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Graphical abstract

Conclusions

• Long-term treatment with TAF or
TDF effectively reduced HCC
risk in patients with CHB

• The treatment effect was
particularly profound in patients
without cirrhosis

• TAF performed at least as well
as TDF in HCC risk reduction

Stratification factors:
Baseline HBV DNA level
Oral antiviral treatment exposure 

Observed vs. predicted HCC cases based on REACH-B

Patient cohort

All 

TAF 

TDF 

Cirrhosis

Without cirrhosis

SIR (95% Cl)

0.37 (0.23, 0.62); p <0.001 

0.58 (0.28, 1.22); p = 0.15

0.56 (0.31, 1.02); p = 0.06

0.32 (0.18, 0.59); p <0.001

0.41 (0.27, 0.63); p <0.001

Observed
HCC
cases (n)
22

11

11

7

15

Predicted
HCC cases by
REACH-B (n)

53

34

20

12

40

Abbreviations: CHB, chronic hepatitis B; HBeAg, hepatitis B e antigen; HCC, hepatocellular carcinoma; SIR,
standard incidence ratio; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate.
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Highlights Impact and implications

� Three validated models (REACH-B; aMAP; mPAGE-

B) were used to predict HCC risk in patients with
CHB.

� Treatment with TAF or TDF was associated with a
lower HCC risk than that predicted for untreated
CHB.

� The difference in observed vs. predicted HCC risk
was more pronounced with TAF than TDF
treatment.

� In patients receiving TAF or TDF, most low-risk
patients (by aMAP and mPAGE-B scoring)
remained low risk at Week 240 (5 years).

� Antiviral TAF or TDF treatment reduced HCC risk in
patients with CHB.
https://doi.org/10.1016/j.jhepr.2023.100847
Despite the substantial impact of HCC on long-term
outcomes of patients with CHB, the differential risk of
HCC development among those receiving treatment
with TAF vs. TDF has not been well elucidated. Using
three validated risk prediction models, we found that
TAF is at least as effective as TDF in reducing HCC risk
in patients with CHB. While TDF is well-studied in the
context of HCC risk reduction, our novel findings un-
derscore the effectiveness of TAF as a treatment option
for patients with CHB.
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Background & Aims: Antiviral therapy may attenuate the risk of hepatocellular carcinoma (HCC) in patients with chronic
hepatitis B (CHB). We aimed to explore how tenofovir alafenamide (TAF) and tenofovir disoproxil fumarate (TDF) affect HCC
risk in patients with CHB.
Methods: The REACH-B, aMAP, and mPAGE-B models were utilized to assess HCC risk in patients with CHB from two global
randomized-controlled trials evaluating the impact of TAF vs. TDF treatment. Standard incidence ratios (SIRs) were calculated
using data from the REACH-B model as a ratio of observed HCC cases in the TAF- or TDF-treated patients vs. predicted HCC
cases for untreated historical controls. Proportions of treated patients shifting aMAP and mPAGE-B risk categories between
baseline and Week 240 were calculated.
Results: Of the 1,632 patients (TAF, n = 1,093; TDF, n = 539) followed for up to 300 weeks, 22 HCC cases developed. Those
receiving TAF had an SIR that was lower compared to the SIR of individuals receiving TDF: 0.32 (p <0.001) vs. 0.56 (p = 0.06). In
the general study population, individuals without cirrhosis at baseline had an SIR that was lower compared to the SIR of
individuals with cirrhosis at baseline: 0.37 (p <0.001) vs. 0.58 (p = 0.15). Of the patients at low risk of HCC at baseline, the
majority (97%) remained low risk by mPAGE-B and aMAP scoring at Week 240. Among those at medium or high risk at
baseline, substantial portions shifted to a lower risk category by Week 240 (mPAGE-B: 22% and 42%; aMAP: 39% and 63%,
respectively).
Conclusions: This evaluation provides evidence that treatment with TAF or TDF can reduce HCC risk in patients with CHB,
particularly in patients without cirrhosis.
Impact and implications: Despite the substantial impact of HCC on long-term outcomes of patients with CHB, the differential
risk of HCC development among those receiving treatment with TAF vs. TDF has not been well elucidated. Using three
validated risk prediction models, we found that TAF is at least as effective as TDF in reducing HCC risk in patients with CHB.
While TDF is well-studied in the context of HCC risk reduction, our novel findings underscore the effectiveness of TAF as a
treatment option for patients with CHB.
Clinical trial numbers: NCT01940341; NCT02836249; NCT01940471; NCT02836236.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
In 2019, 820,000 deaths occurred due to hepatitis B virus (HBV)
infection, mostly attributable to complications such as cirrhosis
and hepatocellular carcinoma (HCC).1 Patients with chronic
hepatitis B (CHB) have an estimated lifetime risk of developing
HCC ranging from 10–25%, with the risk particularly high for
those with cirrhosis;2 however, the multitude of HCC risk factors
in patients with CHB highlights the importance of evaluating
HCC risk in patients without cirrhosis as well, especially as early
intervention can attenuate the progression to cirrhosis.3,4

The identification of treatments effective in reducing HCC risk
is needed to promote the long-term health of patients with CHB.
Antiviral therapy with nucleot(s)ide analogues (NAs) has been
demonstrated to ameliorate risk factors predictive of HCC
oncogenesis.5–10 Further, real-world studies have demonstrated
that long-term antiviral treatment is associated with a lower risk
of HCC compared to no treatment.11–14

In 2016, tenofovir alafenamide (TAF), a novel NA prodrug of
tenofovir, was approved for the treatment of CHB by the FDA,
joining older NA agents entecavir (ETV) and tenofovir disoproxil
fumarate (TDF) as recommended first-line therapies across major
treatment guidelines, which have been updated since the
approval of TAF.15–17 TAF was designed to more efficiently deliver
the active drug to hepatocytes compared to TDF,18 and has
demonstrated non-inferior efficacy and an improved renal and
bone safety profile compared to TDF, as well as a high barrier to
resistance.5,7,8,15,17 Nonetheless, the lack of long-term data on
treatment with TAF has left its impact on HCC risk reduction
unclear. Two large global randomized-controlled trials exploring
TAF treatment in patients with CHB have now reached the 5-year
timepoint, providing the opportunity to evaluate the effect of
TAF on HCC risk reduction.

The REACH-B, mPAGE-B and aMAP models are three validated
prediction tools developed to predict HCC risk in patients with
CHB. Each model uses a scoring system based on disease-specific
variables and was developed in ethnically and clinically diverse
patient populations.19–21 Given the variability in HCC risk among
patients with CHB, predictive models may be leveraged to model
the potential risk of HCC if they did not receive treatment.22

The objective of this analysis was to explore how long-term
treatment with TAF or TDF affects HCC risk in patients with
CHB using data from global randomized-controlled trials and
three different validated predictive models to assess risk. This
study builds on previous work using the REACH-B model by
increasing the robustness of this risk assessment through the use
of two additional HCC risk models trained and validated in
diverse patient populations.20,21,23
Patients and methods
Study design
This analysis was conducted using data from two phase III,
randomized, double-blind (DB), active-controlled trials: GS-US-
320-0108 (Study 108) and GS-US-320-0110 (Study 110). Study
108 enrolled 579 hepatitis B e antigen (HBeAg)-negative
patients from a global and Chinese cohort (NCT01940341 and
NCT02836249, respectively), while Study 110 enrolled 1,053
HBeAg-positive patients from a global and Chinese cohort
(NCT01940471 and NCT02836236, respectively). Within both
trials, patients were randomized 2:1 to treatment with TAF or
TDF, stratified by baseline HBV DNA level and oral antiviral
treatment status (treatment-naïve vs. treatment-experienced).
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Included patients had HBV DNA levels >−20,000 IU/ml, alanine
aminotransferase (ALT) levels >60 IU/L for men or >38 IU/L for
women, and an estimated glomerular filtration rate by
Cockcroft-Gault >−50 ml/min, with or without compensated
cirrhosis. Patients were excluded if they had recent evidence or a
history of HCC and if they were coinfected with HIV or hepatitis C
or D viruses. More detailed information on the eligibility criteria
from the clinical trials has been published previously.7,8,24 Before
enrollment and before any study procedures were carried out,
written informed consent was obtained from all patients. The
study was approved by the institutional review board or inde-
pendent ethics committees at all participating sites, as well as
the US FDA, and was performed in accordance with the princi-
ples of the Declaration of Helsinki and Good Clinical Practice.

In this analysis, data from both clinical trials were synthesized
and used to calculate relevant outcomes. Each trial began with a
DB treatment period with patients randomized to receive either
25 mg of TAF or 300 mg of TDF administered daily. The study was
designed to randomize participants to a 96-week DB period
followed by a 48-week open-label (OL) extension up to Week
144 during which patients in both the TAF and TDF groups
crossed over to OL TAF 25 mg once daily at Week 96. Under
Protocol Amendment 3 (as requested by the FDA), the crossover
from the DB TAF or TDF treatment arm to open-label TAF was
changed to Week 144.25–28 Approximately half of patients,
however, had already crossed over to OL TAF at Week 96; the
remaining patients crossed over to OL TAF at Week 144. All pa-
tients were eligible to continue open-label TAF through Week
384 (i.e., Year 8). In this analysis, patients were followed up for at
least 240 weeks or until last visit.29

Study procedures and evaluations
The primary efficacy endpoint was the achievement of HBV DNA
<29 IU/ml at Week 48, with ALT normalization as a secondary
endpoint. Adherence rate to the study medication was also
captured as the number of drug tablets taken divided by the
number of tablets prescribed and was calculated separately for
the DB and OL phases of the study. Development of HCC was
treated as a predefined adverse event.7,8 Screening and diagnosis
of HCC were conducted as per local standards of care. Serum
alpha-fetoprotein testing was performed at the screening visit to
rule out HCC prior to study entry. With the implementation of
the protocol amendment extending study treatment, serial he-
patic ultrasonography was conducted every 6 months from
Week 96 through the end of study treatment in both studies.29

For this post hoc analysis, outcomes included the incidence
ratios of HCC based on the observed HCC incidence and the
incidence predicted by the REACH-B model, and the proportions
of patients who shifted HCC risk categories from baseline to
Week 240 using the aMAP and mPAGE-B models.

Statistical analysis
Within the clinical trials, cumulative HCC incidence in each
treatment group was compared using the Fisher’s exact test.
Cumulative incidence curves were plotted by the Kaplan-Meier
method and compared using the log-rank test. A sensitivity
analysis was conducted excluding patients who developed HCC
prior to Week 24 to assess the robustness of the study results
when patients with early HCC (i.e., potentially preexisting) were
removed. The percentage of patients with HBV DNA <29 IU/ml
and ALT normalization (defined as <−25 U/L for females and <−35
U/L for males using the 2018 AASLD criteria)16 assessed by
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treatment group and HCC status was calculated and graphed.
Adherence rates between treatment arms were compared using
the two-sided Wilcoxon rank-sum test.

Univariate and multivariate Cox regression models were used
to analyze the baseline and on-treatment factors predictive of
HCC development. All variables with a p value <0.15 in the uni-
variate Cox regression model were included as candidates in the
stepwise selection. In the stepwise selection, variables were
entered into and removed from the model in a way that each
forward selection step could be followed by one or more back-
ward elimination steps, whereas a chi-square p value from the
score test of 0.05 was used as a cut-off for entering and staying in
the model. In the end, the final multivariate model was fit by
using all variables selected from the stepwise method. In-
dividuals who did not develop HCC during the study were
censored at their last study treatment date.

REACH-B, mPAGE-B and aMAP are all multivariate Cox
regression models which utilize distinct model input variables
and were developed in clinically and ethnically diverse patient
populations (Table 1).19–21 REACH-B was used to calculate the
predicted incidence of HCC from baseline to the end of follow-
up.23 Standard incidence ratios (SIRs) were then calculated as a
ratio of observed HCC cases over predicted HCC cases, with 95%
CIs calculated by Poisson regression. Patients who dropped out
were censored on their last date of study treatment; their
exposure time was considered from baseline up to the time of
censoring.

mPAGE-B and aMAP risk scores were calculated at baseline
and up to Week 240 (Table S1; Table S2).20,21 Shifts in mPAGE-B
and aMAP risk categories between baseline and Week 240 were
captured as proportions, calculated as the number of patients
experiencing each shift divided by the total number of patients
with no missing baseline or post-baseline risk scores. Patients
who were missing any baseline or post-baseline risk scores were
not included. This analysis was performed in the subgroup of
patients who went on to develop HCC.
Results
In total, 1,632 patients were randomized and treated in Studies
108 and 110. The 1,632 patients are comprised of two global
studies (n = 1,298)7,8 and the China cohort (n = 334).24 One pa-
tient in Study 110 was missing aMAP and mPAGE-B records at
baseline and was therefore excluded from the analyses. Overall,
155 patients (9.7%) had baseline cirrhosis (defined for this
analysis as a FibroTest score of >−0.75) (Table 2).30 Patients were
mostly male (65.1%), Asian (83.0%), and HBeAg-positive (63.7%).

When comparing baseline characteristics between those
initially receiving TAF and those initially receiving TDF,
median age was the only baseline characteristic which differed
Table 1. Predictor variables and population characteristics for REACH-B, mPA

Predictor variables

REACH-B19 Baseline age, sex, ALT levels, HBeAg status, and HBV DNA levels

mPAGE-B20 Baseline age, sex, serum albumin levels, and platelet levels

aMAP21 Baseline age, sex, ALBI score, and platelet levels

ALBI, albumin-bilirubin; ALT, alanine aminotransferase; CHB, chronic hepatitis B; HBV,
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significantly (39 years vs. 40 years, respectively; p = 0.02)
(Table S3). Furthermore, median adherence rates of antiviral
therapy during both the DB and OL phases of the study were
similar between patients initially treated with TAF and patients
initially treated with TDF (DB: 99.11 vs. 98.91, p = 0.12; OL: 98.98
vs. 98.90, p = 0.30).

A total of 22 HCC cases occurred during the study, repre-
senting a cumulative incidence of 1.3% (1.0% in the TAF group vs.
2.0% in the TDF group). The difference in cumulative incidence of
HCC was not statistically significant between the two treatment
groups (p = 0.08; Fig. 1). Based on the univariate Cox regression
model, the following baseline variables were significantly asso-
ciated with the risk of HCC development: higher baseline
Fibrotest score (p <0.001), older age (p <0.001), lower platelets (p
<0.001), lower albumin (p <0.001), hypertension (p <0.001),
history of alcohol intake (p <0.001), diabetes (p <0.001), cirrhosis
(p <0.001), higher BMI (p = 0.02), male sex (p = 0.02), and alcohol
intake at baseline (p <0.05) (Table S4). A multivariate model
using both baseline and on-treatment predictors found male sex
(hazard ratio [HR] 9.46; 95% CI 1.22, 73.07; p = 0.03), increasing
age (HR 1.08; 95% CI 1.02, 1.14; p = 0.007), hypertension (HR 4.80;
95% CI 1.79, 12.91; p = 0.002), decreasing baseline platelets (HR
0.98; 95% CI 0.97, 0.99; p <0.001), alcohol intake history (HR 4.58;
95% CI 1.59, 13.21; p = 0.005), and lack of ALT normalization at
Week 48 (HR 2.94; 95% CI 1.12, 7.67; p = 0.03) to be predictive of
HCC development (Table 3). In the sensitivity analysis excluding
patients who developed HCC prior to Week 24, a total of 21 HCC
cases occurred. The probability of developing HCC was not sta-
tistically different between the two treatment groups (1.0% in the
TAF group vs. 1.9% in the TDF group; p = 0.14; Fig. S1).

Within the REACH-B analysis, the SIR calculated at the
maximum observation time for each patient was 0.41 (95% CI
0.27, 0.63; p <0.001; Fig. 2A), indicating that the observed HCC
incidence was 59% lower than expected when compared to the
incidence predicted by the REACH-B model. Patients receiving
TAF had a numerically lower SIR than those receiving TDF: 0.32
(95% CI 0.18, 0.59; p <0.001; Fig. 2B) vs. 0.56 (95% CI 0.31, 1.02; p =
0.06; Fig. 2C), respectively, indicating HCC incidences that were
68% and 44% lower than those predicted by REACH-B, respec-
tively. The SIRs for patients with and without cirrhosis at base-
line were 0.58 (95% CI 0.28, 1.22; p = 0.15; Fig. 2D) and 0.37 (95%
CI 0.23, 0.62; p <0.001; Fig. 2E), respectively, indicating an HCC
incidence 42% and 63% lower than that predicted by REACH-B,
respectively.

The proportion of patients with virologic response (HBV DNA
<29 IU/ml) over 240 weeks was similar across treatment groups
and by HCC development (Fig. S2). However, the rate of ALT
normalization was numerically much lower in the patients
receiving TDF who developed HCC than in those receiving TAF
who developed HCC and those who did not develop HCC (Fig. 3).
GE-B, and aMAP.

Time horizon Source populations for training and validation sets

Ten years Asian patients with CHB not on antiviral treatment; included
those without cirrhosis for training and a mix of those with
and without cirrhosis for validation

Five years Asian patients with CHB on antiviral treatment; included
those with and without cirrhosis for both training and
validation

Five years Asian and Caucasian patients with CHB, hepatitis C, or non-
viral hepatitis on antiviral treatment; included those with
and without cirrhosis for both training and validation

hepatitis B virus; HBeAg, hepatitis B e antigen.
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Table 2. Baseline characteristics in patients with HCC vs. without HCC.

Total (N = 1,632) HCC (n = 22) No HCC (n = 1,610)

Median age, years (Q1, Q3) 39 (31, 49) 53 (48, 59) 39 (31, 48)
Male, n (%) 1,063 (65.1%) 20 (90.9%) 1,043 (64.8%)
Asian, n (%) 1,354 (83.0%) 21 (95.5%) 1,333 (82.8%)
HBeAg-negative, n (%) 593 (36.3%) 11 (50.0%) 582 (36.1%)
Median HBV DNA, log10 IU/ml (Q1, Q3) 7.3 (5.6, 8.2) 6.4 (5.6, 7.1) 7.3 (5.6, 8.2)
Median ALT, U/L (Q1, Q3) 82 (55, 131) 70 (54, 100) 82 (55, 132)
HBV genotype, n (%)

A 85 (5.2%) 0 85 (5.3%)
B 371 (22.7%) 2 (9.1%) 369 (22.9%)
C 823 (50.4%) 17 (77.3%) 806 (50.1%)
D 331 (20.3%) 3 (13.6%) 328 (20.4%)
Other 19 (1.2%) 0 19 (1.2%)
Missing 3 (0.2%) 0 3 (0.2%)

Median total bilirubin, lmol/L (Q1, Q3) 10.3 (8.6, 15.4) 13.7 (8.6, 15.4) 10.3 (8.6, 15.4)
Median albumin, g/L (Q1, Q3) 43 (41, 45) 40 (37, 42) 43 (41, 45)
Diabetes mellitus

Yes, n (%) 112 (6.9%) 6 (27.3%) 106 (6.6%)
No, n (%) 1,520 (93.1%) 16 (72.7%) 1,504 (93.4%)

Median platelet count, 103/ll (Q1, Q3) 190 (156, 228) 143 (95, 180) 191 (157, 229)
Median FibroTest score (Q1, Q3) 0.3 (0.2, 0.5) 0.6 (0.5, 0.8) 0.3 (0.2, 0.5)
Cirrhosis, n (%) 155 (9.7%) 7 (31.8%) 148 (9.4%)
Median eGFR, ml/min (Q1, Q3) 107.4 (91.8, 126.0) 110.5 (85.2, 117.0) 107.4 (91.8, 126.0)
Treatment during DB period

TAF 1,093 (67.0%) 11 (50.0%) 1,082 (67.2%)
TDF 539 (33.0%) 11 (50.0%) 528 (32.8%)

Median BMI, kg/m2 (Q1, Q3) 23.7 (21.2, 26.4) 25.5 (22.7, 28.0) 23.7 (21.2, 26.4)
HBV risk factorsa

Contaminated needle or IV drug, n (%) 45 (2.8%) 0 (0%) 45 (2.8%)
Blood product transfusion, n (%) 14 (0.9%) 0 (0%) 14 (0.9%)
Contact with infected individual, n (%) 86 (5.3%) 1 (4.5%) 85 (5.3%)
Vertical transmission, n (%) 366 (22.4%) 4 (18.2%) 362 (22.5%)
Surgery/operation, n (%) 46 (2.8%) 1 (4.5%) 45 (2.8%)
Unknown, n (%) 1,064 (65.2%) 15 (68.2%) 1,049 (65.2%)
Other, n (%) 49 (3.0%) 1 (4.5%) 48 (3.0%)

Median serum creatinine, mg/dl (Q1, Q3) 0.83 (0.69, 0.93) 0.84 (0.75, 0.91) 0.83 (0.69, 0.93)
Median AST, U/L (Q1, Q3) 52 (37, 84) 56 (49, 79) 52 (37, 84)
Median INR (Q1, Q3) 1.0 (1.0, 1.1) 1.0 (1.0, 1.1) 1.0 (1.0, 1.1)
Hypertension

Yes, n (%) 191 (11.7%) 9 (40.9%) 182 (11.3%)
No, n (%) 1,441 (88.3%) 13 (59.1%) 1,428 (88.7%)

Hyperlipidemia
Yes, n (%) 126 (7.7%) 4 (18.2%) 122 (7.6%)
No, n (%) 1,506 (92.3%) 18 (81.8%) 1,488 (92.4%)

Cardiovascular disease
Yes, n (%) 48 (2.9%) 1 (4.5%) 47 (2.9%)
No, n (%) 1,584 (97.1%) 21 (95.5%) 1,563 (97.1%)

Alcohol intake history
Yes, n (%) 507 (31.1%) 15 (68.2%) 492 (30.6%)
No, n (%) 1,125 (68.9%) 7 (31.8%) 1,118 (69.4%)

Baseline alcohol intake status
Yes, n (%) 268 (16.4%) 7 (31.8%) 261 (16.2%)
No, n (%) 1,364 (83.6%) 15 (68.2%) 1,349 (83.8%)

Cirrhosis was defined as a FibroTest score of >−0.75.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; DB, double-blind; eGFR, estimated glomerular filtration rate; HBeAg, hepatitis B e antigen; HBV, hepatitis B
virus; HCC, hepatocellular carcinoma; INR, international normalized ratio; IV, intravenous; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate.
a A patient may fit more than one HBV risk factor category; therefore, percentages add to more than 100%.
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For both the mPAGE-B and aMAP models, most patients who
were at low or medium risk at baseline either remained in those
risk categories or shifted to a lower risk group over the 240
weeks of treatment. Of those who were high risk at baseline,
many remained at high risk, but a substantial portion shifted to
medium risk by Week 240 (Table 4). A decrease from baseline in
mean aMAP and mPAGE-B scores was seen at Week 144 and
Week 240 for both treatment groups (Table S5). Of the patients
who ultimately developed HCC, the majority remained in the
JHEP Reports 2023
medium- and high-risk aMAP and mPAGE-B groups from base-
line to Week 240 (Fig. S3).
Discussion
The results of this analysis demonstrate that treatment with
either TAF or TDF in patients with CHB likely provides a benefit
in reducing HCC risk. Using the REACH-B analysis, a low and
statistically significant SIR was demonstrated overall, indicating
4vol. 5 j 100847



Table 3. Multivariate cox regression model of baseline and on-treatment predictors of HCC.

Predictor Hazard ratio 95% CI p valuea

Age (years) 1.08 (1.02, 1.14) 0.007
Sex (male vs. female) 9.46 (1.22, 73.07) 0.03
Hypertension (yes vs. no) 4.80 (1.79, 12.91) 0.002
Baseline platelets (x103/ll) 0.98 (0.97, 0.99) <0.001
Alcohol intake history (yes vs. no) 4.58 (1.59, 13.21) 0.005
ALT normalization status at Week 48 (no vs. yes) 2.94 (1.12, 7.67) 0.03

ALT, alanine aminotransferase; HCC, hepatocellular carcinoma.
a p values were calculated using the chi-square test.
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a lower observed HCC incidence than would be expected had
patients been left untreated. The group initially treated with TAF
maintained a lower HCC incidence across study timepoints
compared to the group initially treated with TDF, evenwithin the
sensitivity analysis excluding patients who developed HCC
before Week 24. Therefore, our results suggest that TAF is at least
as effective as TDF in reducing the risk of HCC, and given the
improved renal and bone safety profile of TAF compared to TDF,
TAF may be the preferred treatment between the two.5,7,8,31 Both
the aMAP and mPAGE-B predictive models for HCC further
corroborated that antiviral treatment with TAF or TDF reduces
HCC risk, with both models showing a substantial shift in me-
dium- and high-risk baseline groups to a lower risk group
following 240 weeks of treatment. All three validated models
JHEP Reports 2023
supported the value of TAF and TDF in reducing HCC risk, high-
lighting the robustness of this finding.

The results of our analysis reaffirm that TDF therapy is associ-
ated with HCC risk reduction and provide long-term evidence for
TAF as an effective treatment option, in terms of HCC risk reduc-
tion, inpatientswith CHB.11,12,23,32 Although initial treatmentwith
TAF produced a highly significant SIR while initial treatment with
TDF did not produce a significant SIR, the rollover of TDF-treated
patients into OL TAF treatment at Weeks 96 and 144 does not
allow for a definitive, direct comparison of the two agents.
Moreover, TAF was associated with a higher ALT normalization
rate thanTDF in our study,which has been reported previously.5,31

ALT normalization is an established predictor of HCC develop-
ment,9 so differences in this outcome between treatment groups
5vol. 5 j 100847
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Table 4. aMAP and mPAGE-B risk level shifts at Week 240 by baseline risk level.

(%)a

Baseline

Low risk Medium risk High risk

aMAP, n = 1,033 mPAGE-B, n = 901 aMAP, n = 508 mPAGE-B, n = 588 aMAP, n = 90 mPAGE-B, n = 142

Week 240

Low risk 97.0% 97.5% 39.2% 21.6% 4.5% 0.9%
Medium risk 3.0% 2.5% 60.6% 77.4% 58.2% 40.7%
High risk 0% 0% 0.2% 1.0% 37.3% 58.3%
Missingb 260 233 87 101 23 34

Low risk was defined as an mPAGE-B score <−8 or an aMAP score <50. Medium risk was defined as an mPAGE-B score >−9 but <−12 or an aMAP score >−50 but <−60. High risk was
defined as an mPAGE-B score of >−13 or an aMAP score >60.
a The denominator for the percentage was the number of patients with non-missing values at both baseline and each post-baseline visit for each baseline category.
b The total number of patients with missing data for either the baseline or any post-baseline category.
may partly explain the differences in SIR between TAF and TDF.
Furthermore, while not statistically significant, there was a nu-
merical difference in cumulative HCC incidence (1.0% vs. 2.0%) and
in the median time to the HCC onset (173 weeks vs. 96 weeks)
between the groups initially treated with TAF and TDF.

Our findings from the cirrhosis subgroup analysis using
REACH-B suggest a particular benefit of treatment with TAF or
TDF in non-cirrhotic patients, who had a low SIR that was highly
significant (p <0.001); for the subgroup of patients with cirrhosis,
the SIR was low but did not reach statistical significance (p =
0.15). This difference may be due in part to the small sample size
of the group with cirrhosis, use of the FibroTest score to cate-
gorize patients at baseline in the absence of liver biopsy, and the
fact that REACH-B may underestimate the predicted cases of HCC
in patients with cirrhosis as it was developed in patients without
cirrhosis. Nevertheless, the highly significant result in the non-
cirrhotic subgroup suggests that earlier antiviral treatment in
non-cirrhotic patients may be particularly beneficial. This finding
is especially important considering the emphasis that has his-
torically been placed on clinical intervention for later stage pa-
tients with advanced fibrosis or established cirrhosis.16
JHEP Reports 2023
Evidence on the relationship between HBV integrations,
timing of antiviral treatment, and HCC oncogenesis further
substantiates the benefit of providing treatment for patients
with CHB without cirrhosis for whom treatment is not currently
indicated. Péneau et al. demonstrated that the number of HBV
integrations into the host genome is associated with viral repli-
cation in non-tumor liver tissue and poor prognosis in tumors,
and thus may be an important aspect of HCC oncogenesis.33

Consequently, more intense viral suppression, particularly
when achieved earlier in the disease course with antiviral ther-
apy, may limit the number of HBV integrations and thereby
mitigate the risk of HCC development.34,35 As newer research
highlights a potential advantage to antiviral treatment in the
earlier stages of CHB infection, it is important to ensure that
treatment guidelines continue to evolve as well, reflecting the
treatment course likely to provide the greatest long-term benefit
to patients.

A key strength of this study is its use of data from well-
designed global randomized-controlled trials with a large sam-
ple size (>1,600 patients) and long follow-up time (5 years),
allowing for adequate statistical power to analyze the
7vol. 5 j 100847
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relationship between TAF and HCC incidence. Other key
strengths of this analysis are the consistent findings across three
validated prediction models, which were trained and validated in
diverse patient populations against a global clinical trial cohort
with diverse clinical and demographic characteristics. The
mPAGE-B and REACH-B models were validated in Asian patients
specifically, and aMAP was validated in both Asian and Caucasian
patients, highlighting the particular relevance of the models for
patients in this study, the majority of whom were of Asian
descent.

This study is limited by the smaller sample sizes of certain
analyses, restricting statistical power and the ability to detect an
effect, particularly given the relatively limited number of HCC
cases which developed during this study. Furthermore, HCC was
not a predefined endpoint of the study, but rather a predefined
adverse event, and thus was not systematically screened for.
However, with the protocol amendment to extend treatment,
JHEP Reports 2023
serial (every 6 months) hepatic ultrasonography was imple-
mented in all patients during the OL period (on/after Week 96),
which contributed to heightened surveillance for HCC develop-
ment. While we report numerically lower HCC risk in patients
who received TAF compared to those receiving TDF, the lack of a
direct comparison between these treatment groups means that
further research comparing these treatments is warranted,
especially considering the potential role of ALT normalization in
HCC risk.

Results from this comprehensive evaluation of data from
global phase III randomized trials provide evidence that treat-
ment with TAF or TDF is effective in reducing HCC risk in patients
with CHB. The effect on HCC risk was particularly profound in
patients without cirrhosis. Our results demonstrate that TAF
performs at least as well as TDF in HCC risk reduction. As TDF is
well-studied in this context, our findings highlight the value of
TAF as an effective treatment option for patients with CHB.
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