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Aim: Hepatic ketogenesis is a key metabolic pathway that regulates energy

homeostasis. Some related controversies exist regarding the pathogenesis of

metabolic-associated fatty liver disease (MAFLD). We aimed to investigate

whether intact ketogenic capacity could reduce the risk of MAFLD based on

transient electrography (TE) in patients with newly diagnosed type 2

diabetes (T2D).

Methods: A total of 361 subjects with newly diagnosed T2D were recruited

and classified into two groups based on the median serum b-
hydroxybutyrate (bHB) level, referred to as the intact and impaired

ketogenesis groups. The glucometabolic relevance of ketogenic capacity

and associations of the baseline serum b-HB and MAFLD assessed with TE

were investigated.

Results: Compared to the impaired ketogenesis group, the intact

ketogenesis group showed better insulin sensitivity, lower serum

triglyceride levels, and higher glycated hemoglobin levels. The controlled

attenuation parameter (CAP) was lower in the intact ketogenesis group

without statistical significance (289.7 ± 52.1 vs. 294.5 ± 43.6; p=0.342) but

the prevalence of moderate–severe steatosis defined by CAP ≥260 dB/m

was significantly lower in the intact group. Moreover, intact ketogenesis was

significantly associated with a lower risk of moderate–severe MAFLD after
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adjusting for potential confounders (adjusted odds ratio 0.55, 95%

confidence interval 0.30–0.98; p=0.044).

Conclusion: In drug-naïve, newly diagnosed T2D patients, intact ketogenesis

predicted a lower risk of moderate–severe MAFLD assessed by TE.
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Introduction

With pathophysiologic homeostasis of fatty acids (FAs),

nonalcoholic fatty liver disease (NAFLD) develops due to the

accumulation of overwhelmingly delivered FAs from peripheral

tissues or de novo lipogenesis and the limited capacity of FA

disposal in a milieu of metabolic disorders with no evidence of

secondary causes (1). With advances in the understating of disease

unmet requirements (2–4), growing interests and studies have

accumulated regarding the recently proposed definition of

metabolic-associated fatty liver disease (MAFLD) to achieve a

more accurate representation of the underlying pathophysiology

of fatty liver disease as metabolically driven (5).

Unlike pathological ketogenesis that mainly arises from acute

hyperglycemic complications of diabetes in the absence or

absolute deficiency of insulin, physiologic ketone bodies are

produced under a fasting state, are utilized as compensatory

energy sources for extrahepatic tissues, especially for the brain,

and are considered to be related to beneficial metabolic effects,

according to recent studies (6–8). In stable homeostatic states,

ketogenesis could serve as an optimal pathway for the clearance of

excess lipids, but it is often impaired and underutilized in specific

subgroups of individuals (9–11). In the healthy liver with normal

glucose tolerance status, FAs delivered into the liver are disposed

of through b-oxidation resulting in the generation of ketone

bodies, including acetone, acetoacetate, and b-hydroxybutyrate
(bHB), along with down-regulation of de novo lipogenesis (6).

However, in the metabolic dysregulated liver, FAs driven from

peripheral tissues might be oxidized to carbon dioxide via the

tricarboxylic acid (TCA) cycle, which promotes gluconeogenesis

and increases plasma glucose concentrations (12, 13). Based on

previous studies that looked at suppressed ketogenesis in

individuals with fatty liver disease (14, 15) and the correlation

between ketone bodies and anti-hepatic steatotic effects (16, 17),

we recently demonstrated that intact ketogenesis might be

associated with decreased risk of hepatic steatosis using non-

image based specific MAFLD indices, including NAFLD liver fat

scores, Framingham steatosis indices, and other measurements, in

patients with newly diagnosed type 2 diabetes (T2D) (18). In the
02
present study, we aimed to define MAFLD more accurately using

transient elastography (TE), which is a more reliable method for

assessment of the liver steatosis stage to elucidate whether the

presence of ketogenesis influences hepatic steatosis in newly

diagnosed T2D patients.
Materials and methods

Study design and population

From the prospective cohort diabetes registry at the Severance

Diabetes Center, a tertiary care hospital in Seoul, which was

conducted on newly diagnosed glucose intolerance or diabetic

patients, we evaluated the association between ketogenesis and

risk of hepatic steatosis in patients with newly diagnosed T2D

using a cross-sectional design. The cohort comprised patients who

underwent a standardized mixed-meal stimulation test on their first

visit to the diabetes center in 2009. The registry protocol required

routine collection of blood samples at 0 and 90 minutes (basal and

stimulated, respectively) to analyze glucose, insulin, and C-

peptide levels.

The inclusion criteria of this study were as follows: aged 19 years

or older, newly diagnosed with T2D according to the 2019

guidelines of the Korean Diabetes Association, serum bHB levels

measured at the center since its availability in 2017, TE results

measured within six months before or after the baseline

measurement of bHB. Patients who had received organ

transplantation or chemotherapy, as well as those who used

steroids or had previously taken antidiabetic medications before

the initial blood sampling or visited the emergency room due to

hyperglycemia, were excluded. Additionally, we excluded those who

were extreme outliers [i.e., alanine aminotransferase (ALT) ≥1,000

IU/L, triglycerides (TGs) ≥1,000 mg/dL], aged ≥80 years, and with

glycated hemoglobin (HbA1c) ≥11% from the study. Finally, 361

newly diagnosed T2D patients were included as study participants.

The study protocol was approved by the institutional review board

of Severance Hospital (4–2022–1101). Informed consent was

waived because of the retrospective nature of the study.
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Clinical measurement and
laboratory assessment

Patient data, such as age, sex, weight, height, and use of

antidiabetic drugs or antihypertensive drugs at baseline, were

collected by reviewing electronic medical records. The following

laboratory variables were measured at baseline: serum HbA1c,

creatinine, aspartate aminotransferase (AST), ALT, total cholesterol,

high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C), TGs, urine albumin, urine

creatinine, and serum bHB. Body mass index (BMI) was calculated

as body weight divided by height squared (kg/m2) and the estimated

glomerular filtration rate (eGFR) was assessed based on the four-

variable modification of diet in the renal disease study formula.

Glucometabolic parameters, including serum glucose, C-peptide, and

insulin, were measured after overnight fasting and postprandial. The

postprandial level was obtained 90 minutes after the mixed-meal test

(Mediwell Diabetic Meal; Meail Dairies Co., Yeongdong-gun,

Chungbuk, Korea) was given. The homeostasis model assessments

of insulin resistance (HOMA-IR) index and HOMA-b were

calculated to assess insulin resistance and pancreatic b-cell function.
The ketogenic capacity of the subject was assessed prior to the

administration of diabetes medication by measuring the

concentration of serum bHB, which is the most prevalent form of

ketone bodies. The concentration of serum bHB in a fasting state

was quantified with a commercial enzymatic assay from Landox

Laboratories Ltd. (County Antrim, UK) and an Atellical CH 930

analyzer (Siemens Healthcare Diagnostics, Marburg, Germany). In

cases where the concentration of bHB was below the lower limit of

detection for the assay, a value of zero was recorded.
Measurements of hepatic steatosis using
transient elastography

TE was performed by an experienced specialist without

knowing the subject’s clinical details using a Fibroscan 501®

(Echosens, Paris, France). The procedure was conducted with a

standard probe and the final value was obtained using a standard

procedure. The principles of controlled attenuation parameter

(CAP) measurement for TE have been described previously (19,

20). Hepatic steatosis was categorized into four grades based on the

CAP value [decibels per meter (dB/m)]: less than 238 dB/m for

steatosis stage 0 (S0), 238 dB/m to 259 dB/m for steatosis stage 1

(S1, mild), 260 dB/m to 292 dB/m for steatosis stage 2 (S2,

moderate), and greater than 293 dB/m for steatosis stage 3 (S3,

severe) (21, 22).
Statistical analysis

The characteristics of the study participants were analyzed

according to the status of ketogenesis using Student’s t-test for

continuous variables and Pearson’s c2 test for categorical variables.
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All continuous variables were presented as the mean ± standard

deviation, and categorical variables were presented as a number

with percentage (%). The correlations between serum bHB levels

and steatosis stages and CAP scores were assessed with Pearson’s

correlation analysis. Multivariable logistic regression analysis was

applied to determine the independent association between

ketogenesis and hepatic steatosis. The ketogenic capacity defined

as intact or impaired ketogenesis based on the median serum bHB

level was used as a variable in the logistic regression. Age, sex, BMI,

HbA1c, LDL-C, HOMA-IR, and HOMA-b were adjusted in the

multivariable regression analysis. Statistical analyses were

performed using R software version 3.6.3 (R Project for Statistical

Computing, Vienna, Austria). The adjusted odds ratio (OR) and

95% confidence interval (CI) were determined. P-values <0.05 were

considered statistically significant.
Results

Clinical and laboratory characteristics
of participants

A total of 361 newly diagnosed T2D patients who satisfied both

inclusion and exclusion criteria were included as study participants.

Subjects were divided into intact (bHB>0, n=163) and impaired

ketogenesis (bHB=0, n=198) groups according to the baseline level

of bHB. Baseline characteristics stratified by the level of bHB are

presented in Table 1. The mean age and BMI of the study subjects

were 54.3 ± 12.5 years and 27.4 ± 4.2 kg/m2, respectively. A total of

60.9% of the patients were men. Both groups had similar

characteristics in terms of age, sex, BMI, and liver enzyme levels.

However, the group with intact ketogenesis had notably higher

levels of HbA1c, indicating poorer glycemic control, compared to

the group with impaired ketogenesis. In the context of insulin

secretory function, the intact ketogenesis group also demonstrated

markedly lower levels of fasting and postprandial C-peptide and

insulin levels compared to patients with impaired ketogenesis.

Additionally, subjects in the intact ketogenesis group had

decreased HOMA-b and lower HOMA-IR without significance

compared to the impaired group. Meanwhile, TG levels were

lower and LDL-C levels were higher, without statistical

significance, but TG/LCL-C was significantly lower in the intact

group. Collectively, the subjects with intact ketogenesis capacity at

the time of first diagnosis of T2D showed higher serum glucose

levels with more prominent insulin deficiency and potentially lower

insulin resistance.

In this study, the presence of significant MAFLD was defined as

steatosis stage ≥S2 (moderate–severe) (21, 22). The intact

ketogenesis group showed a tendency to lower levels of steatosis

stage and CAP values (290.1 ± 52.0 vs. 295.5 ± 43.0) compared with

the impaired ketogenesis group, but this difference was not

statistically significant. However, moderate–severe hepatic

steatosis was less common in the intact group (67.5% vs. 79.3%)

with statistical significance (p=0.015).
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TABLE 1 Characteristics of the study population according to baseline bHB.

Intact ketogenesis
(N=163)

Impaired ketogenesis
(N=163)

P-value

Demographic

Age (years) 51.8 ± 13.6 55.2 ± 11.9 0.116

Sex (Male, n (%)) 100 (61.3%) 120 (60.6%) 0.971

HTN 82 (50.3%) 114 (57.6%) 0.203

BMI (kg/m2) 27.1 ± 4.2 27.7 ± 4.1 0.122

Biochemistry

AST (IU/L) 40.9 ± 39.3 36.0 ± 22.2 0.154

ALT (IU/L) 47.4 ± 44.4 45.3 ± 43.6 0.646

Total cholesterol (mg/dL) 189.2 ± 48.2 187.5 ± 46.0 0.724

TG (mg/dL) 169.7 ± 130.8 181.0 ± 114.5 0.380

HDL-C (mg/dL) 47.5 ± 13.4 46.4 ± 11.0 0.405

LDL-C (mg/dL) 114.0 ± 41.1 108.7 ± 42.9 0.241

TG/LDL-C 1.5 ± 1.2 2.1 ± 3.5 0.016

eGFR (ml/min/1.73 m²) 89.6 ± 19.1 91.0 ± 24.4 0.753

uACR (mg/g creatinine) 50.4 ± 147.0 57.6 ± 171.6 0.678

Gluco-metabolic parameters

Fasting glucose (mg/dL) 148.8 ± 50.1 144.3 ± 59.6 0.436

HbA1c (%) 8.0 ± 1.3 7.5 ± 1.0 0.001

Fasting C-peptide (ng/mL) 2.8 ± 1.1 3.2 ± 1.2 <0.001

Postprandial C-peptide (ng/mL) 6.6 ± 2.6 7.3 ± 2.7 0.027

Fasting insulin (mIU/mL) 12.9 ± 9.5 16.7 ± 21.4 0.019

Postprandial insulin (mIU/mL) 61.3 ± 42.4 74.7 ± 54.7 0.010

HOMA-IR 5.1 ± 5.8 6.0 ± 8.5 0.240

HOMA-b 31.6 ± 21.3 44.2 ± 51.0 0.002

bHB (mmol/L) 0.2 ± 0.2 0.0 ± 0.0 <0.001

bHB x 100/glucose 0.2 ± 0.3 0.0 ± 0.0 <0.001

Fibroscan

Steatosis 0 29 (17.8%) 22 (11.1%) 0.090

1 24 (14.7%) 19 (9.6%)

2 33 (20.2%) 48 (24.2%)

3 77 (47.2%) 109 (55.1%)

Steatosis (CAP ≥ 260) 0,1 53 (32.5%) 41 (20.7%) 0.015

2,3 110 (67.5%) 157 (79.3%)

CAP (dB/m) 290.1 ± 52.0 295.5 ± 43.0 0.287
F
rontiers in Endocrinology
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BMI, body mass index; HbA1c, glycosylated hemoglobin; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HOMA-IR, homeostasis
model assessment for insulin resistance; HOMA- b, homeostasis model assessment of beta cell function; bHB, b-hydroxybutyrate; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; HTN, hypertension; eGFR, estimated glomerular filtration rate; uACR, urine albumin-creatinine ratio.
Bold values indicate statistically significant values.
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Intact ketogenesis is correlated with lower
CAP value

Collinearity among ketogenic capacities based on serum bHB

levels and hepatic steatosis was calculated using Pearson’s

correlation analysis (Table 2). Liver steatosis stages stratified from

stage S0 to S4 showed a significant negative correlation with bHB

and moderate–severe hepatic steatosis showed a negative

correlation. Additionally, a negative correlation was observed

between CAP scores and bHB levels (r=-0.094, p=0.009).
Ketogenic capacity is associated
with MAFLD

To evaluate whether intact ketogenesis was independently

associated with hepatic steatosis, a multiple logistic regression

analysis was performed adjusting for age, sex, BMI, HbA1c, LDL-

C, HOMA-IR, and HOMA-b. When analyzing each steatosis stage

separately, no significant association was found between the

ketogenic capacity and all stages of hepatic steatosis. However,

statistically significant results were obtained when comparing the

stages of moderate–severe MAFLD with normal–mild MAFLD

(Figure 1). Intact ketogenesis was associated with a lower OR for

the risk of higher hepatic steatosis stage (adjusted OR, 0.55; 95% CI,

0.30–0.98). Adjusted ORs for each variable of hepatic steatosis are

summarized in Table 3. BMI (adjusted OR, 1.43; 95% CI, 1.28–1.61;

p<0.001) and HbA1c (adjusted OR, 1.37; 95% CI, 1.02–1.85;

p=0.037) were associated with moderate–severe hepatic steatosis

after adjusting for multiple risk factors. Intact ketogenesis was

notably associated with a lower risk of moderate–severe hepatic

steatosis compared with impaired ketogenesis.
Discussion

Most studies have reported reduced risk for incident hepatic

steatosis or advanced hepatic fibrosis in subjects with fasting

ketonuria and intact ketonemia (23, 24); however, some studies

reported higher ketone levels in subjects with suspected fatty liver

disease, prediabetes, or diabetes (25–27). In this cross-sectional

study, we investigated the relationship between ketogenic capacity

and MAFLD in newly diagnosed T2D patients by measuring serum
Frontiers in Endocrinology 05
bHB and CAP levels using TE to assess the ketogenic capacity and

MAFLD, respectively. We used the CAP score rather than liver

stiffness measurements (LSMs) because we expected that metabolic

properties, such as ketogenesis, would preferentially appear in the

form of hepatic steatosis rather than fibrosis.

This study had three main findings. First, 42.7% of the T2D

patients had serum bHB>0.1 mmol/L, and 3.3% of the patients

had >0.57 mmol/L, which was the median serum bHB level of

subjects with 2+ ketonuria in the previous study (28). Second,

intact ketogenesis predicted a lower risk of moderate–severe

MAFLD assessed by TE. Third, T2D patients with intact

ketogenesis tended to be more insulin sensitive and had relatively

lower insulin secretory function compared to those with

impaired ketogenesis.

Either physiologic or pathologic ketogenesis in humans is an

effective way to supply efficient energy because it has an adaptive

mechanism that allows the liver to utilize deposited TGs to provide

energy in the form of ketone bodies during periods of glucose

deprivation as well as to dispose of the delivered FAs in the liver;

delivered FAs are converted to acetyl-CoA through b-oxidation,
thereby undergoing non-oxidative pathway processing to produce

ketone bodies (6, 29). In the excess glucose status of T2D, activation

of ketogenesis might not be a pathophysiologic mechanism for

producing more metabolic fuel but may be an efficient pathway for

the disposal of excess FAs. Impairment of the ketogenic pathway in

T2D might be activation of gluconeogenesis rather than ketone

body generation in the dysregulated liver. In a dysregulated

situation, converted acetyl-CoA from FAs is oxidized to carbon

dioxide via the TCA cycle, which increases hepatic oxygen

consumption and promotes gluconeogenesis (30). As a result,

both hepatic de novo lipogenesis and oxidative stress are

increased, thereby inducing or aggravating MAFLD. In addition,

intact or efficient ketogenesis might have other putative

mechanisms that prevent the development of MAFLD; the

ketogenic process is reported to induce the hepatic peroxisome

proliferation-activated receptor a (PPARa)-fibroblast growth

factor 21 (FGF21) axis, which plays a critical role in energy

metabolism and whose dysregulation is associated with MAFLD

(31, 32). In addition, the ketogenic pathway activates hepatic

autophagy and suppresses inflammatory responses (33–35), which

is also thought to be beneficial in improving MAFLD.

With respect to intact ketogenesis and MAFLD, our

measurements in bHB are in line with a previous study that

obtained serum bHB measurements in T2D patients using a

nuclear magnetic resonance spectroscopy-based test (36) and

found reduced risk for incident hepatic steatosis or advanced

hepatic fibrosis in subjects with fasting ketonuria (18, 23, 24). In

this study, T2D patients with intact ketogenesis showed a tendency

towards lower steatosis stages and CAP values. In particular, the

prevalence of moderate–severe hepatic steatosis was significantly

lower in the intact ketogenesis group compared to the impaired

group. In the logistic regression analysis, intact ketogenesis was

significantly associated with lower risk of moderate–severe steatosis.

These results are in line with our previous study that reported the

relationship between ketogenic capacity and hepatic steatosis

indices (18). Considering the ketogenic mechanisms that were
TABLE 2 Correlations between bHB and hepatic steatosis.

In all subjects (N=361)

b-hydroxybutyrate

r p-value

Steatosis (Stage 0–3) -0.155 0.003

Moderate to severe steatosis (Stage 2–3) -0.129 0.015

CAP (dB.m) -0.094 0.009
CAP, controlled attenuation parameter.
Bold values indicate statistically significant values.
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described above, the results of our study, showing an association

between intact ketogenesis and lower risk of moderate–severe

MAFLD in subjects with T2D, are convincing.

Relatively severe insulin resistance in impaired ketogenic

subjects is considered to have contributed to the development or

aggravation of MAFLD. The greater difference in the plasma insulin

levels between the two groups, compared to the difference in the

HOMA-IR, might be due to lower hepatic insulin clearance in the

impaired ketogenesis group, which has been reported to be

associated with MAFLD (37).

The strength of this study, to the best of our knowledge, is it is

the first to show the association between ketogenic capacity and

hepatic steatosis using TE imaging in subjects with drug-naïve,

newly diagnosed T2D. The present study has some limitations to be

considered. First, our study was a cross-sectional design, so we
Frontiers in Endocrinology 06
cannot offer a conclusive opinion on the association between

ketogenic capacity and MAFLD. Second, we used TE to

investigate the presence and extent of MAFLD. Although it is

relatively less accurate than magnetic resonance imaging-based

methods (38, 39), TE is well known for its good accessibility,

reproducibility, and validation. Therefore, TE is recommended as

an acceptable non-invasive method to assess MAFLD according to

current guidelines (40, 41). Third, we only used blood bHB to assess

ketogenic capacity. As mentioned in the introduction section,

ketone bodies include bHB, acetoacetate, and acetone. Although

bHB is the most abundant form of the blood ketone bodies, lack of

data on acetoacetate and acetone might be a limitation. Especially,

the bHB/acetoacetate ratio is known to reflect the hepatic redox

state, which is a major phenotype of the genetic aspect of MAFLD

pathogenesis (42). Therefore, if we had collected data on

acetoacetate, the mechanistic explanation might be a little clearer.

Finally, we do not have histological data based on liver biopsies, the

gold standard for diagnosis of liver steatohepatitis and fibrosis.
Conclusion

In T2D patients, intact ketogenesis is related to the lower risk of

moderate–severe MAFLD assessed by TE. This result is in line with

a previous study that used MAFLD indices and is supported by

putative pathophysiologic mechanisms, such as the favorable

aspects of de novo lipogenesis and oxidative stress, induction of

the PPARa-FGF21 axis, activation of hepatic autophagy, and

suppression of inflammatory processes. Longitudinal studies

including large populations, advanced imaging modalities, and/or

histological data are needed to elucidate the relationship between

ketogenesis and MAFLD.
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