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Abstract 
Exposure to cadmium (Cd), arsenic (As), and mercury (Hg) is associated with renal tubular damage. People living near refineries are 
often exposed to multiple heavy metals at high concentrations. This cross-sectional study investigated the association between 
combined urinary Cd, As, and Hg levels and renal damage markers in 871 residents living near the Janghang refinery plant and 
in a control area. Urinary Cd, As, Hg, N-acetyl-β-D-glucosaminidase (NAG), and β2-microglobulin (β2-MG) levels were measured. 
The combined effects of Cd, As, and Hg on renal tubular damage markers were assessed using linear regression and a Bayesian 
Kernel Machine Regression (BKMR) model. The results of the BKMR model were compared using a stratified analysis of the 
exposure and control groups. While the linear regression showed that only Cd concentration was significantly associated with 
urinary NAG levels (β = 0.447, P value < .05), the BKMR model showed that Cd and Hg levels were also significantly associated 
with urinary NAG levels. The combined effect of the 3 heavy metals on urinary NAG levels was significant and stronger in the 
exposure group than in the control group. However, no relationship was observed between the exposure concentrations of the 
3 heavy metals and urinary β2-MG levels. The results suggest that the BKMR model can be used to assess the health effects of 
heavy-metal exposure on vulnerable residents.

Abbreviations: As = arsenic, BKMR = Bayesian Kernel Machine Regression, Cd = cadmium, CI = confidence interval, Hg = 
mercury, IQR = interquartile range, NAG = N-acetyl-β-D-glucosaminidase, Pb = lead, β2-MG = β2-microglobulin.
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1. Introduction
The most common sources of exposure to heavy metals are 
mines, smelters, and air pollution.[1] Exposure to heavy metals 
from smelters may cause severe health challenges for nearby 
residents because the residents are likely to be exposed to 
multiple and high concentrations of heavy metals[2] (see also 
Kim and Ryang 2006). The Janghang Refinery in Seocheon, 
Chungcheongnam-do, Korea, was built in 1936 and was in 
operation until 1989, mainly smelting copper, lead (Pb), and 
tin. Investigation of heavy metals in the soil and water around 
the smelter confirmed contamination with harmful heavy 
metals such as cadmium (Cd), arsenic (As), Pb, and mercury 
(Hg).[3]

A large-scale cross-sectional study conducted in 2008 
revealed that concentrations of various heavy metals, includ-
ing Pb, Hg, As, and Cd, particularly Cd, were higher in res-
idents living near smelters than in control individuals.[4] 

Moreover, significant changes were observed in renal tubu-
lar damage markers and bone mineral density indicators.[5] 
However, most studies have focused on the health effects of 
exposure to individual heavy metals. Urinary Cd, As, and Hg 
levels are associated with kidney damage, particularly tubular 
damage.[6,7] Therefore, for multiple exposures to such heavy 
metals, their combined rather than individual health effects 
must be evaluated.

Generally, the health effects of multiple exposures to haz-
ardous chemicals are evaluated using multiple linear regression 
models that correct for the confounding effects of mixed expo-
sure and estimate the independent effects of each hazardous 
chemical.[8–10] However, when multiple metals have combined 
effects due to interactions, collinearity owing to the correlation 
between them is likely to occur, and such combined effects are 
unlikely to be synergistic or nonlinear. Therefore, it is necessary 
to quantify the synergistic effects of different metals on disease 
risk using a mixture analysis. The use of the Bayesian Kernel 
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Machine Regression (BKMR) model, which is a novel statistical 
method that compensates for the shortcomings above, has been 
increasing gradually.[11–13]

The aim of the present study was to investigate the synergistic 
effects of combined urinary levels of As, Cd, and Hg on renal 
damage markers in residents living near smelter plants using 
the BKMR model. The findings of the present study could high-
light the utility of the BKMR model in assessment of the health 
effects of exposure to multiple heavy metals.

2. Materials and methods

2.1. Study participants

The study design and methods used to select the study popula-
tion have been described previously.[4] We recruited 985 study 
participants living near the Janghang refinery plant and the con-
trol area between May and August 2008.

Out of the 985 study participants, 114 (11.6%) with miss-
ing data were excluded and 871 were included in the analysis 
(exposed group: 498, control group: 373). Participants were 
informed about the objective of the study, and written informed 
consent was obtained from those who participated. Morning 
spot urine samples were collected from the participants and 
maintained at −80°C for preservation until they were analyzed.

2.2. Determining toxic metal levels in urine

We measured the levels of Cd, As, and Hg in urine. The methods 
used for analyzing heavy metals are detailed in our previous 
research.[4] Cd concentration was determined using a flameless 
atomic absorption spectrophotometer (Hitachi Model Z-8270), 
which was outfitted with a Zeeman graphite furnace. Urine sam-
ples were combined with nitric acid, diluted using diammonium 
hydrogen phosphate and 1% Triton X-100, and then mixed 
thoroughly. The detection limit for Cd was 0.01 µg/L. Total As 
concentration in urine was analyzed using an atomic absorp-
tion spectrometer (PerkinElmer Model 5100) that incorporated 
a hydride generation system (PerkinElmer FIAS-400). Each 
urine sample was mixed with HCl, ascorbic acid, and potassium 
iodide (2:2:1:1); left to incubate for an hour; and then diluted 
with 10% HCl. The reducing agents used were 0.2% sodium 
borohydride and 0.5% sodium hydroxide. The mobile phase 
consisted of 3% HCl, with argon utilized as the carrier gas. The 
detection limit of the method was 0.2 µg/L. Urine Hg concen-
tration was analyzed using the gold amalgam method with a 
direct Hg analyzer. After placing 100 µL of well-mixed urine in 
the sample container, the analysis was conducted immediately.

2.3. Determining N-acetyl-β-D-glucosaminidase and 
β2-microglobulin activities

N-acetyl-β-D-glucosaminidase (NAG) activity was assessed by 
hydrolyzing sodium m-cresolsulfonephthaleinyl N-acetyl-β-D-
glucosaminide to N-acetyl-β-D-glucosaminide and m-cresolsul-
fonephthalein using NAG. Quantitative analysis of NAG activity 
was conducted using a commercially available kit (Shionogi, 
Osaka, Japan), following the manufacturer instructions. Briefly, 
the synthetic substrate solution (1 mL) was warmed at 37°C 
for 5 minutes. The urine sample supernatant (50 mL), acquired 
through centrifugation, was combined with the heated synthetic 
substrate solution and incubated in a 37°C water bath for 15 
minutes. Subsequently, a stopping solution (2 mL) was intro-
duced and mixed thoroughly. The absorbances of the sample 
and the standard NAG solution were determined at a wave-
length of 580 nm via a spectrophotometer.

The urine level of β2-microglobulin (β2-MG) was ascer-
tained using a commercially available kit (Enzygnost 
β2-MG Micro Kit; Behring Institute, Mannheim, Germany), 

according to the manufacturer instructions. The kit employs 
a solid-phase enzyme-linked immunosorbent assay, using a 
monoclonal anti-β2-MG antibody for immobilization and 
an anti-β2-MG horseradish peroxidase conjugate solution. 
The color intensity, which directly corresponds to the con-
centration of β2-MG, was measured spectrophotometrically 
at 450 nm. Urine creatinine levels (g/L) were measured using 
the Jaffe method.

2.4. Statistical analysis

The distributions of urinary Cd, As, Hg, and renal tubular 
damage markers had severe right-skewness; therefore, they 
were converted into a natural logarithmic form and applied 
to the regression model. Age, sex, drinking and smoking sta-
tus, monthly household income, and urinary creatinine concen-
tration were included as covariates in the regression model to 
control for confounding variables. Multiple linear regression 
models were used to evaluate the associations between heavy 
metals and renal tubular damage markers. The multiple linear 
regression equation was as follows:

 Yi = β0+ β1Cdi+ β2Asi+ β3Hgi+ βTZi+ ei (1)

where Y is the log-transformed renal tubular damage marker 
level; Cd, As, and Hg are the centered log concentrations of 
As, Cd, and Hg, respectively; and Z = Z1,..., Zp are additional 
potential confounders including age, sex, smoking, drinking 
habits, and economic status.

The BKMR analysis was performed to estimate the combined 
effects of exposure to the 3 heavy metals and their nonlinear 
effects of heavy metals.[11] The BKMR model is expressed as 
follows:

 Yi = h (Cdi, Asi, Hgi) + βTZi+ ei (2)

We implemented 10,000 iterations of the Markov chain 
Monte Carlo algorithm.[14] Generally, in environmental mix-
tures, h(·) depicts a high dimensional exposure − response 
function that could involve nonlinear relationships or inter-
actions among the components of the mixture. To relax the 
linearity and additive effect assumptions required in the regres-
sion model, a BKMR model was applied to estimate the joint 
exposure–response functions of the 3 urinary heavy metals. 
Estimates of the mixed exposure effects were obtained by cal-
culating the post-estimate means and 95% confidence intervals 
(CIs) of renal tubular damage markers associated with changes 
in the level of exposure to each heavy metal. Regarding the 
combined effect, the expected change in renal tubular dam-
age markers associated with the simultaneous change in the 
3 heavy metals was estimated and compared with the median 
exposure level to the heavy metal mixture. Additionally, with 
the concentrations of the other 2 heavy metals set to the 25th, 
50th, and 75th percentile values, the expected change in renal 
tubular damage markers according to the interquartile range 
(IQR) change in the concentration of each heavy metal was 
estimated. Finally, the dose-response relationship of each mixed 
component and potential interactions between metals were 
evaluated, with the concentrations of other heavy metals fixed 
at the 25th, 50th, and 75th percentiles. All statistical analyses 
were performed using R software (version 4.2.3; R Foundation 
for Statistical Computing). Statistical significance was set at P 
< .05 significant.

2.5. Ethical statement

The study protocol was approved by the Institutional Review 
Board of Chungbuk National University (CBNU-IRB-
2011-BQ02), and all the participants provided written informed 
consent.
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3. Results

3.1. Study population characteristics

The demographic characteristics of the study participants are 
summarized in Table 1. Among the participants, 41.33% (n = 
360) were men, and 15.15% (n = 132) were smokers. A total 
of 694 participants (79.68%) had an average monthly income 
of less than 1 million won. The average age of the study par-
ticipants was 64.14 years, with that of the control participants 
being relatively higher than that of the exposed group. The 
geometric mean concentrations of urinary Cd, As, Hg, and 
NAG were higher in the exposed group than in the control 
group. Pearson correlation coefficients between the log-trans-
formed urinary heavy metal concentrations were 0.55 for Cd 
and As, 0.42 for Hg and Cd, and 0.32 for urinary Hg and As 
(Fig. 1).

3.2. Multivariate regression analyses

Table 2 presents the relationship between urine heavy metal 
concentrations and renal tubular damage markers using mul-
tivariate linear regression models adjusted for confounding 
factors. In all participants, with increasing urine Cd concen-
tration, NAG concentration increased significantly (β:0.447, 
95% CI: 0.290–0.603). However, the concentrations of other 
heavy metals had no significant effect on urine NAG con-
centration. A similar trend was observed in the stratification 
analysis of groups. However, the regression coefficients in the 
exposed and control groups were 0.458 and 0.358, respec-
tively, indicating relatively large regression coefficients in the 
exposed group.

3.3. Bayesian Kernel Machine Regression analysis

We estimated the change in urine NAG levels when the concen-
trations of the 3 heavy metals changed to a specific critical value 
(25th–75th percentile) compared with the median concentration 
of each heavy metal. The combined effects of the 3 heavy metals 

were significantly associated with urinary NAG levels below 
and above the 45th and 55th percentiles, respectively (Fig. 2A). 
We assessed which of the 3 metals significantly affected NAG 
concentrations by estimating the univariate summaries of the 
changes in urinary NAG levels associated with IQR changes 
in single heavy metals. Urine Cd levels had the greatest effect 
on NAG levels, and Hg levels significantly affected NAG levels. 
Furthermore, urine Hg and Cd levels had the greatest effect on 
NAG levels when the concentration of other heavy metals was 
at the 25th percentile, compared with the 50th and 75th per-
centiles. When the urine As and Cd concentrations were fixed at 
the 25th, 50th, and 75th percentiles, the urine NAG levels based 
on the IQR increase in urine Hg levels were 0.351 (95% CI: 
0.142–0.560), 0.291 (95% CI: 0.103–0.480), and 0.242 (95% 
CI: 0.029–0.455), respectively. When urine Hg and Cd concen-
trations were fixed at the 25th, 50th, and 75th percentiles, urine 
NAG levels based on the IQR increase in urine As were −0.039 
(95% CI: −0.209, 0.131), −0.055 (95% CI: −0.215, 0.105), and 
−0.065 (95% CI: −0.240, 0.110), respectively (Fig. 2B). When 

Table 1

Demographic characteristics of study participants.

 
Total (n = 

871) 
Exposed group 

(n = 498) 
Control group 

(n = 373) 

Sex, n (%)    
  Male 360 (41.33) 217 (43.57) 143 (38.34)
  Female 511 (58.67) 281 (56.43) 230 (61.66)
Smoking status, n (%)    
  Nonsmoker 739 (84.85) 413 (82.93) 326 (87.40)
  Smoker 132 (15.15) 85 (17.07) 47 (12.60)
Drinking status, n (%)    
  Nondrinker 443 (50.86) 243 (48.80) 200 (53.62)
  Drinker 428 (49.14) 255 (51.20) 173 (46.38)
Economic status, n (%)    
  High 177 (20.32) 126 (25.30) 51 (13.67)
  Low 694 (79.68) 372 (74.70) 322 (86.33)
  Age, yr, Mean (SD) 64.14 (11.42) 63.12 (11.33) 65.51 (11.42)
Urinary As, µg/L, GM 

(GSD)
8.01 (1.87) 8.35 (1.87) 7.57 (1.88)

Urinary Cd, µg/L, GM 
(GSD)

2.02 (2.50) 2.51 (2.33) 1.50 (2.53)

Urinary Hg, µg/L, GM 
(GSD)

0.46 (6.11) 0.51 (5.54) 0.39 (6.85)

NAG, unit/L, GM (GSD) 2.55 (5.14) 2.83 (4.45) 2.23 (6.08)
β2-MG, mg/L, GM 

(GSD)
0.02 (12.22) 0.02 (11.88) 0.02 (12.71)

As = arsenic, Cd = cadmium, GM = geometric means, Hg = mercury, NAG = N-acetyl-β-D-
glucosaminidase, SD = standard deviation, β

2
-MG = β

2
-microglobulin.

Figure 1. Pearson correlation matrix for log-transformed urinary heavy 
metals.

Table 2

Association between urinary As, Cd, and Hg levels and renal 
damage biomarkers, adjusted for sex, age, lifestyle factors, 
economic status, and urinary creatinine level: A multivariate 
ordinary least squares regression analysis.

 

β (95% CI)

NAG β2-MG 

Total   
  As −0.053 (−0.271, 0.165) 0.098 (−0.266, 0.463)
  Cd 0.447 (0.290, 0.603) 0.061 (−0.199, 0.323)
  Hg −0.002 (−0.065, 0.062) −0.265 (−0.133, 0.080)
Exposed group   
  As 0.048 (−0.215, 0.310) 0.184 (−0.303, 0.671)
  Cd 0.458 (0.255, 0.661) −0.010 (−0.388, 0.367)
  Hg 0.016 (−0.062, 0.063) −0.027 (−0.171, 0.118)
Control group   
  As −0.118 (−0.493, 0.257) 0.044 (−0.522, 0.609)
  Cd 0.358 (0.062, 0.654) 0.072 (−0.374, 0.518)
  Hg −0.010 (−0.114, 0.095) −0.014 (−0.172, 0.144)

As = arsenic, Cd = cadmium, Hg = mercury, NAG = N-acetyl-β-D-glucosaminidase, β2-MG = 
β2-microglobulin.
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urine Hg and As concentrations were fixed at the 25th, 50th, 
and 75th percentiles, the urine NAG levels based on the IQR 
increase in urine Cd were 0.455 (95% CI: −0.237, 0.674), 0.391 
(95% CI: 0.195–0.587), and 0.325 (95% CI: 0.104–0.546), 
respectively (Fig. 2B).

Furthermore, based on the exposure–response function 
between each heavy metal and urine NAG concentration when 
the other 2 metals were fixed at the median, a nonlinear rela-
tionship was observed between urine Hg concentration and 
NAG level. In addition, urinary As levels were negatively associ-
ated with NAG levels (Fig. 2C). No interaction existed between 
As and Cd levels or between As and Hg levels when urine Hg 
and Cd were fixed at the median levels. However, when urine As 
was fixed at the median level, Hg and Cd levels exhibited some 
interactions with urine NAG levels (Fig. 2D). However, when 
analyzing the association between combined exposure to the 3 
heavy metals and the β2-MG urine concentrations, no combined 
effect was observed (Fig. 3A). No metal significantly affected the 
change in urinary β2-MG level, which was associated with the 
change from the 25th to the 75th percentile of a single heavy 
metal (Fig. 3B). In addition, minimal interactions were observed 
between the metals that affected the urine β2-MG concentration 
changes (Fig. 3C and D).

A stratified analysis was conducted to determine the rela-
tionship between heavy metal exposure and urine NAG con-
centration. In the exposed group, the combined effects in the 
25th and 75th percentiles were −0.349 and 0.314, respectively, 
compared with the median concentration of each heavy metal 

(Fig. 4A). When the other 2 metals were set at the 25th, 50th, 
and 75th percentiles, urine Hg and Cd levels were significantly 
and positively associated with urine NAG levels. When urine  
As and Cd concentrations were fixed at the 25th, 50th, and 75th 
percentiles, the urine NAG levels based on the IQR increase in 
urinary Hg were 0.332 (95% CI: 0.113–0.552), 0.269 (95% 
CI: 0.067–0.471), and 0.209 (95% CI: −0.014, 0.432), respec-
tively. When urinary Hg and As concentrations were fixed at the 
25th, 50th, and 75th percentiles, urine NAG levels based on the 
IQR increase in urinary Cd were 0.481 (95% CI: 0.253–0.708), 
0.407 (95% CI: 0.198–0.615), and 0.328 (95% CI: 0.099–
0.557), respectively (Fig. 4B). In contrast, in the control group, 
the estimated combined effects at the 25th and 75th percentile 
were −0.223 and 0.090, respectively, compared with the median 
concentration of each heavy metal. Moreover, at concentrations 
above the 60th percentile, no significant changes were observed 
in the combined effect of heavy metals on the NAG concentra-
tion (Fig. 4C). When the other 2 metals were set at the 25th, 
50th, and 75th percentiles, no metals were associated with uri-
nary NAG levels (Fig. 4D).

4. Discussion
This study used the BKMR model to investigate the effects of 
combined exposure to Cd, As, and Hg, which are associated 
with renal damage, on NAG and β2-MG (representative renal 
tubular damage markers) in residents living near smelters. The 

Figure 2. The combined effect of the heavy metals on urine NAG concentrations using the Bayesian Kernel Machine Regression (BKMR) model. The model was 
adjusted for age, sex, drinking, smoking, economic status, and urinary creatinine level. (A) The overall impact of combined metal exposures (estimates and 95% 
confidence intervals for the h function). This figure depicts the estimated shifts in urine NAG levels when exposure is at a certain percentile (x-axis) versus expo-
sure at the 50th percentile. (B) Single pollutant associations (estimates and 95% confidence intervals, with a gray dashed line representing the null). This plot 
shows NAG level variations when a single pollutant is at the 75th percentile compared to the 25th percentile, while maintaining other exposures at the 25th, 50th, 
or 75th percentile. (C) Univariate exposure − response curves and 95% confidence bands for each metal, while maintaining other pollutants at the median. (D) 
Bivariate exposure − response charts for cadmium: when arsenic is set at the 25th, 50th, or 75th percentile and mercury at the median (top left); when arsenic is 
at the 25th, 50th, or 75th percentile and cadmium is at the median (top right); when mercury is at the 25th, 50th, or 75th percentile and arsenic is at the median 
(bottom left); and when cadmium is at the 25th, 50th, or 75th percentile and arsenic is at the median (bottom right). NAG = N-acetyl-β-D-glucosaminidase.
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BKMR model is increasingly used in environmental epidemi-
ology because it overcomes the nonlinear relationship between 
hazardous chemicals and health effects and potential interac-
tions between chemicals and can evaluate the combined effects 
of chemical mixtures.[11] Previous studies have reported a rela-
tionship between heavy metal exposure and health effects in 
residents near smelters.[15–17] Residents living near smelters have 
significantly higher exposure to Cd, Hg, Pb, As, and Cu, and 
there is a relationship between exposure to these heavy metals 
and kidney damage.[4,5,8] NAG and β2-MG are markers used to 
evaluate renal tubular damage.[6,7] Cd can directly affect renal 
tubular cells, causing cell damage and inflammation. After cell 
damage, the excretion of proteins synthesized in the tubules 
may increase or their reuptake might be inhibited.[18] Lim et al[19] 
investigated the impacts of low-level exposure to Pb and Cd 
in a large cross-sectional study on a Korean adult population. 
They observed positive correlations between the urinary con-
centrations of Pb and Cd and NAG and β2-MG levels in urine. 
An interactive effect of Pb and Cd exposure on urinary NAG 
and β2-MG levels was also observed. This study underscores 
the significance of exposure to multiple heavy metals, even at 
low levels.

Mercury toxicity is a significant global health challenge 
(Branco et al[20]; UN Environment Global Mercury Assessment, 

2018). Proximal tubular damage after exposure to high Hg 
concentrations is related to oxidative stress due to depletion of 
the cellular thiol pool.[21] Increased urinary NAG activity was 
reported in workers exposed to low Hg concentrations for 
extended periods.[22–24] However, studies on the relationship 
between amalgam fillings, a major source of Hg exposure, and 
urinary NAG levels are diverse. Studies have revealed that den-
tal amalgam levels positively correlated with urine NAG lev-
els.[25,26] In contrast, some studies have reported that amalgam 
filling in children has no relationship with NAG levels,[27,28] and 
that no difference exists in the renal function of patients before 
and after amalgam filling.[29,30]

As is one of the most common hazardous substances in 
water and soil.[31] Exposure to As in drinking water causes renal 
damage and chronic kidney disease.[21] In addition, chronic As 
exposure increases urine NAG levels in individuals living in 
As-contaminated areas.[32] Renal tubular damage is aggravated 
when cells are exposed to Cd and As for extended periods, even 
at low concentrations.[33]

Unlike workers who are exposed to specific heavy metals, 
most of the general population is likely to be exposed to mul-
tiple combinations of harmful heavy metals. The relationship 
between exposure to heavy metals and health effects differs in 
various epidemiological studies, possibly because the combined 

Figure 3. The combined effect of exposure to the mixture of the metals on urinary β2-MG concentration using the Bayesian Kernel Machine Regression (BKMR) 
model. The model was adjusted for age, sex, drinking, smoking, economic status, and urinary creatinine level. (A) The overall impact of the mixture (estimates 
and 95% confidence intervals for the h function). This figure depicts the estimated variation in urine β2-MG levels when exposure is at a certain percentile (x-axis) 
versus exposure at the 50th percentile. (B) Single pollutant associations (estimates and 95% confidence intervals, with a gray dashed line representing the null). 
This plot shows β2-MG level variations when a single pollutant is at the 75th percentile compared to the 25th percentile, while maintaining other exposures at the 
25th, 50th, or 75th percentile. (C) Univariate exposure − response functions and 95% confidence bands for each metal, while maintaining other pollutants at the 
median. (D) Bivariate exposure − response functions for cadmium: when arsenic is set at the 25th, 50th, or 75th percentile and mercury at the median (top left); 
when arsenic is at the 25th, 50th, or 75th percentile and cadmium is at the median (top right); when mercury is at the 25th, 50th, or 75th percentile and arsenic 
is at the median (bottom left); and when cadmium is at the 25th, 50th, or 75th percentile and arsenic is at the median (bottom right). β2-MG = β2-microglobulin.
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exposure to multiple heavy metals may cause different health 
effects. Depending on the interactions between heavy metals, 
the relationship between heavy metals and health effects may 
be linear or nonlinear. Therefore, examining the relationship 
between a single heavy metal and its health effects using only 
a linear regression model cannot rule out the possibility of dis-
torted results.

In this study, we evaluated the relationships between urinary 
As, Cd, and Hg concentrations and renal tubular damage mark-
ers using a multiple linear regression model. Urinary Cd was 
significantly correlated with NAG concentration. However, the 
differences in As and Hg levels were not significant. In addition, 
in the multiple regression analysis with β2-MG concentration as 
the dependent variable, no significant differences were observed 
for any of the 3 heavy metals. In contrast, in the BKMR model, 
when the effects of each heavy metal were evaluated with other 
heavy metals at constant levels, the concentrations of urinary 
Hg and Cd significantly affected the changes in NAG levels.

The difference in the effect of urinary Hg on NAG levels 
in the BKMR and multiple linear regression models was most 
likely due to their nonlinear relationship (Fig. 2C). A multiple 
linear regression model evaluates the linear relationship between 
2 variables; therefore, statistical significance may not appear in 
a nonlinear relationship.

In addition, the effects of combined exposure to heavy metals 
may vary depending on the degree of exposure. In this study, 
the stratified BKMR analysis of the relationship between heavy 

metal exposure and urine NAG concentration revealed that the 
combined effect in the exposed group was greater than that in 
the control group.

Most mixed analysis methods exhibit certain limitations. For 
example, the clustering approach groups mixtures into differ-
ent subgroups, which can cause information loss. Therefore, it 
is unsuitable for downstream analysis,[34] and shrinkage meth-
ods such as LASSO penalize less important variables as “0.” 
Moreover, it is typically used for linear exposure–response func-
tions; therefore, it is limited in explaining the combined effects 
of heavy metals on health.[35] In this regard, BKMR can measure 
the overall mixed effects and separately evaluate the effects of 
individual predictors and confounding variables in a nonlinear 
and nonadditive manner.[11]

Nevertheless, this study has several limitations. First, this 
study used a cross-sectional design; thus, identifying the causal 
relationship between heavy metals and health effects is chal-
lenging. Second, only 3 heavy metals in urine (As, Cd, and Hg) 
were included in the analysis; however, residents living near the 
smelters are exposed to more heavy metals. This is because we 
included only heavy metals measured in the urine rather than 
those measured in the blood. Finally, the total As and total Hg 
concentrations were used in the study, although the toxicity of 
As and Hg to the kidney varies based on their chemical prop-
erties. In the future, the effects of inorganic As and organic Hg, 
which are known to be highly toxic, on the kidney, need to be 
investigated.

Figure 4. The combined effect of the mixture on urinary NAG concentration using the Bayesian Kernel Machine Regression (BKMR) model. The model was 
adjusted for age, sex, drinking, smoking, economic statuses, and urinary creatinine level in the exposed (A and B) or control group (C and D). (A and C) The 
cumulative impact of the compound (estimates and 95% confidence intervals for the h function). This graph illustrates the estimated alteration in urinary NAG 
levels when exposures are situated at a specific percentile (x-axis) in contrast to when all exposures are at the 50th percentile. This figure presents the cumulative 
impact of the mixture (estimates and 95% confidence intervals for the h function). It demonstrates the estimated alteration in urinary NAG levels with exposures 
at specific percentiles (x-axis), compared to all exposures being at the 50th percentile. (B and D) Associations with individual pollutants are shown (estimates 
and 95% confidence intervals, with a gray dashed line indicating the null). This illustration contrasts NAG levels when a single pollutant is at the 75th percentile 
against the 25th percentile, while maintaining all other exposures constant at the 25th, 50th, or 75th percentile. NAG = N-acetyl-β-D-glucosaminidase.



7

Choi et al. • Medicine (2023) 102:41 www.md-journal.com

In summary, we evaluated the effects of combined exposure 
to As, Cd, and Hg on urine NAG levels in residents living near 
smelters using a BKMR model. The combined effects of the 3 
heavy metals were significantly associated with increased urine 
NAG concentrations, which were caused by increased urine Cd 
and Hg concentrations. This association was more evident in 
the individuals exposed to high concentrations of heavy metals. 
These results suggest that the BKMR model is useful for assess-
ing the health effects of heavy metal exposure.

5. Conclusions
This study used a BKMR model to assess the effect of com-
bined exposure to As, Cd, and Hg on the renal health of indi-
viduals living near smelters. Exposure to these heavy metals 
significantly increased urinary NAG levels, a renal tubular 
damage marker, primarily because of elevated levels of Cd 
and Hg. This relationship was notably stronger in individu-
als exposed to high concentrations, indicating the utility of 
the BKMR model for assessing the health effects of multiple 
heavy metals.
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