modulate the risk of
allergic diseases and inflammation (Fig. 3).

Microbiome in allergic diseases

The “hygiene hypothesis” and “microbial hypothesis” have been
posited to delineate the origin of allergic diseases.54 These theories
align on the premise that dysbiosis within barrier organs, such as
the gut, skin, and airway, stemming from varied environmental
exposures, can modulate immune system development, particu-
larly in susceptible individuals, and thereby fundamentally influ-
ence the development of allergic diseases. Within the framework of
the COCOA study (Fig. 1), we sequentially collected stool, skin swab,
and airway samples at specific intervals in early life to discern the
pathophysiology of allergic diseases (Table 1), characterized by
unique endotypes and phenotypes, and to devise personalized
therapeutic strategies.

The COCOA study endeavored to characterize the functional role
of distinct gut microbiota at the strain level. We also sought to
enhance our understanding of AD pathogenesis by integrating
transcriptome, metagenome, and metabolite data (Fig. 4).55

Feeding patterns during infancy were shown to differently influ-
ence gut colonization and immune development in healthy infants
and those with AD.52 For instance, in the breastfed cohort, robust
colonization and healthy immune development were noted among
healthy infants, whereas those with AD exhibited suboptimal gut
microbiome colonization and a reduction in functional genes
associated with immune development.52 Conversely, in the mixed-
fed cohort, healthy infants demonstrated colonization with mucin-
degrading bacteria, which serve as a nutritional source for other gut
microbiota. Infants with AD, however, showed suboptimal coloni-
zation and reduced numbers of mucin-degrading bacteria, result-
ing in a diminished presence of some functional genes.52 In a
separate animal study, we discovered that oral administration of
Ruminococcus gnavus, a type of mucin-degrading gut bacteria,
ameliorated TEWL levels, skin inflammation, and clinical scores in
AD. It also resulted in the down-regulation of T helper 2-related
cytokine mRNA and upregulation of interleukin-10 and Foxp3 in
the skin, along with increased fecal butyrate levels.56 These find-
ings propose that alterations in gut microbiome and functional
genes can modulate host immune cell functions, thus playing a role
in the development of AD.52

Additionally, alterations in gut microbiotadspanning composi-
tion, function, and metabolite profilesdhave been linked to the
natural courses of AD in infants.57 In particular, persistent AD up to
two years of age in children has been associated with decreased
levels of Clostridium and Akkermansia, along with elevated Strep-
tococcus concentrations within gut microbiota. These children also
exhibit diminished gut microbial functional genes associated with
oxidative phosphorylation.57 In contrast, children with transient
AD have been characterized by lower Streptococcus and increased
Akkermansia levels, alongside decreased butyrate and valerate
concentrations in fecal samples.57

The interactions between host genetic factors and gut microbiota
may influence the evolution of allergic diseases through modulating
the immune system. However, studies addressing these interactions
remain scarce. Within the context of the COCOA study, an increase in
Streptococcuswithin the gut microbiota of infants with AD and those
with GA þ AA of IL-17 (rs2275913) variant was observed at six



Fig. 4. The potential mechanisms underlying the association of the microbiome with the development of allergic diseases.
IL, interleukin; PTGR2, Prostaglandin Reductase 2.
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months of age.9 Additionally, decreased levels of short chain fatty
acids, such as butyrate and valerate, demonstrated in the fecal
samples of AD infants with the GA þ AA of IL-17 (rs2275913)
variant.9 Lower colonization of Clostridium was linked to increased
functional genes related to oxidative phosphorylation in healthy
infants carrying the GG variant of IL-17 (rs2275913).9 Transcriptome
analysis of fecal samples indicated elevated levels of lactate dehy-
drogenase A-like 6B, which is involved in the conversion of pyruvate
to lactate, in infants with AD.9 This increase in Streptococcus within
the gut microbiome might contribute to the development of AD
through modulating the immune system in early life.9 One study
investigating the relationship between host genetics and gut
microbiota in AD revealed that the interplay between dysregulated
PTGR2 expression and the abundance of Bifidobacteriummight affect
the risk of AD with differences in severity.58 In another study, we
explored the interactions between the host and the gut microbiome,
focusing on the dynamics of gut microbiome in infants with AD.44

While the gut microbiome matures with age in both healthy and
AD infants, in the latter, the gut microbiomewas observed to mature
in a direction detrimental to health, characterized by abnormal short
chain fatty acid production and increased IgE production.59 These
findings suggest that early life disruption in gut microbiome devel-
opment and associated metabolite disturbances may contribute to
AD onset during early childhood, primarily through unbalanced
microbiomeehost interactions.59 Furthermore, gut linoleic acid
metabolites were found to be associated with milder AD during in-
fancy, potentially due to the inhibition of anti-inflammatory effects
of gut linoleic acid.60

Looking forward, research focusing on the microbiome in
various allergic diseases, as well as sensitization, will persist in an
effort to elucidate the pathophysiology of allergic diseases and
establish therapeutic targets. An ongoing integrated study is
examining the gut-skin-airway microbiome in relation to the im-
mune development stage in children and exploring the connection
between gut-skin-airway microbiome, related metabolites, and
allergic diseases using a multi-omics approach, aiming to uncover
the origin of allergic diseases in children.
Maternal psychosocial stress and the child's
neurodevelopment in allergic diseases

The potential influence of maternal distress, including anxiety
and depression, as a prenatal factor affecting the development of
non-communicable diseases in children is increasingly recog-
nized.61,62 In line with this, the COCOA study has been systemati-
cally gathering data on maternal prenatal and perinatal stress
levels, life satisfaction, as well as children's developmental,
behavioral, and psychological stress information, with an aim to
elucidate their associations with the offspring's allergic disease
incidence (Fig. 1, Table 1).

Recent birth cohort investigations have lent credibility to the
association between maternal psychological distress and the onset
of AD, asthma, and allergic rhinitis in progeny.63,64 Several mech-
anisms, including oxidative stress and hypothalamic-pituitary-
adrenal axis imbalances, have been postulated as potential path-
ways in these contexts.65,66 Nevertheless, these mechanisms have
already been implicated as fundamental pathways in the patho-
genesis of cardiovascular diseases and mental illnesses. The delin-
eation of specific mechanisms driving the development of allergic
diseases, distinct from those related to metabolic syndrome or
neuropsychiatric diseases, remains elusive (Fig. 5).

In relation to this, our research has unearthed several findings
corroborating this association. Foremost, maternal psychological
distress escalates the risk of AD development in offspring. As per
the epidemiological data extracted from COCOA participants, pre-
natal maternal distress amplified the risk of AD in children, with
hazard ratios for depression and anxiety being 1.31 (95% CI,
1.02e1.69) and 1.41 (95% CI, 1.06e1.89), respectively.67 Further-
more, we have suggested that prenatal distress could lower the
ratio of glutathione-to-glutathione disulfide in the placenta and
decrease the levels of placental 11b-hydroxysteroid dehydrogenase
type 2, thereby providing potential mechanistic insights.67 While
assessing leukocyte telomere length (LTL) as a potential biomarker
for this risk, we discerned no association concerning the develop-
ment of asthma68 and AD.69 However, cord-blood LTL was



Fig. 5. The mechanisms underlying the associations of maternal psychological distress and children's behavioral problems with the development of allergic diseases.
HPA axis, Hytothalamic pituitary adrenal axis.
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comparatively shorter in prenatally stressed infants than in their
unstressed counterparts, a difference that remained significant at
the one-year milestone.69

Another area of scientific exploration concerns the potential
correlation between children's developmental/behavioral prob-
lems and allergic diseases. Despite growing interest in this
intriguing relationship, the underlying mechanisms have yet to be
thoroughly elucidated.70 To date, the National Asthma Campaign
Manchester Asthma and Allergy Study (NACMAAS) birth cohort is
the only research group to suggest that children's mental health
issues may precede the onset of childhood wheezing.71 However,
this study fell short in defining the mechanistic underpinnings that
might substantiate this causal relationship. Previous investigations
have postulated various mechanisms, including chronic inflam-
mation, inflammatory cytokines, and other immune factors that
influence neurotransmitter systems and brain function, leading to
allergic inflammation.70 Given this background, the COCOA study is
further investigating the association between early life behavioral
issues in children and the subsequent emergence of childhood
allergic diseases, in addition to potential underlying mechanisms
(Fig. 5).

A consistent correlation has been found between prenatal
maternal psychological distress and subsequent allergic diseases in
children, a finding supported by multiple birth cohort studies
worldwide.64,70 Hence, our research endeavors extend beyond
merely delineating epidemiologic risk factors; we also aim to
identify potential biomarkers that may elucidate the underlying
mechanisms of this association and offer targets for early inter-
vention (Fig. 1). We currently postulate that epigenetic modifica-
tions in specific genes and shifts in the microbiome may play
pivotal roles in this relationship. However, definitive evidence
supporting this hypothesis remains to be uncovered.

Future perspective

In the initial decade of the COCOA study, our focus was primarily
directed toward establishing a comprehensive database system,
thereby constructing a robust cohort. Concurrently, we devoted
attention to investigating risk factors influencing the development
of allergic diseases, with an emphasis on perinatal and early life
periods, identified as critical windows of susceptibility. Within this
cohort, pediatric allergists rigorously assess the health status of each
participant during every visit through detailed physical examina-
tions. This methodology is crucial, offering potential insights into
the future trajectory of allergic diseases. As we continue to lengthen
the follow-up period for our subjects, we persist in our exploration
of the natural courses of allergic diseases from infancy through
adolescence. Furthermore, we plan to conduct studies evaluating
the health implications of exposure to various detrimental envi-
ronmental factors, such as metals, polycyclic aromatic hydrocar-
bons, persistent organic pollutants, andvolatile organic compounds.
These investigations, stratified by lifelong exposome exposure and
distinct endotypes identified viamulti-omics andmachine learning,
are ongoing. These studies will leverage serial multi-omics and
exposome analyses, incorporating gut microbiome data.

The integration of COCOA study with data from the nationwide
health insurance system enables us tomitigate potential drawbacks
and amplify the advantages of the cohort study. Our multifaceted
approach is poised to unveil novel biomarkers capable of predicting
both development of allergic diseases and responses to treatment,
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elucidating the intricate interplay of numerous factors that
contribute to the progression of allergic diseases. This compre-
hensive approach has the potential to provide innovative per-
spectives on preventive measures and precision medicine for
allergic diseases in children.

Additionally,wehave joined international collaborative efforts in
childhood allergic disease research, such as the Asian Allergy Birth
Cohort Network (A2BC Network), encompassing ten birth cohorts
from eight Asian countries. This collaboration enhances the
robustness of our research findings and facilitates multinational
research initiatives. The shared data and knowledge aid in
discerning the health effects of rapidly changing lifestyles and
environmental diversity on allergic disease prevalence in Asian
children.

Conclusions

To elucidate the origins of childhood allergic diseases, the CO-
COA study has conducted andwill continue to pursue an exhaustive
examination of a myriad of factorsdparticularly those encountered
in the perinatal and postnatal periodsdin conjunctionwith genetic
susceptibility and their complex interactions. Through the inte-
gration of sequential multi-omics datawith exposome information,
the COCOA study provides in-depth insights into the unique
pathophysiological pathways characteristic of diverse endotypes of
allergic diseases, thereby paving the way for precision medicine.
The longitudinal monitoring of the COCOA study will continue,
providing pivotal information regarding the development and
trajectories of allergic diseases from prenatal periods through
adolescence, and ideally, extending into adulthood.
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