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a b s t r a c t

Background: Traditional culture methods are time-consuming, making it difficult to utilize the results in the 
early stage of urinary tract infection (UTI) management, and automated urinalyses alone show insufficient 
performance for diagnosing UTIs. Several models have been proposed to predict urine culture positivity 
based on urinalysis. However, most of them have not been externally validated or consisted solely of ur
inalysis data obtained using one specific commercial analyzer.
Methods: A total of 259,187 patients were enrolled to develop artificial intelligence (AI) models. AI models 
were developed and validated for the diagnosis of UTI and urinary tract related-bloodstream infection (UT- 
BSI). The predictive performance of conventional urinalysis and AI algorithms were assessed by the areas 
under the receiver operating characteristic curve (AUROC). We also visualized feature importance rankings 
as Shapley additive explanation bar plots.
Results: In the two cohorts, the positive rates of urine culture tests were 25.2% and 30.4%, and the pro
portions of cases classified as UT-BSI were 1.8% and 1.6%. As a result of predicting UTI from the automated 
urinalysis, the AUROC were 0.745 (0.743–0.746) and 0.740 (0.737–0.743), and most AI algorithms presented 
excellent discriminant performance (AUROC > 0.9). In the external validation dataset, the XGBoost model 
achieved the best values in predicting both UTI (AUROC 0.967 [0.966–0.968]) and UT-BSI (AUROC 0.955 
[0.951–0.959]). A reduced model using ten parameters was also derived.
Conclusions: We found that AI models can improve the early prediction of urine culture positivity and UT- 
BSI by combining automated urinalysis with other clinical information. Clinical utilization of the model can 
reduce the risk of delayed antimicrobial therapy in patients with nonspecific symptoms of UTI and classify 
patients with UT-BSI who require further treatment and close monitoring.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health 

Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/li
censes/by-nc-nd/4.0/).

Introduction

Urinary tract infections (UTIs) are one of the most common in
fections encountered in communities and in healthcare settings 
[1–3]. Although UTIs are mostly asymptomatic and self-limiting, 
they can cause serious complications such as secondary bloodstream 

infection (BSI), urosepsis, and death, which require early clinical 
decision [4–7].

Urine culture is the standard test for the definitive diagnosis of 
UTI [8,9], and blood culture could provide additional information in 
selected UTI patients who have been treated with antimicrobial 
agents prior to urine sample collection or who are at high risk of 
developing secondary BSI [10]. However, traditional culture methods 
are time-consuming, making it difficult to utilize the results in the 
early stages of UTI management. Therefore, a presumptive diagnosis 
of UTI through urinalysis is recommended to determine the initia
tion of empirical therapy [11]. Automated urinalysis, including test 
strip analysis and urine sediment analysis, is available in a timely 
manner and can reduce medical costs and laboratory workload, but 
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these tests alone show insufficient performance for UTI diag
nostics [12].

Several models have been proposed to predict urine culture po
sitivity based on urinalysis. However, these models predominantly 
relied on urinalysis data obtained from specific analyzers and lacked 
standardized and externally validated predictive models [13–18]. 
This is a critical issue given that commercial urine analyzers operate 
on different principles and data from one center cannot be directly 
generalized to other settings without external validation. Therefore, 
new prediction system that is available early and generally applic
able to UTI diagnosis are needed, and more comprehensive models 
with individualized information can improve on the limitations of 
existing systems. Artificial intelligence (AI) technology could provide 
new insights into various fields of clinical medicine by detecting 
complex and non-linear relationships between variables that cannot 
be easily captured by conventional statistical methods [19].

The aim of this study was to develop a generalizable AI prediction 
model for the diagnosis of UTI using large cohort data from two 
university hospitals that differ in patient characteristics and auto
mated urinalysis systems used. To simultaneously provide in
formation on the indications for blood culture tests in patients with 
UTIs, additional AI models to predict the progression to urinary 
tract-related BSI (UT-BSI) were suggested. Furthermore, the UTI and 
UT-BSI prediction models constructed in this study were externally 
validated with the independent dataset and identified the variables 
having the largest impact on the models.

Patients and methods

Patients

We retrospectively collected all cases with urine culture results 
from two university hospitals (hospital ‘S′ and hospital ‘G′, tertiary 
hospitals with more than 2000 and 800 beds, respectively) in South 
Korea from 2011 to 2021. During the study period, a total of 584,055 
patients were subjected to urine cultures for suspected UTIs. 
Patients who did not have a urinalysis result within six hours before 
or after urine culture were excluded (n = 77,153) [15]. Other exclu
sion criteria for cases included patients under 19 years of age, ab
sence of demographic data, or more than 20% missing values [20]. 
Finally, 259,187 patients were enrolled for the analysis, and cases 
consisted of a development dataset (196,932 patients from hospital 
‘S′) and an external validation dataset (62,255 patients from hospital 
‘G′). According to Centers for Disease Control/National Healthcare 
Safety Network definitions [21], the following urine culture results 
were classified as positive: no more than two species of micro
organisms growth of ≥ 105 colony-forming unit (CFU) per mL; single 
pathogen growth of ≥ 104 CFU/mL; or pathogen growth of ≥ 103 CFU/ 
mL in urine samples collected via a straight catheter. Positive find
ings in urinalysis were defined as dipstick positive for leukocyte 
esterase (LE) and/or nitrite or when ≥ 10 white blood cells (WBCs)/ 
mL or ≥ 3 WBC/high-power field were observed in a urine sample. In 
addition, a case in which the same microorganism was isolated from 
urine and blood culture within three days from the same patient was 
defined as a UT-BSI.

Patient-level data were collected, including demographics, un
derlying comorbidities with age-adjusted Charlson comorbidity 
index, date of urine sample collection, and commercial analyzers on 
which urinalysis was performed. To extract the worst values within 
24 h of urine culture sampling, both maximum and minimum values 
of laboratory tests and vital signs were obtained. In addition, the use 
of vasopressors, antimicrobial agents, and mechanical ventilation 
was investigated, and the worst Glasgow Coma Scale and a 
Sequential Organ Failure Assessment (SOFA) score were also calcu
lated [22].

Automated urinalysis

We retrieved the results of test strip analysis and urine sediment 
analysis using the electronic medical record collection programs of 
the at each institution. Automated urinalysis was conducted in 
hospital ‘S′ using the URiSCAN Pro/Super automated urine chemistry 
analyzer (YD Diagnostics, Yongin-si, Republic of Korea) with the UF- 
1000i automated urine particle analyzer (Sysmex Co., Kobe, Japan) 
from 2011 to 2013, the CLINITEK Advantus Urine Chemistry Analyzer 
and CLINITEK Novus automated urine chemistry analyzer (SIEMENS 
Healthineers AG, Erlangen, Germany) with the UF-1000i/UF-5000 
automated urine particle analyzer (Sysmex) from 2014 to 2017, and 
the Atellica 1500 Automated Urinalysis System (CLINITEK Novus & 
Atellica UAS 800) (SIEMENS) from 2018 to 2021. In hospital ‘G′, the 
same tests were performed with the URiSCAN Pro automated urine 
chemistry analyzer (YD Diagnostics) and the UF-1000i automated 
urine particle analyzer (Sysmex) from 2011 to 2017 and the iRICELL 
system (iChem VELOCITY urine chemistry analyzer & iQ200 SPRINT 
urine microscopy analyzer) (Beckman Coulter Inc., Brea, CA) from 
2018 to 2021.

Model development

We conducted this study in accordance with the Transparent 
Reporting of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis (TRIPOD) reporting guidelines for prediction 
model development and validation [23]. Before the modeling, all 
continuous variables were standardized, and missing values were 
replaced with median values [20]. The development dataset from 
hospital ‘S′ was randomly split, with 80% of the cases serving as the 
training set and the remaining 20% as the test set for internal eva
luation of the models. In addition, the performance of models se
lected through internal testing with the development dataset was 
verified with the external validation dataset from the independent 
hospital ‘G′.

Models were developed to predict both urine culture positivity 
and the occurrence of UT-BSI. Candidate models were trained using 
the Attentive Interpretable Tabular Learning neural network 
(TabNet), K-nearest neighbor (KNN), extreme gradient boosting 
(XGBoost), and light gradient boosting (LightGBM) algorithms. KNN 
was selected as a representative of non-parametric algorithms 
known for their adaptability to simple data sets, while XGBoost and 
LightGBM were chosen as machine learning classifiers to handle 
complex data sets through ensemble learning techniques [24]. Ad
ditionally, TabNet, a deep learning classifier designed for tubular 
data, was included to evaluate its performance against machine 
learning classifiers [25]. Hyperparameter tuning was performed via a 
grid search and five-fold cross-validation for each AI model 
(Supplementary Table 1). We first developed AI models using all 
parameters (81 variables, Supplementary Table 2) and then selected 
the best-performing algorithm as the final model. In addition, we 
further developed a reduced model using the top 10 predictors to 
enable faster simulations, providing real-time predictive results 
[26–28]. The number of parameters constituting the reduced model 
was chosen as the usable upper bound for the web application im
plementation of the AI model.

To compare the predictive performances of the models, we 
generated the highest area under the receiver operator characteristic 
curve (AUROC) with 95% confidence intervals (CIs) using boot
strapping. The F1 score (the harmonic mean of precision and recall), 
specificity, the area under the precision-recall curve (AUPRC), and 
accuracy were used as additional performance metrics for model 
comparison. Feature importance rankings were visualized as im
portance plots and Shapley additive explanation (SHAP) summary 
bar plots to interpret the models. AI analysis was conducted using 
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Python programming software version 3.7.12 (Python software 
foundation, Wilmington, DE).

Statistical analysis

Baseline characteristics are presented either as means and 
standard deviations (SDs) for continuous variables or as numbers 
and percentages for categorical variables. The statistical significance 
between groups was tested with either the chi-square test for qua
litative data or Student’s t-test for quantitative data. All reported p 
values were two-sided, and statistical significance was assumed if 
p  <  0.05. All statistical analyses were performed using R statistical 
software version 4.1 (R Studio, Inc., Boston, MA).

Results

Baseline characteristics of the study populations

Adult patients for whom urine culture and urinalysis were per
formed at intervals of less than 6 h were investigated. A total of 
259,187 patients including 196,932 patients in the development 
cohorts and 62,255 patients in the external validation cohorts were 
enrolled (Fig. 1). The baseline characteristics of the enrolled patients 
were presented in Table 1. The mean age of patients in total dataset 
was 59.8 years (SD 17.0), and the most common underlying co
morbidity was solid organ cancer (27.1%, n = 70,144), followed by 
diabetes mellitus (9.3%, n = 24,177), and congestive heart diseases 
(5.9%, n = 15,337). The positive rate of urine culture was 26.4% 
(n = 68,525), with progression to secondary bloodstream infection in 
1.7% (n = 4507) of patients.

The results of automated urinalysis showed significant differ
ences between patients with and without UTI and patients with UT- 
BSI (Supplementary Table 3). Urinary WBC counts were highest in 
the patients with UT-BSI group and were statistically higher in pa
tients with UTI than those without UTI. Similarly, the positive (1 + to 
4 +) rates of LE, urinary bacterial counts, and urinary bilirubin were 
highest in the group diagnosed with UT-BSI and lowest in the non- 
UTI group (p  <  0.001). Compared to patients without UTI, patients 
with UTI and UT-BSI had a significantly higher proportion of a prior 
history of urologic device use such as an indwelling catheter (26.4%, 
38.4%, and 57.5% in the group without UTI, the group with UTI, and 
group with UT-BSI, respectively).

The baseline characteristics of the patients classified according to 
the dataset are presented in Supplementary Table 4. There were 
statistically significant differences in most independent variables 
between the patient groups in the two cohorts. Patients in the de
velopment dataset were older, had a lower proportion of females, 
and had more underlying comorbidities (p  <  0.001). The positive 
rates of urine culture tests were 25.2% and 30.4%, and the cases 
classified as UT-BSI were 1.8% and 1.6% in the development and ex
ternal validation datasets, respectively, showing statistically sig
nificant differences. There were also significant differences in the 
composition of pathogenic microorganisms between the two co
horts (Table 2). Escherichia coli was the most common causative 
pathogen of UTI but was more prominent in the external validation 
cohort and in the secondary BSI group. In contrast, most Gram-po
sitive bacteria were isolated more frequently in the development 
cohort and had a lower rate of progression to secondary BSI.

Development of AI models

The performance metrics for UTI prediction using automated 
urinalysis and AI algorithms are presented in Table 3. As a result of 
predicting UTI from the automated urinalysis, the AUROC was 0.745 
(95% confidence interval [CI], 0.743–0.746) and 0.740 (95% CI, 
0.737–0.743) in the two cohorts, respectively, showing lower pre
dictive performance compared to the AI models. All AI algorithms 
presented excellent discriminant performance (AUROC > 0.9) [29]
with the exception of the KNN classifier. For the internal test set, the 
XGBoost classifier showed the highest value in AUROC (0.988; 95% 
CI, 0.987–0.988), accuracy (0.955), and the F1 score (0.908). Al
though there was a deterioration in performance in the external 
validation dataset, the XGBoost model still achieved the best values 
in AUROC (0.967; 95% CI, 0.966–0.968), accuracy (0.909), and the F1 
score (0.851). Thus, the XGBoost algorithm was selected as a clas
sifier for the development of the final model.

Development of the model to predict UT-BSI was conducted 
using a similar process that is summarized in Table 4. The XGBoost 
algorithm performed best with AUROC values of 0.968 (95% CI, 
0.964–0.971) and 0.955 (95% CI, 0.951–0.959) in the internal test and 
external validation sets, respectively. In both datasets, the algo
rithm’s F1 scores were also the highest at 0.330 and 0.233, respec
tively.

Fig. 2 describes the AUROC and AUPRC of the external validation 
dataset for urine culture positivity (Figs. 2A and 2B) and UT-BSI 

Fig. 1. Flowchart depicting steps in obtaining the dataset. Abbreviations: UTI, urinary tract infection; BSI, bloodstream infection. 
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(Figs. 2C and 2D), with XGBoost models showing the best perfor
mances.

Top predictors in the final models

The predictors for UTI and UT-BSI obtained in the development 
dataset, along with their rank, are presented in Fig. 3 and 
Supplementary Figs. 2–3. Based on the SHAP analysis of the XGBoost 
algorithm, urinary bacterial count, monocyte count, WBC count, 
lymphocyte count, urinary WBC count, specific gravity (SG), diastolic 
blood pressure (BP), systolic BP, patient’s age, and c-reactive protein 

(CRP) level were selected as the top 10 predictors associated with 
UTI. Reduced models were also developed using these top 10 vari
ables. Meanwhile, the urinary bacterial count in automated urine 
sediment analysis was the most important variable in predicting UT- 
BSI using the XGBoost model, followed by urinary WBC count, 
lymphocyte count, and CRP level. The code for a reduced model 
derived with the top 10 parameters was disclosed (https://gi
thub.com/tcmhwd/uti).

Table 1 
Baseline characteristics of patients with and without UTI and patients with UT-BSI. 

Variables Total 
(n = 259187)

No UTI 
(n = 190662)

UTI 
(n = 68525)

p UTI without  
BSI 
(n = 64018)

UT-BSI 
(n = 4507)

p

Age 59.8  ±  17.0 58.3  ±  16.8 63.9  ±  16.8 <  0.001 63.7  ±  17.0 67.2  ±  14.5 <  0.001
Female 123661 (47.7%) 76929 (40.3%) 46732 (68.2%) <  0.001 43774 (68.4%) 2958 (65.6%) <  0.001
Charlson comorbidity index 3.7  ±  2.4 3.5  ±  2.3 4.2  ±  2.4 <  0.001 4.2  ±  2.4 4.6  ±  2.2 <  0.001
Underlying comorbidities

Solid organ cancer 70144 (27.1%) 50636 (26.6%) 19508 (28.5%) <  0.001 18064 (28.2%) 1444 (32.0%) <  0.001
Diabetes mellitus 24177 (9.3%) 15736 (8.3%) 8441 (12.3%) <  0.001 7780 (12.2%) 661 (14.7%) <  0.001
Kidney diseases 7543 (2.9%) 5838 (3.1%) 1705 (2.5%) <  0.001 1490 (2.3%) 215 (4.8%) <  0.001
Congestive heart diseases 15337 (5.9%) 10192 (5.3%) 5145 (7.5%) <  0.001 4826 (7.5%) 319 (7.1%) <  0.001
Cerebrovascular diseases 12209 (4.7%) 7207 (3.8%) 5002 (7.3%) <  0.001 4742 (7.4%) 260 (5.8%) <  0.001
Indwelling catheter 76727 (29.6%) 50426 (26.4%) 26301 (38.4%) <  0.001 23711 (37.0%) 2590 (57.5%) <  0.001

Urinalysis system
CLINITEK Advantus urine chemistry analyzer 1892 (0.7%) 966 (0.5%) 926 (1.4%) <  0.001 837 (1.3%) 89 (2.0%) <  0.001
Atellica 1500 Automated Urinalysis System 46037 (17.8%) 33069 (17.3%) 12968 (18.9%) 12025 (18.8%) 943 (20.9%)
iRICELL system 38475 (14.8%) 26234 (13.8%) 12241 (17.9%) 11589 (18.1%) 652 (14.5%)
CLINITEK Novus automated urine chemistry 

analyzer
94800 (36.58%) 70294 (36.87%) 24506 (35.76%) 22787 (35.59%) 1719 (38.14%)

URiSCAN Pro/Super automated urine chemistry 
analyzer with UF-1000i automated urine 
particle analyzer

54203 (20.9%) 42981 (22.5%) 11222 (16.4%) 10477 (16.4%) 745 (16.5%)

URiSCAN Pro automated urine chemistry 
analyzer with UF-1000i automated urine 
particle analyzer

23780 (9.2%) 17118 (9.0%) 6662 (9.7%) 6303 (9.8%) 359 (8.0%)

Urine culture positivity 68525 (26.4%) - 68525 (100.0%) 64018 (100.0%) 4507 (100.0%)
Urinary tract related bloodstream infection 4507 (1.7%) - 4507 (6.6%) 0 (0.0%) 4507 (100.0%)
Ventilator use 5839 (2.3%) 4571 (2.4%) 1268 (1.9%) <  0.001 1134 (1.8%) 134 (3.0%) <  0.001
Maximum C-reactive protein (mg/L) 57.4 [14.9–122.9] 55.1 [13.5–120.6] 62.5 

[18.1–128.5]
<  0.001 55.9 

[15.8–117.8]
150.8 
[86.7–231.9]

<  0.001

SOFA score 0 [0–3] 0 [0–2] 1 [0–4] <  0.001 1 [0–3] 4[2–8] <  0.001

Abbreviations: UTI, urinary tract infection; BSI, bloodstream infection; UT-BSI, urinary tract-related BSI; SOFA, sequential organ failure assessment; WBC, white blood cell.
Data are presented as number (%), mean ±  standard deviation, or median [1st-3rd quartile].

Table 2 
Number of distributions of urinary tract infection causative microorganisms. 

Organisms Patients with UTI in the 
development dataset 
(n = 49622)

Patients with UTI in the 
external validation dataset 
(n = 18903)

Total patients with  
UTI 
(n = 68525)

UTI without BSI 
(n = 64018)

UT-BSI 
(n = 4507)

Gram-negative bacteria 33844 (68.2%) 13517 (71.5%) 47361 (69.1%) 43529 (68.0%) 3832 (85.0%)
Escherichia coli 23438 (47.2%) 9781 (51.7%) 33219 (48.5%) 30294 (47.3%) 2925 (64.9%)
Klebsiella pneumoniae 4271 (8.6%) 1346 (7.1%) 5617 (8.2%) 5029 (7.9%) 588 (13.0%)
Pseudomonas aeruginosa 1455 (2.9%) 598 (3.2%) 2053 (3.0%) 1976 (3.1%) 77 (1.7%)
Proteus spp. 1089 (2.2%) 354 (1.9%) 1443 (2.1%) 1348 (2.1%) 95 (2.1%)
Citrobacter spp. 707 (1.4%) 244 (1.3%) 951 (1.4%) 930 (1.5%) 21 (0.5%)
Enterobacter spp. 386 (0.8%) 439 (2.3%) 825 (1.2%) 798 (1.2%) 27 (0.6%)
Acinetobacter baumannii 353 (0.7%) 179 (0.9%) 532 (0.8%) 509 (0.8%) 23 (0.5%)
Gram-positive bacteria 11719 (23.6%) 3867 (20.5%) 15586 (22.7%) 15066 (23.5%) 520 (11.5%)
Enterococcus faecalis 4804 (9.7%) 1642 (8.7%) 6446 (9.4%) 6325 (9.9%) 121 (2.7%)
Enterococcus faecium 2914 (5.9%) 1048 (5.5%) 3962 (5.8%) 3837 (6.0%) 125 (2.8%)
Streptococcus agalactiae 840 (1.7%) 236 (1.2%) 1076 (1.6%) 1042 (1.6%) 34 (0.8%)
Staphylococcus aureus 623 (1.3%) 236 (1.2%) 859 (1.3%) 647 (1.0%) 212 (4.7%)
Fungus 4059 (8.2%) 1519 (8%) 5578 (8.1%) 5423 (8.5%) 155 (3.4%)
Candida spp. 3806 (7.7%) 1490 (7.9%) 5296 (7.7%) 5148 (8.0%) 148 (3.3%)
Other fungus 253 (0.5%) 29 (0.2%) 282 (0.4%) 275 (0.4%) 7 (0.2%)
Other microorganisms, including cases of 

polymicrobial infection
4683 (9.4%) 1281 (6.8%) 5964 (8.7%) 5860 (9.2%) 104 (2.3%)

Abbreviations: UTI, urinary tract infection; BSI, bloodstream infection; UT-BSI, urinary tract-related BSI
Data are presented as number (%).
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Discussion

We found that applying AI technology can improve the early 
prediction of urine culture positivity and UT-BSI by combining au
tomated urinalysis with other clinical information.

Some previous studies have proposed urine culture prediction 
models through traditional statistical methods [13–15]. These 
models tried to predict UTIs by suggesting multiple cutoffs for au
tomated urinalysis results but showed relatively low F1 scores, 
which is an informative value that evaluates classifiers on im
balanced data [30]. Urine cultures obtained in real clinical settings 
have much higher rates of negative findings, and perhaps conven
tional logistic regression models could not overcome this funda
mental data imbalance. Furthermore, the evaluation of most 
previous models only included results from one specific automated 
urinalysis system, and there were no standardized, externally vali
dated predictive models for identifying patients with UTIs [14,31,32].

AI-based algorithms have the inherent advantage over traditional 
statistical approaches of correcting multicollinearity and nonlinear 
relationships between independent variables [33], resulting in better 
predictive performance in various fields of clinical medicine for di
agnosis and prognostic prediction [19]. Several prior studies have 
attempted to use AI techniques to differentiate patients with UTIs 
[16–18], but none of these results have been externally validated. 
Accordingly, we developed AI models for predicting positive urine 
culture and validated it externally in a cohort with different patient 

characteristics. The final model in our study had an excellent per
formance of ≥ 0.9 in both the F1 score and AUROC in the internal test 
cohort. Even in the external validation cohort that used different 
urinalysis analyzers, the final model maintained high predictive 
performance with an F1 score of 0.851 and AUROC of 0.967, showing 
only a slight deterioration compared to that of the internal test set.

Most cases with asymptomatic UTIs are self-limiting and do not 
require antimicrobial therapy. However, it is difficult to differentiate 
between asymptomatic and nonspecific systemic symptoms, espe
cially in elderly, unconscious, and immunocompromised patients 
[34]. Studies assessed on UT-BSI are of particular importance in 
university hospitals with a high proportion of critically ill patients. 
Progression from simple UTI to secondary BSI has a high mortality 
rate of 20–40% and is a clinical indicator of empirical antimicrobial 
treatment [35]. In this regard, blood cultures could provide addi
tional clues for treatment decisions in certain patients with UTI, but 
it is time-consuming and has issues with increased laboratory 
workload. Therefore, we developed the AI model that simulta
neously predicts UT-BSI based on urinalysis results and presented 
the final XGBoost model with an AUROC of 0.9 or higher in both the 
internal test cohort and external validation cohort. Since the pro
portions of patients with UT-BSI in the two cohorts were 1.8% and 
1.6%, which are much lower than the 25.2% and 30.4% of UTI cases, 
the performance (especially the sensitivity and F1 score) of the 
model was deteriorated compared to the UTI prediction. However, 
our model shows a specificity of ≥ 0.99, which may contribute to 

Table 3 
Performance metrics for the prediction of UTI by urinalysis alone and the Artificial intelligence algorithms. 

Algorithm AUROC (95% CI) Specificity Sensitivity/Recall Accuracy PPV/Precision F1 score

Internal test set
Urinalysis alone 0.745 (0.743–0.746) 0.601 0.888 0.673 0.428 0.578
TabNet 0.978 (0.973–0.976) 0.885 0.934 0.897 0.729 0.819
KNN 0.883 (0.880–0.887) 0.951 0.619 0.867 0.81 0.702
LightGBM 0.978 (0.977–0.979) 0.974 0.83 0.938 0.916 0.871
XGBoost 0.988 (0.987–0.988) 0.979 0.883 0.955 0.934 0.908
XGBoost with top 10 variables* 0.963 (0.962–0.965) 0.967 0.79 0.922 0.891 0.837
External validation set
Urinalysis alone 0.740 (0.737–0.743) 0.591 0.889 0.681 0.487 0.629
TabNet 0.956 (0.955–0.957) 0.779 0.958 0.834 0.655 0.778
KNN 0.843 (0.840–0.846) 0.839 0.691 0.794 0.651 0.671
LightGBM 0.951 (0.949–0.952) 0.934 0.801 0.894 0.841 0.821
XGBoost 0.967 (0.966–0.968) 0.933 0.855 0.909 0.847 0.851
XGBoost with top 10 variables* 0.916 (0.914–0.918) 0.939 0.67 0.857 0.827 0.740

Abbreviations: UTI, urinary tract infection; AUROC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; TabNet, Attentive 
Interpretable Tabular Learning neural network; KNN, K-nearest neighbor; LightGBM, light gradient boosting; XGBoost, eXtreme gradient boosting.
*Reduced model using only the top 10 predictors (urinary bacteria, monocyte count, WBC count, lymphocyte count, urinary WBC count, specific gravity, diastolic blood pressure, 
systolic blood pressure, patient’s age, and serum c-reactive protein level) selected by Shapley additive explanation analysis

Table 4 
Performance metrics for the prediction of UT-BSI by urinalysis alone and the Artificial intelligence algorithms. 

Algorithm AUROC (95% CI) Specificity Sensitivity/Recall Accuracy PPV/Precision F1 score

Internal test set
Urinalysis alone 0.726 (0.723–0.729) 0.486 0.966 0.494 0.033 0.063
TabNet 0.937 (0.926–0.947) 0.907 0.841 0.906 0.138 0.237
KNN 0.706 (0.691–0.721) 0.999 0.064 0.981 0.505 0.114
LightGBM 0.968 (0.964–0.971) 0.998 0.206 0.983 0.634 0.311
XGBoost 0.968 (0.964–0.971) 0.997 0.223 0.983 0.628 0.330
XGBoost with top 10 variables* 0.928 (0.919–0.936) 0.999 0.091 0.982 0.615 0.159
External validation set
Urinalysis alone 0.706 (0.700–0.712) 0.452 0.960 0.460 0.028 0.055
TabNet 0.883 (0.873–0.892) 0.915 0.655 0.911 0.113 0.192
KNN 0.703 (0.690–0.717) 0.997 0.076 0.982 0.298 0.121
LightGBM 0.954 (0.949–0.958) 0.999 0.132 0.984 0.596 0.216
XGBoost 0.955 (0.951–0.959) 0.998 0.146 0.984 0.569 0.233
XGBoost with top 10 variables* 0.893 (0.885–0.902) 0.999 0.058 0.984 0.504 0.105

Abbreviations: UT-BSI, urinary tract-related bloodstream infection; AUROC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive 
value; TabNet, Attentive Interpretable Tabular Learning neural network; KNN, K-nearest neighbor; LightGBM, light gradient boosting; XGBoost, eXtreme gradient boosting.
*Reduced model using only the top 10 predictors (urinary bacteria, monocyte count, WBC count, lymphocyte count, urinary WBC count, specific gravity, diastolic blood pressure, 
systolic blood pressure, patient’s age, and serum c-reactive protein level) selected by Shapley additive explanation analysis
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reducing unnecessary blood culture tests and associated costs in 
patients with UTIs.

The XGBoost algorithm achieved the best discriminative power 
in predicting UTI and UT-BSI in this study. In general, ensemble tree- 
based machine learning models such as XGBoost and LightGBM are 
known to perform best on tubular data sets, which is consistent with 

our study [36]. In these final models, we also presented the top 
variables with the largest impact on the predictions of UTI and UT- 
BSI. These parameters could be grouped into three categories: 1) 
automated urinalysis results (urinary bacterial count, urinary WBC 
count, and SG), 2) other laboratory test results obtained on the same 
day that the urinalysis was performed (total and differential WBC 

Fig. 2. Comparison of Artificial intelligence-based UTI and UT-BSI prediction models. Abbreviations: UTI, urinary tract infection; UT-BSI, urinary tract-related bloodstream 
infection; AUROC, area under the receiver operating characteristic curve; TabNet, Attentive Interpretable Tabular Learning neural network; KNN, K-nearest neighbor; LightGBM, 
light gradient boosting; XGBoost, eXtreme gradient boosting; AUPRC, area under the precision-recall curve.

Fig. 3. SHAP value summary bar plot of the final model including critical variables for predicting UTI and UT-BSI. Red bars indicate higher values or affirmative responses for 
binary features, and blue bars indicate the opposite. A positive SHAP value indicates that the variables increase the likelihood of UTI (A) or UT-BSI (B). Abbreviations: SHAP, 
Shapley additive explanation; UTI, urinary tract infection; UT-BSI, urinary tract-related bloodstream infection; WBC, white blood cell; BP, blood pressure; CRP, c-reactive protein.
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count and CRP level), and 3) patient demographics and vital signs 
(age and BP). Urinary bacterial count, the best predictor of UTI in this 
study, is a quantification of the number of bacteria per high-power 
field, and any amount of urinary bacteria could be a sign of a UTI 
[37]. Urinary WBC is a metric commonly associated with bacteriuria 
but has low specificity and positive predictive value to be used alone. 
SG is known to correlate with urine osmolality and concentration, 
which could affect the diagnostic performance of dipstick positivity 
[38]. In addition to conventional urinalysis results, blood WBC count 
and serum CRP level, which are used as inflammatory markers, were 
also important predictors for our final model. As in previous studies, 
we found a high risk of UTI in elderly and female patients [39]. 
Therefore, the use of the AI approach in conjunction with patient 
baseline characteristics, automated urinalysis, and routine labora
tory tests can provide more useful information for predicting UTI 
and UT-BSI. For convenience of data input, we derived the reduced 
model with the top 10 parameters, and this predictive model could 
support early decision-making in the clinical settings.

Our study is limited by the single country and its retrospective 
nature. Although it is a large-scale study, residual confounders or 
hidden biases, such as patient race, the prevalence of different ur
opathogens by hospital, and commercial urinalysis analyzers not 
included in our data, may have influenced the generalization of the 
results. Different in medical practices, patient demographics, and 
regional prevalence of UTIs are potential biases in these models. In 
addition, participants with more than 20% missing data or without 
demographics were excluded from the analysis. The missing values 
may have affected the predictive performance of our models. The 
study ensured that data privacy and patient confidentiality were 
rigorously maintained, and ethical standards required transparent 
reporting of limitations, potential biases, and any steps taken to 
mitigate these issues. This ensures the ethics and credibility of the 
findings. Furthermore, we also tried to minimize the impact of 
hidden bias and missing data through validation with the external 
cohort that was significantly different from the internal training 
cohort.

In summary, we developed prediction models for whether a 
patient has UTI and/or UT-BSI using AI approaches and validated its 
performance in the independent external cohort. These early ap
plicable predictive systems consist only of routinely available clinical 
information and support clinical decision-making. Clinical utiliza
tion of the model can reduce the risk of delayed antimicrobial 
therapy in patients with nonspecific symptoms of UTI and classify 
patients with UT-BSI who require further treatment and close 
monitoring. Further adjustment and reinforcement of our model 
could be achieved through additional external validation and pro
spective application of the predictive system.
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