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Abstract: Particulate matter 2.5 (PM2.5) levels are associated with adverse pregnancy outcomes. In
this retrospective cohort study, we examined whether the concentration of indoor PM2.5 affected
pregnancy outcomes. Additionally, we evaluated biomarkers of pregnancy-related complications
caused by fine dust. We collected clinical information and data based on residential addresses from
the Air Korea database to assess PM2.5 exposure levels. As a multicenter prospective cohort study,
we measured the indoor PM2.5 concentration and inflammatory and oxidative stress markers. The
PM2.5 concentration of the low-birth-weight (LBW) delivery group was 27.21 µg/m3, which was
significantly higher than that of the normal-birth-weight (NBW) group (26.23 µg/m3) (p = 0.02). When
the newborns were divided by sex, the PM2.5 concentration of the LBW group was 27.89 µg/m3 in
male infants, which was significantly higher than that of the NBW group (26.26 µg/m3) (p = 0.01). In
the prospective study, 8-hydroxy-2-deoxyguanosine significantly increased in the high-concentration
group (113.55 ng/mL, compared with 92.20 ng/mL in the low-concentration group); in the high-
concentration group, the rates of preterm birth (PTB) and small size for gestational age significantly
increased (p < 0.01, p = 0.01). This study showed an association between PM2.5, oxidative stress, and
fetal growth, with the PTB group being more vulnerable.

Keywords: 8-hydroxy-2-deoxyguanosine; biomarker; indoor air; low birth weight; particulate matter;
preterm birth; sex difference; small for gestational age
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1. Introduction

Low birth weight (LBW; birth weight < 2500 g, regardless of gestational age), small
for gestational age (SGA; birth weight below the 10th percentile for gestational age), and
preterm birth (PTB; delivery at <37 weeks of gestation) are complications of pregnancy
that directly affect the prognosis of newborns [1–7]. The incidence of LBW varies by
country (range, 6–25%); however, LBW births are associated with short- and long-term
complications [8,9]. The prevalence of SGA births is approximately twice that of LBW [10].
Previous studies have investigated sociodemographic and medical risk factors as well as
environmental risks (i.e., exposure to toxic substances) for LBW [10].

Particulate matter (PM) 2.5 (PM2.5, particles with an aerodynamic diameter of≤2.5 µm),
one of the major air pollutants, has been reported to be associated with various adverse
pregnancy outcomes [11,12]. In particular, associations between PM2.5 and LBW, PTB,
and SGA infants have been reported [5–7,11]. Most studies have conducted exposure
assessments using outdoor air quality measurements [5,7,11,13]. Recently, it was found
that 80–90% of individuals live indoors, and the importance of indoor air quality has
been gradually emphasized [14,15]. Therefore, the importance of measuring indoor PM
concentrations is increasing, and individual indoor fine dust exposure may reveal better
causal relationships between PM2.5 and pregnancy outcomes [14,16,17].

There is a lack of understanding of the pathogenesis of PM2.5 affecting fetal growth.
Various studies have been conducted to understand the cause of fetal growth restriction [18,19].
The analysis of sex differences is useful in understanding biological mechanisms. Although
biological mechanisms are influenced by PM regardless of sex, sex-specific effects remain
controversial [11,16,20]. It is also controversial whether exposure to PM at any stage of
pregnancy has a greater effect on fetal growth [21,22].

Recently, various biomarkers have been developed to evaluate exposure to fine
dust [23], and attempts have been made to explain fetal growth based on DNA methyla-
tion or telomere length in cord blood [16,24–26]. However, cord blood is not suitable for
biomonitoring, because it is difficult to sample during pregnancy. Although there are many
studies on oxidative stress, inflammation, DNA damage, and epigenetic modulation as
biomarkers of exposure to PM, there are few biomarker studies on pregnant women [23].

Therefore, this study aimed to examine whether the concentration of PM2.5 affects fetal
growth through indoor PM measurement. We also evaluated biomarkers of pregnancy-
related complications caused by fine dust as well as indicators for the biomonitoring of
PM2.5 exposure.

2. Materials and Methods
2.1. Study Design of Cohort I

The first study was a hospital-based retrospective cohort study of 1880 pregnant
women who delivered live babies between 2010 and 2015 at the Ewha Womans University
Mokdong Hospital (EUMC 2020-07-043). We collected information on maternal age; body
mass index (BMI); gestational age at birth (GAB); neonatal sex; weight and height at birth;
appearance, pulse, grimace, activity, and respiration (APGAR) score; and place of residence
at the time of delivery. The Air Korea database was used for PM2.5 exposure assessment,
which includes hourly accumulated air pollution monitoring data for components such as
sulfur dioxide, PM10, carbon monoxide, nitrogen dioxide, and ozone from the Ministry of
Environment of Korea. The level of PM2.5 exposure was measured using the Community
Multiscale Air Quality (CMAQ) modeling system. PM2.5, from CMAQ modeling data,
was estimated using meteorological research and forecasting models comprising three
overlapping weather data sources at 3, 9, and 27 km for a specific time period. PM2.5
exposure levels during pregnancy were determined based on residential address (city,
county, and district, or si, gun, and gu in the Korean language). For each address, daily
PM2.5 concentrations were matched to each individual according to their delivery date.
Each individual’s outdoor air quality data were collected for each pregnancy trimester,
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extending to data from the week of delivery. PM2.5 data were collected from 2009 to 2015,
depending on the pregnancy period of the study participants.

We stratified the groups by birth weight and height and performed Student’s t-test
(Figure 1a). LBW was defined as a weight at birth of <2500 g, and low birth height (LBH)
was defined as a height at birth of <46.3 cm for male and <45.6 cm for female infants.
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2.2. Study Design of Cohort II

A multicenter prospective cohort study of air pollution in pregnant women (APPO) was con-
ducted to investigate the effects of PM on mothers and fetuses by recruiting > 1200 participants
between January 2021 and December 2023 in seven university hospitals across Korea. Each
hospital was located in a metropolitan area, an industrial complex, or a mountainous
area. The participants were singleton pregnant women with no underlying diseases before
28 weeks of gestation.

In the second study, 333 women who had delivered were selected as participants
(Figure 1b). We collected data on basic demographic and health-related characteristics
including age, BMI, socioeconomic status, and obstetric history. Routine blood tests were
conducted to measure the white blood cell (WBC) counts and high-sensitivity C-reactive
protein (hs-CRP) levels as inflammatory markers, and urine samples were collected during
the second trimester. The pregnancy outcomes were evaluated after delivery.

This study was approved by the Ethical Research Committee of Ewha Womans
University Mokdong Hospital (EUMC 2021-04-032), Yonsei University Severance Hos-
pital (4-2021-0414), Kangwon National University Hospital (KNUH-B-2021-04-012-008),
Keimyung University Dongsan Medical Center (2021-04-073), Korea University Guro Hos-
pital (2021GR0233), Ewha Womans University Seoul Hospital (2021-04-022), and Ulsan
University Hospital (2022-04-020). All participants provided written informed consent.

2.3. PM Exposure Assessment

The indoor PM2.5 concentration was measured by placing a fine dust meter at breathing
height in the living room of a pregnant woman’s house. An AirGuard K (Kweather
Co., Seoul, Republic of Korea) instrument was used for measurements using the sensor-
based method. The indoor PM2.5 was measured online at 1-min intervals. The measured
indoor PM2.5 data were stored in an indoor air quality monitoring platform (IAQ Station)
using Long-Term Evolution. Measurements were performed for at least 1 week, and the
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measured concentration values were recorded in real time using the Internet of Things and
Information and Communication Technology. For indoor PM2.5, after removing outliers,
the average value of measurements for each trimester of pregnancy was derived, and
the average of the two or three trimesters was defined as PM2.5. The participants were
divided according to the PM2.5 exposure level as follows: <10 µg/m3 (low PM2.5 group)
and ≥10 µg/m3 (high PM2.5 group) concentration groups, which are the World Health
Organization’s annual limit standard concentrations (2005 air quality guidelines).

Outdoor PM2.5 concentrations were collected from a nearby urban atmospheric mea-
surement network based on the residential addresses of the study participants. The Urban
Air Monitoring Station data used in this study were obtained from the Air Korea database
(https://www.airkorea.or.kr/web (accessed on 1 May 2021)) of the Korean Ministry of
the Environment.

2.4. Collection of Blood and Urine Samples

We collected 5 mL maternal venous blood and 15 mL urine. Blood and urine samples
were collected at regular follow-up visits. Whole blood samples collected in ethylenedi-
aminetetraacetic acid tubes were transferred to cryotubes, and urine was stored in one
cryotube. Samples were transferred to the institution (the Seegene Medical Foundation,
Seoul, Republic of Korea) on the same day as collection under refrigeration to prevent
deterioration (−80 ◦C).

2.5. Measurement of Oxidative Stress and Inflammatory Markers

The oxidative stress markers 8-hydroxy-2-deoxyguanosine (8-OHdG) and malondi-
aldehyde (MDA) were measured in urine samples collected during the second trimester of
pregnancy. The collected urine samples were transported directly to the laboratory and
stored at −80 ◦C before processing. The urine samples were filtered with a 0.2-µm filter
(Sartorius, S6534-FMOSK, Göttingen, Germany) for the assay and diluted at 1:20 to measure
the concentration of 8-OHdG using enzyme-linked immunosorbent assay (ELISA) kits
(Abcam, Ab201734, Waltham, Boston, MA, USA). The concentration of MDA in urine was
measured using an MDA ELISA kit (ab118970; Abcam). Among the inflammatory markers,
the WBC count was measured using an XN-9000 (Symex, Kobe, Japan) according to the
manufacturer’s protocol, from the participant’s whole blood sample, through an automated
complete blood cell count. The hs-CRP level was measured using a particle-enhanced
immunoturbidimetric assay according to the manufacturer’s protocol using a Cobas 8000
C702 analyzer (Roche, Basel, Switzerland).

2.6. Statistical Analysis

Clinical characteristics were analyzed according to continuous variables (age and BMI)
and categorical variables (marital status, education level, occupation, monthly income,
gravidity, and pregnancy methods). Pregnancy outcomes were analyzed according to con-
tinuous (GAB, birth weight, height, and APGAR score) and categorical variables (delivery
mode, neonate sex, and pregnancy complications). Pregnancy complications were defined
using the following criteria (LBW: birth weight of <2500 g; LBH: birth height <46.3 cm for
male and <45.6 cm for female infants; SGA: birth weight < 10th percentile for gestational
age; PTB: delivery at <37 weeks of gestation) and analyzed as categorical variables. Ox-
idative stress (8-OHdG and MDA) and inflammatory markers (hs-CRP and WBC count)
were analyzed as continuous variables. Categorical variables were expressed as frequencies
(percentages) and analyzed using chi-square and Fisher’s exact tests. Continuous variables
were expressed as means ± standard deviations (SDs) and were compared using the t-test
or Mann–Whitney U test. Logistic regression model was used to estimate the associations
between LBW and PM2.5 exposure (1 µg/m3) in each trimester with adjustment for covari-
ates (maternal age, parity, maternal pre-pregnancy BMI, preeclampsia, and gestational age).
Statistical significance was defined as p < 0.05. All statistical analyses were performed using
the Statistical Package for the Social Sciences (version 20.0; IBM Corp., Armonk, NY, USA).

https://www.airkorea.or.kr/web
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3. Results
3.1. Association between PM2.5 Exposure and Birth Weight and Height According to Neonatal Sex
Using a Retrospective Cohort Study

Among the 1880 neonates, 1569 had a normal birth weight (NBW) and 311 had LBW.
The two groups showed significant differences in GAB, birth weight, height, and APGAR
scores (p < 0.01); however, there were no significant differences in maternal age, pre-
pregnancy BMI, and neonatal sex (Table 1). The average outdoor PM2.5 concentration was
27.35 µg/m3 (Table 2 and Supplementary Table S1). The PM2.5 concentration in the second
trimester for pregnant women who delivered LBW babies was 27.21 µg/m3, which was
significantly higher than the value of 26.23 µg/m3 in the NBW group (p = 0.02, Table 3).
When the delivered newborns were divided by sex, the PM2.5 concentration in the second
trimester for male LBW babies was 27.89 µg/m3, which was significantly higher than the
value of 26.26 µg/m3 in male infants with NBW (p = 0.01), but there was no significant
difference in female infants (p = 0.74, Table 3).

Table 1. Characteristics of study population of Cohort I.

Characteristics NBW
(n = 1569)

LBW
(n = 311) p-Value

Age (years) 33.20 4.16 32.79 4.47 0.12
Pre-BMI (kg/m2) 21.46 3.59 21.52 3.65 0.92

GAB (wks) 39.02 1.35 33.30 3.49 <0.01 *
Neonate Sex

Male 791 82.14% 172 17.86% 0.12
Female 780 84.78% 140 15.22%

Birth weight (g) 3266.44 394.83 1824.04 497.55 <0.01 *
Birth height (cm) 49.76 1.88 42.08 4.06 <0.01 *

APGAR 1 min 9.30 1.12 6.76 2.54 <0.01 *
APGAR 5 min 9.88 0.55 8.27 2.24 <0.01 *

Pregnancy complications
PTB 81 24.40% 251 75.60% <0.01 *

Categorical variables are expressed as frequencies (percentages) and were analyzed using the chi-square test.
Continuous variables are expressed as means ± SDs and were compared using t-tests. APGAR, appearance,
pulse, grimace, activity, respiration; BMI, body mass index; GAB, gestational age at birth; SD, standard deviation.
* p < 0.05 considered statistically significant.

Table 2. Summary of PM2.5 concentration (µg/m3) by second trimester of pregnancy.

Mean SD Min 25th 50th 75th Max p-Value

[Cohort I] 27.35 4.48 17.73 23.33 27.89 30.72 41.68 <0.01 *,1

[Cohort II] <0.01 *,2

Indoor 10.57 10.47 0.53 4.35 7.8 12.02 69.25
Outdoor 17.27 7.48 1.69 12.00 16.71 20.14 43.50

1 Statistical significance of concentration of PM2.5 between Cohorts I and II. 2 Statistical significance between
indoor and outdoor PM2.5 of Cohort II. PM2.5, particulate matter 2.5. * p < 0.05 considered statistically significant.

Table 3. Comparison of PM2.5 exposure (µg/m3) by each trimester in NBW, LBW, NBH, and LBH,
according to sex.

Exposure Period

All Newborns Males Females

NBW
(n = 1567)

LBW
(n = 313) p-Value NBW

(n = 791)
LBW

(n = 169) p-Value NBW
(n = 774)

LBW
(n = 141) p-Value

Entire 27.17 ± 4.30 27.40 ± 4.67 0.43 27.24 ± 4.37 27.79 ± 4.82 0.17 27.11 ± 4.24 26.93 ± 4.48 0.65

First trimester 28.75 ± 7.63 28.04 ± 7.70 0.15 28.91 ± 7.87 28.38 ± 7.94 0.45 28.59 ± 7.38 27.71 ± 7.42 0.21

Second trimester 26.23 ± 6.78 27.21 ± 6.53 0.02 * 26.26 ± 6.70 27.89 ± 6.79 0.01 * 26.22 ± 6.86 26.38 ± 6.15 0.78

Third trimester 26.40 ± 6.43 27.04 ± 8.56 0.23 26.39 ± 6.28 26.94 ± 8.63 0.46 26.38 ± 6.57 27.03 ± 8.40 0.40

Continuous variables are expressed as means ± SDs and compared using t-tests. LBH, low birth height; LBW, low
birth weight; NBH, normal birth height; NBW, normal birth weight. * p < 0.05 considered statistically significant.
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When the neonates were divided into term and PTB groups, the concentration of PM2.5
for the LBW infants in the PTB group was 27.29 ug/m3, which was significantly higher
than the concentration of 25.89 µg/m3 for NBW babies, respectively (p = 0.02, Table 4).
In the PTB group, the PM2.5 concentration of the preterm normal birth weight (PNBW)
and preterm low birth weight (PLBW) groups showed significant differences between
the first and second trimesters, respectively (p = 0.05, p = 0.04), with more significant
differences in the male group (p < 0.01, p = 0.01, Table 4). In contrast, in female infants in
the PTB group, there were no statistically significant differences between the PNBW and
PLBW groups in any trimester (p = 0.88, Table 4). In the term birth group, there was no
significant difference between the NBW and LBW groups at term in any trimester (p = 0.30;
Supplementary Table S2).

Table 4. Subgroup analysis for comparison of PM2.5 exposure (µg/m3) by each trimester in the NBW
and LBW at preterm in Cohort I.

Exposure Period

All Newborns Male Infants Female Infants

PNBW
(n = 84)

PLBW
(n = 260) p-Value PNBW

(n = 48)
PLBW

(n = 149) p-Value PNBW
(n = 36)

PLBW
(n = 111) p-Value

Entire 25.89 ± 4.15 27.29 ± 4.78 0.02 * 25.06 ± 4.03 27.61 ± 4.90 <0.01 * 27.00 ± 4.10 26.87 ± 4.64 0.88

First trimester 25.81 ± 6.63 27.58 ± 7.57 0.05 24.35 ± 6.21 27.73 ± 7.65 <0.01 * 27.77 ± 6.76 27.48 ± 7.50 0.84

Second trimester 25.57 ± 6.26 27.25 ± 6.58 0.04 * 24.82 ± 5.87 27.81 ± 6.82 0.01 * 26.58 ± 6.69 26.51 ± 6.22 0.95

Third trimester 26.69 ± 6.15 27.23 ± 8.98 0.55 26.92 ± 5.61 27.27 ± 9.09 0.80 26.39 ± 6.86 27.02 ± 8.77 0.66

Continuous variables were expressed as means ± SDs and compared using t-test. PNBW, preterm normal birth
weight; PLBW, preterm low birth weight. * p < 0.05 considered statistically significant.

Pregnant women who were exposed to PM2.5 had a significantly higher risk of LBW
than those who were not exposed, with an adjusted odds ratio (OR) of 1.06 (95% confidence
interval [CI]: 1.01–1.10, Table 5). In male infants, the risk of LBW was higher, with an OR of
1.12. The susceptibility period was in the first and second trimester, with ORs of 1.05 and
1.07, respectively (95% CI: 1.01–1.10 and 1.03–1.12, Table 5).

Table 5. Association between PM2.5 exposure (per 1µg/m3) in each trimester and logistic regression analysis.

Risk of LBW by PM2.5 Exposure (per 1 µg/m3)

All Newborns Male Infants Female Infants

Stage OR 95% CI p-Value OR 95% CI p-Value OR 95% CI p-Value

Entire 1.06 1.01–1.10 0.02 * 1.12 1.04–1.20 <0.01 * 1.00 0.93–1.07 0.94

First trimester 1.02 1.00–1.05 0.08 1.05 1.01–1.10 0.02 * 1.00 0.96–1.04 0.86

Second trimester 1.03 1.00–1.06 0.04 * 1.07 1.03–1.12 <0.01 * 1.00 0.96–1.04 0.90

Third trimester 1.00 0.98–1.03 0.80 1.00 0.96–1.04 0.85 1.01 0.97–1.05 0.73

Models adjusted for maternal age, parity, maternal pre-pregnancy body mass index, preeclampsia, and gestational
age. CI, confidence interval; OR, odds ratio. * p < 0.05 considered statistically significant.

3.2. Study Population of APPO and Measurement and Correlation of Indoor/Outdoor PM2.5

An analysis was performed on 306 of 333 delivery participants, excluding those with
incomplete data. According to the PM2.5 exposure levels of the participants, the numbers
in the low and high PM2.5 groups were 191 and 115, respectively (Table 6). There were no
significant differences in the characteristics of the study population between the high and
low PM2.5 concentration groups (Table 6).

The average of the indoor PM2.5 concentration in the second trimester of pregnancy
among the APPO study participants was 10.57 µg/m3, and that of the outdoor PM2.5 was
17.27 µg/m3. The two measurements showed a statistically significant positive correlation
(p < 0.01, r2 = 0.187) (Table 2, Figure 2a). The concentration of outdoor PM2.5 in Cohort I
was significantly lower than that in Cohort II (p < 0.01, Table 2).
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Table 6. Characteristics of study population in Cohort II.

Characteristics Low PM2.5
(n = 191)

High PM2.5
(n = 115) p-Value

Age (years) 33.74 ±3.62 33.12 ±4.50 0.19
Pre-BMI (kg/m2) 21.86 ±3.31 21.56 ±3.17 0.43
Married state
Married 167 100.0% 133 97.8% 0.16
Unmarried 0 0.0% 3 2.2%
Education level 0.14
High school
graduation or below 13 6.8% 13 9.5%

University graduates 154 92.3% 123 90.4%
Occupation

Yes 112 67.1% 94 69.1% 0.70
No 55 32.9% 42 30.9%

Monthly income
<4 million won 35 36.1% 35 37.6% 0.95
4–6 million won 27 27.8% 24 25.8%
>6 million won 35 36.1% 34 36.6%

Gravidity
1 80 47.9% 68 50.0% 0.65
2 61 36.5% 50 36.8%
≥3 26 15.6% 18 13.2%

Pregnancy methods
Natural 143 85.6% 116 85.3% 0.91
IUI 2 1.2% 1 0.7%
IVF-ET 22 13.2% 19 14.0%

Categorical variables are expressed as frequencies (percentages) and were analyzed using chi-square and
Fisher’s exact tests. Continuous variables are expressed as means ± SDs and were compared using the t-test or
Mann–Whitney U test. IUI, intrauterine insemination; IVF-ET, in vitro fertilization–embryo transfer.
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Figure 2. Correlation analysis between (a) indoor and outdoor PM2.5, and (b) indoor PM2.5 and
8-OHdG. 8-OHdG, 8-hydroxy-2-deoxyguanosine; PM2.5, particulate matter 2.5.

3.3. Association between PM2.5 Exposure and Pregnancy Complications

The oxidative stress marker 8-OHdG was significantly increased in the high-concentration
group to 113.55 ng/mL, compared to 92.20 ng/mL in the low-concentration group, and
there was a positive correlation (p = 0.02, r2 = 0.010) (Table 7, Figure 2b). There were no
differences in the MDA or inflammatory marker levels between the two groups (Table 7).
There were no differences in GAB, delivery mode, neonatal sex, birth weight, or APGAR
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score (Table 8). The mean birth height was 48.9 cm in the high-concentration group, which
was significantly lower than that in the low-concentration group (49.5 cm; p = 0.04; Table 8).
In the high-concentration group, PTB significantly increased from 4.2% to 13.2%, and SGA
significantly increased from 0.6% to 5.1% (p < 0.01, p = 0.01) (Table 8, Figure 3).

Table 7. Oxidative stress and inflammatory markers between the low and high PM2.5 groups.

Low PM2.5
(n = 191)

High PM2.5
(n = 115) p-Value

Oxidative stress marker
8-OHdG (ng/mL) 92.20 61.16–138.19 113.55 79.69–153.27 0.02 *
MDA (µM) 18.49 8.66–37.18 16.02 9.99–30.34 0.54
Inflammatory marker
Hs-CRP (mg/L) 2.00 1.00–3.00 1.79 1.00–2.99 0.74
WBC (1 × 103/µL) 8.80 7.00–9.72 8.00 7.00–10.00 0.98

Continuous variables are expressed as medians (interquartile ranges) and were compared using the
Mann–Whitney U test. 8-OHdG, 8-hydroxy-2-deoxyguanosine; Hs-CRP, high-sensitivity C-reactive protein;
MDA, malondialdehyde; WBC, white blood cells. * p < 0.05 considered statistically significant.
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Figure 3. Pregnancy complications in the PM2.5 concentration group. GDM, gestational diabetes
mellitus; IUGR, intrauterine growth restriction; LGA, large for gestational age; NICU, neonatal
intensive care unit; PIH, pregnancy-induced hypertension; PM2.5, particulate matter 2.5; SGA, small
for gestational age. * p < 0.05 considered statistically significant.

Table 8. Association between PM2.5 exposure and pregnancy complications.

Low PM2.5
(n = 191)

High PM2.5
(n = 115) p-Value

Pregnancy outcome
GAB (wks) 38.22 ±1.59 37.96 ±1.95 0.22
Delivery mode 0.86
ND 61 36.5% 51 37.5%
CS 106 63.5% 85 62.5%
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Table 8. Cont.

Low PM2.5
(n = 191)

High PM2.5
(n = 115) p-Value

Neonate Sex
Male 112 58.9% 56 49.1% 0.10
Female 78 41.1% 58 50.9%
Birth weight (g) 3150.7 ±391.6 3112.0 ±522.5 0.50
Birth height (cm) 49.5 ±2.2 48.9 ±2.8 0.04 *
APGAR 1 min 8.45 ±1.22 8.36 ± 0.61
APGAR 5 min 9.43 ±0.84 9.21 ±1.37 0.13
Pregnancy complications
LBW 4 5.1% 4 6.9% 0.47
LBH 5 2.6% 8 7.0% 0.07
PTB 8 4.2% 15 13.2% <0.01 *
SGA 1 0.6% 7 5.1% 0.01 *
NICU admission 20 12.0% 23 16.9% 0.32

Categorical variables are expressed as frequencies (percentages) and were analyzed using chi-square and Fisher’s
exact tests. Continuous variables are expressed as means ± SDs or medians (interquartile range) and were
compared using the t-test or Mann–Whitney U test. CS, cesarean section; ND, normal delivery; NICU, neonatal
intensive care unit; SGA, small for gestational age. * p < 0.05 considered statistically significant.

4. Discussion

In this study, the association between PM2.5 and LBW was confirmed through a
retrospective cohort study, and its effect was found to be more pronounced in the male and
PTB groups. Furthermore, a multicenter prospective cohort study revealed the relationship
between PM2.5 and birth height, SGA, and PTB by measuring the actual indoor PM2.5.
The oxidative stress marker 8-OHdG, which was used to explore the pathogenesis of
these pregnancy complications and identify biomarkers, showed a positive correlation
with PM2.5.

Our results are similar to those of previous studies that showed an association between
PM2.5 and fetal growth and PTB [11,27–30]. Regarding the biological mechanism by which
PM2.5 affects fetal growth, the effects of oxidative stress, placental inflammation or dys-
function, endothelial dysfunction, and blood coagulation have been reported [18,19]. The
pathogenesis of PM-induced PTB involves systemic inflammation caused by the inhalation
of toxic particles [31,32]. Many large-scale studies have confirmed these results; however,
most have been retrospective [4,11,13], which is a limitation. Although the number of
participants was small, pregnancy complications were confirmed in a prospective study
using actual indoor PM2.5 measurement.

Several studies have shown that male fetuses are vulnerable to intrauterine growth
restriction [27,33] and PTB [34]. Although the sex difference in fetuses affected by PM2.5
remains controversial [11,16,33], this study showed an association between LBW and PM2.5,
especially in male infants. To understand the sex differences, it is necessary to understand
the biological mechanisms underlying PM2.5 [35]. Male fetuses grow faster than female
fetuses and require more oxygen; therefore, the possibility that toxic substances inhibit this
process has been suggested [33,35]. Another mechanism is that an increase in inflammatory
mediators in the blood caused by air pollution increases the blood viscosity [36], which
affects placental function. In general, placental dysfunction is more prevalent in male
fetuses [37,38]. The cohort of the APPO study could not confirm the sex differences owing
to the small number of participants, but it is necessary to confirm whether PM2.5 actually
affects fetal growth to continuously recruit participants in the future.

Similar to previous studies showing the relationships between PM2.5 and environmen-
tal pollutants and oxidative stress, this study showed a relationship between PM2.5 and
8-OHdG levels [39]. In brief, 8-OHdG is a reactive oxygen species that has been used as a
marker of DNA damage because of its mutagenic potential [40]. The results of this study
show the possibility of using 8-OHdG as a biomarker of PM2.5 exposure. In particular, urine
samples have the advantage that they can be collected from patients non-invasively, and
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since 8-OHdG shows high stability in urine, it can be used as a biomarker [41]. By verifying
the effectiveness of 8-OHdG in the future, it can be used as a biomarker for biomonitoring,
suggesting the possibility that the use of antioxidants affects the prognosis of newborns [24].
PM not only affects the outcomes of newborns and pregnancy but also long-term diseases
in offspring, according to the concept of fetal programming [42,43].

Most existing studies have estimated fine dust exposure concentrations based on
differences in air quality by region and location [4,11,28,44]. However, as 80–90% of
individuals live indoors, owing to COVID-19, the outdoor activity of pregnant women
further decreased, and the importance of indoor air quality has been emphasized [45,46].
In this APPO study, indoor PM2.5 measurements were performed in the residences of
pregnant women for at least 1 week, and it is thought that this can give causality to the
biological mechanism of any relationship between PM2.5 and a disease. The results of
this study, using correlation analysis between indoor and outdoor PM2.5, explain that
outdoor conditions significantly affect indoor air quality; however, the correlation can be
explained by only 18.7% influence. This indicates that the indoor air quality can be affected
by various human activities, including smoking and cooking [14,17], thereby suggesting
that education regarding lifestyle changes may also be important for better pregnancy
outcomes. Through this survey, we will conduct additional research on the group in which
indoor PM2.5 increases in preparation for actual outdoor PM2.5. We plan to conduct further
research on active intervention measures to prevent pregnancy complications.

In this study, there was a difference in PM2.5 concentrations between Cohorts I and II,
either because of the air pollution reduction effect owing to the COVID-19 lockdown [47]
or because the participants in Cohort I were recruited from a metropolitan area, whereas
the participants in Cohort II were recruited from the countryside.

To our knowledge, this was the first study to examine the relationship between fine
dust and fetal growth in pregnant Korean women with continuously measured indoor
PM2.5 concentrations. It was also the first study to measure oxidative stress and develop
fine dust exposure evaluation indicators in pregnant women with actual indoor PM2.5
measurement.

The strength of this study was that it was a prospective multicenter cohort study that
investigated the maternal and fetal health effects of PM on pregnancy in patients from
various regions of South Korea. Compared with a previous study that measured only
outdoor data, it was more reasonable to confirm the causal relationship between fine dust
and pregnancy complications through fine dust concentrations measured using individual
indoor air quality values.

However, this study had several limitations. Although we measured the indoor fine
dust concentrations of the participants for at least 1 week, there was a limitation in that the
cumulative concentration during the entire pregnancy could not be calculated. Moreover,
other stressful conditions that may affect pregnancy complications, including alcohol abuse
and infection, were not considered. Recent, various studies have reported on air pollutants,
including PM1.0, and their health effects; however, this study focused on PM2.5 and did not
analyze other air pollutants.

A correlation between PM2.5 and 8-OHdG was observed, but no correlation with
actual complications was found. Therefore, in the future, we will recruit more participants
and make efforts to calculate the cumulative concentrations of fine dust in pregnant women
and evaluate the biological mechanisms of 8-OHdG as a biomarker. Moreover, various
stressful conditions that can be confounding variables in pregnancy outcomes should be
included, and the impact of other air pollutants should be considered during the analysis.

5. Conclusions

This study confirmed the association between PM2.5 and LBW through a retrospective
cohort study, and its effect was found to be more pronounced in the male and PTB groups.
Furthermore, through a multicenter prospective cohort study, we determined the rela-
tionships between PM2.5 and birth height, SGA, and PTB by measuring the actual indoor
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PM2.5. The oxidative stress marker showed a positive correlation with PM2.5, suggesting its
potential as a biomarker for PM2.5 exposure. However, further research on the actual mech-
anisms of action, efficacy, and relevance to pregnancy outcomes is needed. Furthermore,
we will continue to identify interventions to lower indoor PM levels.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antiox12111916/s1, Table S1: Summary of PM2.5 concentra-
tion (µg/m3) by each trimester of pregnancy of Cohort I; Table S2: Subgroup analysis of comparison
of PM2.5 exposure (µg/m3) by each trimester in the NBW and LBW at full term of Cohort I.
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