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INTRODUCTION

The development and application of artificial intelligence 
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Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) 
image conversion would improve the performance of deep learning-based automated hepatic segmentation across various 
reconstruction methods. 
Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various 
reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images 
with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 
142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 
years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was 
used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the 
paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver 
volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) 
was used to assess the agreement between the segmented liver volume and ground-truth volume.
Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved 
significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%–91.27%] vs. [standardized, 
93.16%–96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 
9.84%–91.37% vs. standardized, 1.99%–4.41%). In all protocols, CCCs improved after image conversion (original, -0.006–0.964 
vs. standardized, 0.990–0.998).
Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation 
using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to 
improve the generalizability of the segmentation network.
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(AI) in the field of radiology have made significant progress 
in automated image analysis [1]. In radiology, automated 
tools using deep learning have been developed for image 
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capable of converting various computed tomography (CT) 
images derived from diverse CT protocols into target CT 
images [13]. This study used a generative adversarial 
network (GAN) to standardize CT images to improve the 
reproducibility of radiomics features. The developed deep 
learning algorithm shows potential for the standardization 
of medical image data. Another study reported that 
data normalization and augmentation improved the 
generalizability of neural network-based cardiac magnetic 
resonance image segmentation methods [14]. Therefore, we 
aimed to investigate whether image standardization using 
deep learning-based CT image conversion improves the 
performance of deep learning-based automated hepatic 
segmentation across various reconstruction methods. 

MATERIALS AND METHODS

The institutional review boards of the Seoul National 
University Hospital (IRB No. 2202-096-1301) approved this 
retrospective study and waived the requirement for informed 
patient consent. 

Study Population
For the training and tuning datasets, we collected data 

from 117 patients who underwent 142 contrast-enhanced 
abdominal CT examinations with dual-energy (DE) scans 
at a single tertiary hospital between March 2021 and 
July 2021 (Table 1). The collected data were divided into 
training and tuning datasets at a ratio of 9:1 (i.e., 128 
and 14 examinations, respectively). For the test dataset, 
we separately collected 43 contrast-enhanced abdominal 

classification, lesion detection, and image segmentation [2]. 
Automatic image analysis with a deep learning algorithm 
can improve workflows in radiology by eliminating time-
consuming workloads. In addition, the reported accuracies 
of many deep learning algorithms are beginning to match or 
even exceed those of radiologists [3-5].

One substantial barrier to the development of deep 
learning algorithms is securing large-scale annotated data 
[6,7]. Large and heterogeneous datasets with high-quality 
images from multiple institutions and different geographic 
areas are essential for training and developing high-quality 
deep learning algorithms with general applications [8]. 
However, curating large datasets is challenging owing to the 
limited availability of radiologists and tedious annotation 
processes [9]. Therefore, in most cases, the development 
of deep learning algorithms has been achieved using a 
limited dataset that represents the characteristics of certain 
distributions in the research population, and the developed 
algorithms may suffer from overfitting, which results in poor 
generalizability [9-11]. 

According to a recent review of the external validation of 
deep learning algorithms for radiologic diagnosis, the vast 
majority of algorithms demonstrated diminished performance 
on the external dataset, with some reporting a substantial 
performance decrease [12]. A few methods have been 
suggested to improve the generalizability of deep learning 
algorithms, including transfer learning [10]; however, 
transfer learning has the disadvantage of additional data 
augmentation, which is required whenever the characteristics 
of the input images are changed.

A recent study reported a deep learning algorithm 

Table 1. Characteristics of the Datasets

Training & Tunning Dataset Test Dataset
Number of patients (male:female) 117 (57:60) 42 (19:23)
Age* (range) 8.7 ± 5.5 years (2 months–19 years) 10.1 ± 8.7 years (7 months–49 years)
BMI* (range) 18.2 ± 4.6 (10.5–33.4) 18.5 ± 5.0 (12.5–35.2)
Reason for examination Abdominal pain (n = 15, 12.8%)

Tumor follow-up (n = 69, 59.0%),
Others (n = 33, 28.2%)

Abdominal pain (n = 3, 7.1%), 
Tumor follow-up (n = 33, 78.6%), 

Others (n = 6, 14.3%)
Number of CT scans 142 43
CT machines SOMATOM Force (Siemens) SOMATOM Force (Siemens)
Tube voltage 70 kVp and 150 kVp 70 kVp and 150 kVp
Reference tube current 370 mAs for the 70 kVp tube 

93 mAs for the 150 kVp tube 
370 mAs for the 70 kVp tube 
93 mAs for the 150 kVp tube 

CT slice thickness 3 mm 3 mm
Scan timing Portal phase† Portal phase†

*Values represent mean±standard deviation, †65 s after the initiation of contrast agent injection. BMI = body mass index, CT = computed 
tomography
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CT examinations in 42 patients without focal hepatic 
lesions obtained using DE scans at the same tertiary center 
between December 2021 and January 2022 (Table 1).

The images were acquired using a SOMATOM Force CT scanner 
(Siemens) in DE mode. The scanned data were reconstructed 
using filtered back projection (FBP), iterative reconstruction (IR) 
with a strength of 3 (SAFIRE), and virtual mono-energetic images 
with 40 keV (M40), 60 keV (M60), 80 keV (M80), and optimum 
contrast (OPT). The DECT parameters are listed in Table 1.

Architecture of the Deep Neural Network for Image 
Standardization

Lee et al. [13] proposed a GAN to improve the 

reproducibility of CT-based radiomics features. We employed 
a generator network (G) architecture, including a hierarchical 
feature synthesis module from a prior study [13]. We modified 
the first layer of the generator network to have a pixel-
unshuffle layer instead of a spatial average pooling layer, to 
reduce the dimensions of the input image to a quarter. The 
pixel unshuffle is the reverse operation of the pixel-shuffle 
[15], which helps computational efficiency by reducing the 
input dimension without pixel loss. We employed a U-Net 
discriminator (D) for spectral normalization [16]. The U-Net 
discriminator network was proposed for the image super-
resolution task and can provide per-pixel feedback to the 
generator. The proposed GAN architecture is illustrated in 

Fig. 1. Architecture of the generator and discriminator. In the generator, the pixel unshuffle is the reverse operation of the pixel shuffle 
to reduce the input dimension without pixel loss. The discriminator is a U-Net architecture with spectral normalization. Where n is the 
number of output feature maps of the convolution, k is the convolutional kernel size, and s is the stride of the convolution along the 
height and width. Conv = convolution, Norm = normalization
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Figure 1. We employed a Real-ESRGAN training strategy [16], 
which is divided into two parts. First, we train a generator 
network without a discriminator network. Therefore, the 
generator network was trained with an L1 loss between the 
generated image and the ground-truth image and exhibited 
a peak signal-to-noise ratio (PSNR)-oriented performance. 
The equation for the L1 loss is

Ll1 = 
1___

hw  ǁG(x)-xǁF
1 Eq. (1)

where ǁ∙ǁF  denotes the Frobenius norm, and h and w denote 
the height and width of the 2D image, respectively. x is 
the given source image and G(x) is the generated image. 
Second, the PSNR-oriented model was used for initialization 
and then trained using a discriminator network. A 
combination of L1 loss, perceptual loss [17], and GAN 
loss [18,19] was used to train the generator network. The 
perceptual loss equation is as follows:

Lperceptual = 
1____

hwd  ǁϕ(G(x)) - ϕ(x)ǁF
2 Eq. (2)

where ϕ is the feature extractor, and h, w, and d represent 
the height, width, and depth of the feature space, 
respectively. The feature extractor is the 16th convolution 
layer of the well-known pre-trained VGG-19 network [20]. 
The GAN loss is defined as follows:

LGAN = IEx~pdata (x) 
[-log D(G(x))] Eq. (3)

where IE(·) is the expectation operator and pdata denotes 
the probability distributions of the source image. Combining 
equations Eqs. (1-3), the total loss function is obtained as 
follows:

Ltotal = λ1 x Ll1 + λ2 x Lperceptual + λ3 x LGAN Eq. (4)

where λ1, λ2, and λ3 are the parameters used to adjust the 
balance of Ll1, Lperceptual,and LGAN in Ltotal. In this study, we set 
λ1 = 10, λ2 = 1, and λ3 = 1 in equation Eq. (4).

Training of the Deep Neural Network for Image 
Standardization

In this study, the network input comprised six different 
reconstructed images: FBP, IR, M40, M60, M80, and OPT, 
and the target was M80. We randomly sampled a 256 x 256 
local patch from the same location in all the reconstructed 
images. Min-max normalization was applied to rescale the 

CT values to “0, 1”. A local patch was used as an input 
to the generator network, and the generated image had 
the same size. The discriminator network provides pixel-
wise feedback over the local patch. All parameters of the 
generator and discriminator networks were optimized using 
an adaptive moment estimation optimizer (hyper-parameters 
α = 1 x [10]^(-4), β_1 = 0.9, and β_2 = 0.99) [21]. The 
networks were trained for 200 epochs, and the learning 
rate decayed by 95% of the decay rate after 100 epochs. We 
implemented this deep learning network using PyTorch 1.10. 
All experiments were performed on a personal computer (Intel 
i7 9770 [Intel] with 32 GB of memory) and accelerated using 
an NVIDIA RTX 2080 Ti GPU (NVIDIA) with 11 GB of memory.

Liver Segmentation
We used a previously trained 2D U-NET in a commercially 

available segmentation software program (MEDIP PRO 
v2.0.0.0, MEDICALIP Co. Ltd.) to create liver segmentation 
masks and calculated the liver volume for the test dataset. 
A pre-test was performed with five CT examinations from the 
training dataset to assess the performance of segmentation 
in various protocols. According to the pre-test results, 
we selected the protocol with the highest segmentation 
performance among the different images as the ground truth 
for image conversion. Two radiologists assessed the liver 
segmentation masks for all protocols, and the original M80 
protocol, which showed nearly perfect segmentation, was 
selected as the ground truth image (Supplementary Fig. 1).

Evaluation of Liver Segmentation Performance
To evaluate the performance of the automated 

segmentation, the masks that were generated on each 
protocol image were compared with the reference 
segmentation mask of the ground truth image (i.e., 
originalM80 images). We calculated the Dice similarity 
coefficients (DSCs) by comparing two segmentation masks. 
Segmentation performance was obtained for the original CT 
images and standardized CT images that were synthesized 
using the deep learning algorithm for image standardization. 
Moreover, we calculated the absolute difference between the 
segmented volume and ground truth liver volume (i.e., the 
original M80 images) as well as the ratio of the liver volume 
difference to the ground truth volume.

Statistical Analyses
We used a paired t-test to compare the segmentation 

performance in DSC before and after the image conversion 
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using the deep learning-based standardization algorithm. 
We also compared the absolute volume difference from 
the ground truth volume and the ratio of the liver volume 
difference to the ground truth volume between the original 
and standardized images using a paired t-test. Agreement 
between the segmented liver volume and ground truth 
volume was analyzed using concordance correlation 
coefficients (CCCs) [22] and Bland–Altman analysis.

RESULTS

Patient Demographics
For training and tuning, we used 142 CT examinations 

(128 and 14, respectively) of 117 patients. For testing, 43 
CT scans from 42 patients were included in the test dataset. 

The mean age of the test population was 10.1 years (range, 
7–49 years). Detailed demographics of the test datasets are 
summarized in Table 1.

Table 2. Comparison of Dice Similarity Coefficients between the 
Original and Standardized Images in Various Protocols

DSC (%)
Original Standardized P

FBP 90.79 ± 5.57 96.74 ± 2.43 < 0.001
IR 91.27 ± 5.11 96.57 ± 2.45 < 0.001
M40 5.40 ± 18.06 93.16 ± 4.19 < 0.001
M60 87.55 ± 7.91 95.88 ± 2.61 < 0.001
OPT 83.63 ± 12.50 96.27 ± 2.33 < 0.001

Values represent the mean ± standard deviation. DSC = Dice 
similarity coefficient, FBP = filtered back projection, IR = iterative 
reconstruction, M40 = mono-energy 40 keV, M60 = mono-energy 60 
keV, OPT = optimal contrast

Fig. 2. A representative case of automated liver segmentation of a 14-year-old girl with various protocols. The images show the three-
dimensional volume rendering of the liver segmentation. A: Liver segmentation at ground truth. B: Liver segmentation at a mono-energy 
of 40 keV (M40). C: Liver segmentation using standardized M40. D: Liver segmentation at a mono-energy of 60 keV (M60). E: Liver 
segmentation using standardized M60. All standardized images exhibited better segmentation performance than the original images.

A

B

C E

D
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Comparison of Segmentation Performance
The DSCs of the automated liver segmentation in the 

original and standardized images are summarized in Table 2. 
According to the protocols, the original images showed 
variable and poor segmentation performances for the liver. 
The standardized images that were obtained using deep 
neural networks achieved significantly higher DSCs for liver 
segmentation than the original images (all P < 0.001). M40 
had the lowest DSC in the original images, and the largest 
performance increase with the image standardization. 
Representative images are shown in Figures 2 and 3.

Comparison of Liver Volume
Compared with the ground truth liver volume, the 

absolute difference and difference ratio of the liver volume 
in the original and standardized images are presented in 
Table 3. The absolute difference in liver volume decreased 
after image conversion (all P < 0.001). The difference ratio of 
the liver volume also decreased significantly after the image 
conversion (all P < 0.001).

Agreement of Segmented Liver Volume with Ground 
Truth Volume

The agreement of the segmented liver volume results with 
the ground truth images, in terms of CCC, for the original 
images and standardized CT images in various protocols is 
summarized in Table 4. In all protocols, CCCs improved after 
the image conversion. In the original images, M40, M60, 

Fig. 3. A representative case of automated liver segmentation of a 14-year-old girl with various protocols. The images show the 
three-dimensional volume rendering of the liver segmentation. A: Liver segmentation using filtered back projection (FBP). B: Liver 
segmentation using standardized FBP. C: Liver segmentation using hybrid iterative reconstruction (IR). D: Liver segmentation using 
standardized IR. E: Liver segmentation with optimal contrast (OPT). F: Liver segmentation using standardized OPT. All standardized 
images exhibited better segmentation performance than the original images.
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and OPT showed poor agreement. After image conversion, all 
protocols showed almost perfect agreement.

Figures 4 and 5 show the Bland–Altman plot of the liver 
volume difference ratio against the ground truth volume. 
For FBP, IR, and OPT, prior to applying image conversion, 
the plot exhibited a negative bias (mean difference: FBP 
-11.5%, IR -9.8%, OPT -21.5%) with wide 95% limits of 
agreement (LOAs) (FBP -29.2%–6.2%, IR -26.3%–6.7%, OPT 
-58.0%–15.0%), and there was no systematic trend in bias 
with liver volume at ground truth. After image conversion, 

Table 4. Concordance Correlation Coefficients of Liver Volume in the 
Original and Standardized Images with the Ground-Truth Images in 
Various Protocols

Original Standardized
FBP 0.955 (0.923–0.973) 0.998 (0.996–0.999)
IR 0.964 (0.939–0.979) 0.998 (0.996–0.999)
M40 -0.006 (-0.046–0.035) 0.990 (0.983–0.995)
M60 0.031 (0.018–0.044) 0.995 (0.991–0.997)
OPT 0.809 (0.696–0.883) 0.996 (0.993–0.998)
Values in parentheses are 95% confidence interval. FBP = filtered back 
projection, IR = iterative reconstruction, M40 = monoenergy 40 keV, 
M60 = mono-energy 60 keV, OPT = optimal contrast

Table 3. Comparison of Liver Volume between Original and Standardized Images Using Various Protocols
Absolute Liver Volume Difference (mL) Difference Ratio of Liver Volume (%)

Original vs. GT Standardized vs. GT P Original vs. GT Standardized vs. GT P
FBP 949.7 ± 784.1 154.0 ± 223.1 < 0.001 11.5 ± 9.0 2.0 ± 2.9 < 0.001
IR 808.2 ± 732.7 159.3 ± 208.0 < 0.001 9.8 ± 8.4 2.0 ± 2.8 < 0.001
M40 8684.8 ± 4371.7 356.8 ± 414.1 < 0.001 91.0 ± 19.3 4.4 ± 5.1 < 0.001
M60 8587.8 ± 3652.5 324.7 ± 222.4 < 0.001 91.4 ± 1.4 4.3 ± 3.8 < 0.001
OPT 1917.9 ± 1789.5 192.8 ± 299.8 < 0.001 21.6 ± 18.4 2.4 ± 3.3 < 0.001
Values represent the mean ± standard deviation. FBP = filtered back projection, IR = iterative reconstruction, M40 = monoenergy 40 keV, 
M60 = mono-energy 60 keV, OPT = optimal contrast, GT = ground truth
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Fig. 4. Bland–Altman curve of liver volume between various protocols and ground truth. A: Bland–Altman plot between mono-energy 40 
keV (M40) and ground truth (GT) (mean difference = -91.0%, 95% limits of agreement [LOA] = -128.8% − -53.2%). B: Bland–Altman plot 
between standardized M40 and GT (mean difference = 0.8%, 95% LOA = -12.83%–13.9%). C: Bland–Altman plot between mono-energy 
60 keV (M60) and GT (mean difference = -91.4%, 95% LOA = -94.0% − -88.7%). D: Bland–Altman plot between standardized M60 and GT 
(mean difference = 3.7%, 95% LOA = -4.9%–12.3%). s = standardized, SD = standard deviation
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Fig. 5. Bland–Altman curve of liver volume between various protocols and ground truth. A: Bland–Altman plot between filtered back 
projection (FBP) and ground truth (GT) (mean difference = -11.5%, 95% limits of agreement [LOA] = -29.2%–6.2%). B: Bland–Altman 
plot between standardized FBP and GT (mean difference = -1.5%, 95% LOA = -7.7%–4.8%). C: Bland–Altman plot between hybrid 
iterative reconstruction (IR) and GT (mean difference = -9.8%, 95% LOA = -26.3%–6.7%). D: Bland–Altman plot between standardized 
IR and GT (mean difference = -1.0%, 95% LOA = -7.4%–5.4%). E: Bland–Altman plot between optimal contrast (OPT) and GT (mean 
difference = -21.5%, 95% LOA = -58.0%–15.0%). F: Bland–Altman plot between standardized OPT and GT (mean difference = -2.0%, 95% 
LOA = -8.9% − -5.0%). s- = standardized, SD = standard deviation

the plot showed a small negative bias (mean difference: 
FBP -1.5%, IR -1.0%, OPT -2.0%) with narrow LOAs (FBP 
-7.7% – 4.8%, IR -7.4%–5.4%, OPT -8.9%–5.0%). For M40, 
the original image exhibited a large negative bias (mean 
difference, -91.0%) with a wide LOA (-128.8% − -53.2%). In 
contrast, the standardized image showed a small positive bias 
(0.8%) with a narrow LOA (-12.3%–13.9%). The original M60 
images showed a narrow LOA (-94.0% − -88.7%) but had the 
largest negative bias (mean difference, -91.4%). After image 
conversion, the plot exhibited a small positive bias (mean 
difference, 3.7%) with a narrow LOA (-4.9%–12.3%).

DISCUSSION

This study demonstrated that deep learning-based image 
analysis tools without training data augmentation showed 
poor performance when medical images that were different 
from the training dataset were used as input data. Liver 
segmentation performance showed variable and poor 
performance according to the image protocols, despite the 
data being obtained from the same patient simultaneously. 
After image conversion using the developed deep neural 

network algorithms, organ segmentation performance was 
significantly improved.

AI is a rapidly growing field in medical imaging. A 
considerable number of articles submitted and published 
in the field of radiology are related to AI, and many AI-
based medical image analysis software programs are being 
developed [23]. As the medical imaging volume increased, 
radiologist loading increased. The application of AI to 
medical imaging helps various tasks of radiologists [1]. 
Image analysis using AI extends beyond lesion detection 
and enables lesion classification, treatment response 
prediction, image conversion, synthetic image generation, 
and various quantitative analyses. AI helps improve 
accuracy and efficiency in the detection of lesions and 
reduces measurement and perceptual errors [24-26].

AI is a promising technology for medical imaging; 
however, there are several obstacles to its application 
in daily clinical practice. The biggest limitation in AI 
models that can be applied to clinical practice is securing 
generalizability [11,27]. Developed and tested deep 
learning-based algorithms, showing excellent performance 
in external tests, may demonstrate degraded performance 
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in real clinical practice [10,28-30]. In this study, liver 
segmentation performance using automated deep learning-
based algorithms showed variable results across different 
reconstruction methods. The lower the similarity with 
the ground truth image, the lower the segmentation 
performance. In the training of the deep learning-based 
algorithm, image characteristics, including image noise, 
contrast, artifacts, and texture, were trained. In CT images, 
various CT parameters (e.g., tube voltage or tube current), 
patient body size, reconstruction method, machine, and 
vendor type affect the image characteristics. Deploying 
deep learning-based algorithms to individual institutions 
in real clinical practice encounters new datasets that are 
not identical to the training dataset. This heterogeneity 
of medical images from individual institutions degrades 
the performance of deep learning-based algorithms. A few 
studies have attempted to improve the generalizability of 
deep learning-based algorithms with data augmentation 
[10,11,31,32]. Rauschecker et al. [10] used a limited 
additional local training dataset to overcome generalization 
issues. The major advantage of transfer learning is that it 
can improve the performance of the developed algorithm 
using only a modest amount of data that is acquired by 
the institution that uses the developed algorithm. Transfer 
learning may be a solution for applying the algorithm to 
external institutions. However, this method has several 
limitations. Additional data augmentation is required for 
each institution to use this algorithm. Additional transfer 
learning is required whenever the environment for the 
acquisition of medical images is changed (e.g., changing the 
imaging protocols or CT machine). Moreover, there are no 
specific guidelines for the number of local datasets that are 
required to restore the internally tested performance of the 
algorithm.

Eche et al. [11] attempted to secure generalizability using 
computational stress testing. Generating various datasets by 
artificially modifying images can improve the generalizability 
of stress tests. In radiology, various image datasets can 
be generated by adjusting image noise, contrast, section 
thickness, or artifacts. Training and validation using a 
large heterogeneous dataset can improve generalizability. 
In the case of a model undergoing stress testing to obtain 
generalizability, the average performance of several test 
datasets may be high, but the performance of a specific 
dataset that is evenly distributed with the training set can 
be rather low [11].

However, image conversion and standardization have 

several advantages over the other methods. First, it can 
be a useful means of securing the generalizability of deep 
learning models regardless of the application environment. If 
the converted image data are close to the training set, they 
can show ideal performance regardless of the CT machine, 
vendor, and reconstruction method that is used in individual 
institutions. Second, there is no need to collect the dataset 
for transfer learning or have a stress test dataset, which 
saves time and effort for the deployment of the algorithm.

Our study had some limitations. First, the data used as the 
ground truth for image conversion were not used to train the 
segmentation algorithm, which may be the reason for the 
slightly low segmentation performance. However, when we 
evaluated each segmentation mask from the ground truth, 
no substantial errors were observed (e.g., the segmentation 
of other organs). Second, we used a single CT machine for 
the training and validation. Other CT machines and vendors 
should be evaluated to expand the use of the developed 
model in clinical practice.

In conclusion, we suggest that deep learning-based CT 
image standardization can improve the performance of 
automated segmentation of the liver using CT images that 
are reconstructed with various methods. Deep learning-based 
CT image conversion may have the potential to improve the 
generalizability of the segmentation network.
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