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Objective: Although adult spinal deformity (ASD) surgery aims to restore and maintain align-
ment, proximal junctional kyphosis (PJK) may occur. While existing scoring systems predict 
PJK, they predominantly offer a generalized 3-tier risk classification, limiting their utility for 
nuanced treatment decisions. This study seeks to establish a personalized risk calculator for 
PJK, aiming to enhance treatment planning precision.
Methods: Patient data for ASD were sourced from the Korean spinal deformity database. PJK 
was defined a proximal junctional angle (PJA) of ≥ 20° at the final follow-up, or an increase in 
PJA of ≥ 10° compared to the preoperative values. Multivariable analysis was performed to 
identify independent variables. Subsequently, 5 machine learning models were created to pre-
dict individualized PJK risk post-ASD surgery. The most efficacious model was deployed as an 
online and interactive calculator.
Results: From a pool of 201 patients, 49 (24.4%) exhibited PJK during the follow-up period. 
Through multivariable analysis, postoperative PJA, body mass index, and deformity type 
emerged as independent predictors for PJK. When testing machine learning models using 
study results and previously reported variables as hyperparameters, the random forest model 
exhibited the highest accuracy, reaching 83%, with an area under the receiver operating char-
acteristics curve of 0.76. This model has been launched as a freely accessible tool at: (https://
snuspine.shinyapps.io/PJKafterASD/).
Conclusion: An online calculator, founded on the random forest model, has been developed 
to gauge the risk of PJK following ASD surgery. This may be a useful clinical tool for surgeons, 
allowing them to better predict PJK probabilities and refine subsequent therapeutic strategies.
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INTRODUCTION

Adult spinal deformity (ASD) surgery primarily aims to re-
store and maintain spinal alignment.1,2 However, proximal junc-
tional kyphosis (PJK), a well-known complication of ASD sur-
gery, may occur. PJK occurs in 17%–39% of ASD cases; one cause 
of PJK is regarded to be inappropriate curve correction.3 Among 
the PJK, can have catastrophic consequences. In addition to neu-
rological impairment, the potential requirement of revision sur-
gery and a marked increase in treatment costs can also ensue.1 
To avoid these adverse outcomes, it’s imperative to consider both 
the baseline sagittal alignment and compensation strategies by 
the pelvis and lower extremities. Over time, various scoring sys-
tems aimed at predicting PJK have been proposed.1,4

In the past decade, noteworthy contributions to this field have 
been made by the International Spine Surgery Group (ISSG) and 
the European Spine Study Group (ESSG). ISSG introduced the 
Scoliosis Research Society (SRS)-Schwab classification and the 
sagittal age-adjusted score (SAAS).1 ESSG established global 
alignment and proportion (GAP) scores.4 This approach enhanc-
es postoperative outcomes and minimizes the risk of mechani-
cal failure.1,4-6 Although these approaches differ in their method 
of development, they share similar key variables, including age, 
pelvic incidence (PI), lumbar lordosis (LL), pelvic tilt (PT)/sacral 
slope, and global tilt/T1-pelvic-angle.1,4 The reported scoring 
systems allow for the categorization of individual patients into 
3 groups of undercorrected, matched, and overcorrected; or pro-
portioned, mildly disproportioned, and severely disproportioned. 
However, this tripartite classification of PJK risk following ASD 
surgery did not offer clinicians sufficient information to guide 
subsequent treatment decisions. Thus, there’s an unmet need 
for a personalized risk calculator for PJK that encompasses post-
operative values and baseline characteristics.

Recent advances in artificial intelligence (AI) such as machine 
learning (ML) and deep learning techniques, are tailor-made 
for understanding complex datasets. These algorithms excel in 
recognizing patterns from training data, allowing for individu-
alized patient-level predictions.

These algorithms may be beneficial for calculating the risk of 
PJK wherein various factors are complexly intertwined. The aim 
of this study was to develop an accurate ML model to predict 
the risk of PJK in patients with ASD. The best model was deployed 
as a web-based calculator, allowing spine surgeons to further 
develop individualized treatment plans.

MATERIALS AND METHODS

1. Data and Study Population
This investigation was retrospectively conducted using the 

Korean spinal deformity database. The participating 16 centers 
operated under Institutional Review Board approval with pa-
tient consent obtained prior to enrollment and data collection. 
The data was collected from 2011 to 2020 with radiographic 
evidence of ASD defined as ≥ 18 years of age, sagittal vertical 
axis (SVA) ≥ 50 mm, PT ≥ 25°, PI minus LL (PI–LL) mismatch 
> 10°, or thoracic kyphosis (TK) ≥ 60°.7 Among the patients 
with ASD, those who underwent deformity correction and were 
followed up minimum 1 year were included in this investiga-
tion. Patients were excluded if they had coronal deformity only, 
underwent < 3 level fusion surgery, or missed key spinopelvic 
parameters.

2. Data Definition and Collection
PJK was defined as meeting either of the following criteria at 

the final follow-up: a proximal junctional angle (PJA) of ≥ 20°, 
or an increase in PJA of ≥ 10° compared to the preoperative val-
ues.8 PJA is defined as the sagittal Cobb angle between the low-
er end plate of the upper instrumented vertebra (UIV) and the 
upper end plate of the UIV+2. The primary outcome for this 
investigation was PJK occurrence at the final follow-up.

Demographic data of eligible individuals were collected, com-
prising age, sex, body mass index (BMI), underlying disease, bone 
mineral density (BMD), deformity type, SRS-Schwab variables, 
PI, LL, PT, TK, SVA, fusion level, and sacroiliac fixation. The 
difference in PI–LL was evaluated as the actual postoperative 
alignment compared with the ideal target alignment. Previously 
published formulas for ideal age-adjusted PI–LL were as follows8:

Ideal age adjusted target of PI-LL=  
(Age-55)

2
 +3

Classifications were as follows: (1) A match was identified 
when the disparity between the ideal PI–LL and the postopera-
tive PI–LL was within± 10°. (2) Variances less or greater were 
labeled as undercorrection and overcorrection, respectively.

3. Statistical Analysis
Data were presented as frequencies with percentages for cate-

gorical variables and as means with standard deviations (SDs) 
for continuous variables. Continuous variables were compared 
using the Mann-Whitney U-test, and categorical variables were 
compared using the chi-square test. Binomial logistic regression 
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analyses were used to predict the risk of PJK, and then backward 
stepwise selection was subsequently performed to identify vari-
ables for the multivariable logistic regression models based on 
statistical significance in the univariable analysis. Variables sig-
nificant at the α ≤ 0.20 level on univariable analyses were includ-
ed in a stepwise multivariable logistic regression model for each 
outcome of interest. Variables were included in the final model 
if they were significant at the α ≤ 0.05 level.

Apart from conventional statistical methodologies, we also 
conducted a predictive assessment employing AI, as illustrated 
in Fig. 1. Input data incorporated variables of statistical impor-
tance from our study and age—a recognized risk determinant 
in both the GAP score and SAAS. The outcome was PJK risk. 
Patients with missing values were excluded from the analysis, 
and missing values were not replaced with calculated estimates. 
The included cohort was randomly split into a training and test 
set at a 70:30 ratio. We utilized K-fold cross validation on the 

training dataset for preprocessing optimization and hyperpa-
rameter tuning. After the cross validation, we employed a value 
of 5 for K as a hyperparameter and identified the optimal values 
for C and sigma (γ) as 1. The C hyperparameter is responsible 
for controlling the trade-off between maximizing the margin 
and minimizing the training data’s classification inaccuracy. For 
support vector machine (SVM) models utilizing the sigmoid 
basis function kernel, sigma ascertains the kernel’s spread, par-
ticularly pivotal for handling data that isn’t linearly separable.

Post hyperparameter optimization, algorithms were trained 
on the entire training dataset and assessed on the test set. This 
test set remained untouched during preprocessing and hyper-
parameter adjustment phases. Five ML and statistical algorithms, 
namely SVM, random forest (RF), linear discriminant analysis, 
classification and regression tree, and K-nearest neighbors (KNN) 
were employed to predict individual PJK risk post-ASD surgery. 
The KNN model used 10 as its K hyperparameter value. After 
model development, we compared their performance metrics: 
the area under the receiver operating characteristic (AUROC) 
curve, F1-score, and the confusion matrix. The most accurate 
model, based on both model accuracy and AUROC, was subse-
quently chosen to develop an online interactive tool.

Statistical analyses were conducted using R ver. 4.3.1 (R Foun-
dation for Statistical Computing, Vienna, Austria) and IBM SPSS 
Statistics ver. 25.0 (IBM Co., Armonk, NY, USA). In R-program-
ming, we used the Caret, e1071, randomForest, caTools, lattice, 
ggplot2, Rcurl, and ggplot2 packages9; the application was built 
and deployed using the Shiny package and server.10

RESULTS

We enrolled a total of 201 patients in this study. During the 
follow-up period, 49 patients (24.4%) exhibited PJK. The base-
line characteristics of the study population are summarized in 
Table 1. The mean± SD age at the time of surgery was 67.16±  
9.08 years. Notably, 78.6% of these patients were female. Addi-
tionally, participants had a mean BMI of 24.71± 3.94 kg/m2 and 
a BMD of -1.04± 3.12. After deformity correction, 50 patients 
(42.0%) achieved the matched ideal age-adjusted PI–LL. Mean-
while, 53 (44.5%) were undercorrected and 16 (13.4%) were 
overcorrected in relation to the age-adjusted PI–LL. The uni-
variable analysis revealed a significant association between the 
PJK and no-PJK groups for several factors: PJA at the immedi-
ate postoperative state (p= 0.007), BMI (p= 0.029), SRS-global 
balance modifier (p= 0.090), SRS-PI–LL modifier (p= 0.097), 
SRS-curve pattern (p = 0.105), deformity type (p = 0.184), PI 

Fig. 1. Overview of the investigation process using machine 
learning. KSDS, Korean spinal deformity database; PI–LL, pel-
vic incidence minus lumbar lordosis; ASD, adult spinal defor-
mity; SVA, sagittal vertical axis; PT, pelvic tilt; TK, thoracic 
kyphosis; PJK, proximal junctional kyphosis; ML, machine 
learning.
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Table 1. Baseline characteristics of the study population and univariate analysis of risk factors for proximal junctional kyphosis 
after adult spinal deformity surgery

Characteristic No-PJK (n = 152) PJK (n = 49) Total (n = 201) p-value

Demographics

Age (yr) 67.21 ± 9.53 67.0 ± 7.61  67.16 ± 9.08 0.888

Female sex 119 (78.3) 39 (79.6) 158 (78.6) 0.847

Hypertension 65 (42.8) 27 (55.1) 92 (45.8) 0.132

Diabetes mellitus 18 (11.8) 9 (18.4) 27 (13.4) 0.244

Body mass index (kg/m2) 25.05 ± 3.60 23.64 ± 4.75 24.71 ± 3.94 0.029

Bone mineral density -1.92 ± 1.10 -1.86 ± 1.16 -1.04 ± 3.12 0.251

Deformity type 0.184

   AIS in adults 1 (0.7) 0 (0) 1 (0.5)

   Degenerative 86 (56.6) 27 (55.1) 113 (56.2)

   Post-surgical 46 (30.3) 10 (20.4) 56 (27.9)

   Posttraumatic 13 (8.6) 8 (16.3) 21 (10.4)

   Neuromuscular/neuro-degenerative 2 (1.3) 0 (0) 2 (1.0)

   Other deformity type 4 (2.6) 3 (6.1) 7 (3.5)

SRS-curve pattern 0.105

      Thoracic only 2 (1.3) 1 (2.0) 3 (1.5)

      Thoracic and lumbar 44 (28.9) 20 (40.8) 64 (31.8)

      Lumbar only 17 (11.2) 2 (4.1) 19 (9.5)

      Primary sagittal 77 (50.7) 26 (53.1) 103 (51.2)

SRS-pelvic tilt modifier 0.830

      Low (PT < 20°) 23 (15.1) 8 (16.3) 31 (15.4)

      Medium (PT 20°–30°) 46 (30.3) 12 (24.5) 58 (28.9)

      High (PT > 30 °) 72 (51.1) 23 (53.5) 95 (51.6)

SRS-PI−LL modifier 0.097

      PI−LL < 10° 17 (11.2) 6 (12.2) 23 (11.4)

      PI−LL 10°–20° 23 (30.3) 1 (2.0) 24 (11.9)

      PI−LL > 20 ° 104 (68.4) 38 (77.6) 142 (70.6)

SRS-global balance modifier 0.090

      Neutral (SVA < 40 mm) 37 (24.3) 9 (18.4) 46 (22.9)

      Positive (SVA 40–95 mm) 43 (28.3) 7 (14.3) 50 (24.9)

      Very positive (SVA > 95 mm) 59 (38.8) 26 (53.1) 85 (42.3)

Pelvic incidence at baseline 51.32 ± 11.28 48.82 ± 13.15 50.71 ± 11.78 0.196

Pelvic tilt at baseline 29.91 ± 12.51 29.45 ± 16.41  29.80 ± 13.52 0.835

Sacral slope at baseline 21.47 ± 11.42 19.41 ±  16.24 20.97 ± 12.75 0.411

Lumbar lordosis at baseline -12.76 ± 23.51 -10.26 ± 24.60 -12.15 ± 23.74 0.523

Thoracolumbar alignment at baseline 8.43 ± 22.72 13.38 ± 20.95 9.65 ± 22.34 0.183

Sagittal vertical axis at baseline 78.47 ± 72.98 83.62 ± 66.54 79.72 ± 71.33 0.668

T1 tilt at baseline 23.35 ± 15.66 24.27 ± 9.88 23.58 ± 14.41 0.699

T1 angle at baseline 10.31 ± 15.32 12.47 ± 15.19 14.31 ± 19.14 0.252
(Continued)
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(p= 0.196), thoracolumbar alignment at the immediate postop-
erative state (p= 0.176), and hypertension (p= 0.132). All these 
associations met the criterion of α ≤ 0.20, as detailed in Table 1. 
In the multivariable analysis, postoperative PJA (odds ratio [OR], 
0.942; p= 0.034), BMI (OR, 0.883; p= 0.046), and deformity type 
(OR, 1.655; p= 0.049) were found to be statistically significant 
(p< 0.05) (Table 2). The explanatory powers of the models were 
low, with an adjusted R2 of 18.8%.

Our ML models’ training drew from the results of the univari-
able analysis, which included: deformity type, BMI, SRS-curve 
pattern, SRS-PI–LL modifier, SRS-global balance modifier, PI 
at baseline, PJA at immediate postoperative state, and age, a vari-
able with renowned significance. Thoracolumbar alignment 
could not include the ML models due to missing data. Among 
the 5 ML models we assessed, the RF model proved to be the 

Characteristic No-PJK (n = 152) PJK (n = 49) Total (n = 201) p-value

Surgery
Osteotomy 0.316
   No osteotomies 32 (21.2) 6 (12.2) 38 (19.0)
   I. Partial facet joint resection 35 (23.2) 9 (18.4) 44 (22.0)
   II. Complete facet joint resection 30 (19.9) 10 (20.4) 40 (20.0)
   III. Pedicle and vertebral wedge resection 49 (32.5) 19 (38.8) 68 (34.0)
   IV. III plus resection endplate and disc 3 (2.0) 3 (6.1) 6 (3.0)
   V. Monosegmental vertebrectomy 2 (1.3) 2 (4.1) 4 (2.0)
Total fusion length (segments) 6.68 ± 2.70 6.51 ± 2.90 7.14 ± 2.97 0.700
Sacroiliac fixation 0.891
   None 80 (52.6) 23 (46.9) 103 (51.2)
   Ileum screw 51 (33.6) 20 (40.8) 71 (35.3)
   S2-alar screw 4 (2.6) 1 (2.0) 5 (2.5)
   S2-alar-ileum screw 8 (5.3) 3 (6.1) 11 (5.5)

Surgical outcome at the immediate postoperative state
Lumbar lordosis at POS -32.73 ± 19.70 -30.62 ± 20.08 -32.21 ± 19.75 0.563
Thoracolumbar alignment at POS 4.84 ± 15.80 8.74 ± 14.70 5.82 ± 15.58 0.176
Pelvic tilt at POS 24.29 ± 11.78 23.79 ± 16.82 24.17 ± 13.41 0.838
Proximal junctional angle at POS 4.40 ± 7.74 0.85 ± 7.50 3.54 ± 7.82 0.007
Difference on PI−LL between ideal and postoperative state 9.48 ± 20.24 10.17 ± 21.17 9.65 ± 20.41 0.855
PI−LL offset group relative to age-adjusted target 0.735

      Undercorrected 53 (44.5) 20 (51.3) 73 (46.2)
      Matched 50 (42.0) 15 (38.5) 65 (41.1)
      Overcorrected 16 (13.4) 4 (10.3) 20 (12.7)

Values are presented as mean ± standard deviation or number (%).
PJK, proximal junctional kyphosis; AIS, Adolescent idiopathic scoliosis; SRS, Scoliosis Research Society; PT, pelvic tilt; PI–LL, pelvic incidence 
minus lumbar lordosis; SVA, sagittal vertical axis; POS, postoperative state.

Table 1. Baseline characteristics of the study population and univariate analysis of risk factors for proximal junctional kyphosis 
after adult spinal deformity surgery (Continued)

Table 2. Multivariable standard least square analysis to evalu-
ate independent risk factors for proximal junctional kyphosis 
after adult spinal deformity surgery

Factor Odds 
ratio

95% Confidence 
interval p-value

Proximal junctional angle at  
   postoperative state

0.942 0.892–0.996 0.034

Body mass index 0.883 0.782–0.998 0.046

Deformity type 1.655 0.999–2.740 0.049

SRS-global balance modifier 1.647 0.821–3.307 0.160

Pelvic incidence at baseline 0.983 0.941–1.025 0.419

SRS-curve pattern 0.771 0.482–1.234 0.279

SRS-PI−LL modifier 1.082 0.904–1.296 0.389

SRS, Scoliosis Research Society; PI−LL, pelvic incidence minus lum-
bar lordosis.
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Table 3. Comparison of classification model performance met-
rics

Model AUROC F1 score Accuracy Sensitivity Specificity

RF 0.76 0.67 0.83 0.57 0.94

SVM 0.64 0.44 0.79 0.29 1.00

LDA 0.56 0.24 0.72 0.14 0.97

CART 0.57 0.38 0.66 0.36 0.79

KNN 0.46 0.1 0.62 0.07 0.85

AUROC, area under the receiver operating characteristic; RF, random 
forest; SVM, support vector machine; LDA, linear discriminant anal-
ysis; CART, classification and regression tree; KNN, k-nearest neigh-
bors.

Fig. 2. The receiver operating characteristic (ROC) curves were 
plotted for 5 machine learning models. Among these models, 
the random forest (RF) exhibited the highest area under the 
ROC (AUROC) curve with a value of 0.76, followed by the 
support vector machine (SVM) with an AUROC of 0.64. On 
the other hand, the AUROC values for linear discriminant anal-
ysis (LDA), classification and regression tree (CART), and K-
nearest neighbors (KNN) were all below 0.6.
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Fig. 3. Illustration of the online calculator of the proximal junctional kyphosis predictive model. All variables are based on uni-
variable analysis and age factors. This application is available at https://snuspine.shinyapps.io/PJKafterASD/ or by scanning the 
QR code.

most accurate with a score of 0.83, closely followed by the SVM 
model at 0.79, as presented in Table 3. In terms of the AUROC 
curve, the RF model achieved 0.76, outperforming the SVM mod-
el’s 0.64, as depicted in Fig. 2. The RF model had an F1 score of 
0.67 and a sensitivity rate of 0.57, marking the highest scores 
among all 5 ML models we evaluated. Using these predictors 
and models, we derived the likelihood of PJK based on the as-
sessed variables, leading us to design a user-friendly calculator. 
This tool is illustrated in Fig. 3 and can be accessed at: (https://
snuspine.shinyapps.io/PJKafterASD/). As an illustrative exam-
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ple: a 70-year-old patient diagnosed with degenerative spinal 
deformity, possessing a BMI of 27 kg/m2, a PI of 60°, PI–LL of 
15°, SVA of 50 mm, and a postoperative PJA of 5°, would have 
an estimated 13.81% probability of developing PJK.

DISCUSSION

This study was utilized the conventional multivariable logis-
tic regression to assess the risk of PJK. Concurrently, we devel-
oped and launched an ML model as an interactive online calcu-
lator to predict personalized PJK risk following ASD surgery. 
The multivariable analysis demonstrated PJA, BMI, and defor-
mity type as significant independent predictors for PJK. While 
classical statistical methods highlight potential PJK risks based 
on these variables, its explanatory power is low and clinical set-
tings necessitate a more personalized risk evaluation for patients 
exhibiting these factors. Hence, we created an ML model whose 
AUROC and accuracy were 0.76 and 83.0%, respectively. This 
model was deployed as a freely available, interactive online cal-
culator that calculates the individual risk of PJK using select vari-
ables.

Over the past decade, there has been intermittent introduc-
tion and subsequent disappearance of diverse scoring mecha-
nisms intended for the prevention of PJK.1 A review indicated 
that published literature did not corroborate the excellent out-
comes as reported in the original GAP score article.11 They ad-
dressed that the AUROC of 7 of 10 articles ranged from 0.5 (same 
as random selection) to 0.68 (insignificant value as a diagnostic 
tool).11 Previous scoring systems were the aggregate of values 
derived from first-order functions. The inclination towards first-
order functions arose more from their simplicity than their pre-
cision.1,4,11-15 Considering the intricate interplay of factors influ-
encing spinal sagittal alignment, including the whole spine, pel-
vis, age-related alignment adjustments, and compensatory mech-
anisms, a simple first-order function seems insufficient. AI-driv-
en computations, equipped with sophisticated analyses involv-
ing advanced mathematical techniques encompassing multivari-
able and higher-order functions, are suggested to surpass classi-
cal regression analyses in terms of accuracy. Earlier studies us-
ing AI models for predicting PJK or similar complications achie-
ved AUROC values in the range of 0.8 to 0.9.6,14 Our study de-
veloped with an RF-based ML model achieved an AUROC of 
0.76, demonstrating its diagnostic value in predicting PJK after 
ASD surgery.

In a previous study, it was noted that approximately 70% of 
patients failed to achieve a ‘proportioned’ spinopelvic state based 

on GAP score, even after undergoing deformity correction and 
analyzing ISSG data.1,16 This observation suggests that the 70% 
carried a risk of 47% or 95% for revision surgery due to mechan-
ical complications based on the original GAP study.4 Spine sur-
geons calculate the risk of reoperation for those patients and rec-
ommend revision surgery preemptively for those at high risk. 
However, with the current 3-tier risk classification, there is in-
sufficient information to guide decisions regarding revision 
surgery. Despite being reported to possess high diagnostic pow-
er, previous AI-driven PJK prediction models had limited ac-
cessibility and were unable to calculate individualized risk of 
PJK.6,14 Our research diverges from previous studies by facilitat-
ing PJK risk quantification via the assimilation of patient-spe-
cific variables, resulting in a bespoke numerical risk score. This 
tool may help to enhance clinicians’ efficacy in patient consul-
tations about PJK risks, obtaining informed consent, and guid-
ing spine surgeons in decision-making to avert PJK.

In previous investigations conducted by ISSG and ESSG, sev-
eral variables including age, PI, LL, PT, BMI, and BMD were 
suggested as potential determinants of PJK risk. However, our 
study identified only PJA, BMI, and deformity type as statisti-
cally significant factors in multivariable analysis. Notably, age 
and BMD, commonly recognized as PJK risk factors, did not 
exhibit significant disparities in our study. This disparity could 
be attributed to the demographics of our patient population. 
The ISSG and ESSG studies encompassed a diverse racial com-
position, including Caucasians, African Americans, Hispanics, 
and fewer Asians. Our study only included the Korean popula-
tion in the Republic of Korea, resulting in a smaller yet racially 
homogeneous patient cohort. The discrepancies between our 
findings and previous research highlight the need for further 
exploration through comprehensive future studies.

Several limitations warrant consideration in interpreting the 
findings of our study. Firstly, the utilization of a retrospective 
database from multiple centers and a long enrollment period 
presents challenges. The long enrollment duration may intro-
duce variations due to the evolution of surgical techniques, ma-
terials, and targeted alignments over time. Furthermore, while 
the multi-institutional nature of the database offers a broad per-
spective, patient selection and surgical approaches might differ 
across institutions. However, it’s worth noting that retrospective 
databases often serve as valuable resources for analysis in this 
field, given the infrequent occurrence of deformity corrections 
and the enhanced generalizability the results afford. Secondly, 
variables with α ≤ 0.2 in the univariable analysis were included 
in the multivariable analysis. While the value of 0.05 is tradition-
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ally considered statistically significant, it is not an absolute thresh-
old. The α-value represents the maximum type 1 error proba-
bility based on the sample mean value. Given this context, con-
trolling the α-value (type 1 error) is a common approach, with 
other studies often setting an α-value criterion of less than 0.1–
0.2.17,18 Furthermore, unlike conventional statistical methods, 
AI-driven research sometimes adopts a broader p-value range, 
particularly when analyzing complex interactions between mul-
tiple variables, as seen in our study focused on PJK. Thirdly, our 
analysis relied solely on baseline patient characteristics and their 
radiologic parameters. Clinical outcomes were excluded due to 
the considerable amount of missing data in our database. Be-
cause radiological evidence of PJK does not necessarily corre-
late with unfavorable clinical outcomes, the observed PJK rate 
in our study might potentially be higher than the actual bad clin-
ical outcomes.

CONCLUSION

This study suggests that PJA, BMI, and deformity type could 
be noteworthy independent predictors for PJK based on multi-
variable analysis. Leveraging AI methodologies, we constructed 
a ML model that exhibited good capabilities in predicting PJK 
risk following ASD surgery. This model could potentially pro-
vide valuable insights for customizing extended treatment strat-
egies for patients who have not attained their desired spinal align-
ment post-surgery.
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