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Deep learning and clustering 
approaches for dental implant size 
classification based on periapical 
radiographs
Ji‑Hyun Park 1, Hong Seok Moon 1, Hoi‑In Jung 2, JaeJoon Hwang 3, Yoon‑Ho Choi 4 & 
Jong‑Eun Kim 1*

This study investigated two artificial intelligence (AI) methods for automatically classifying dental 
implant diameter and length based on periapical radiographs. The first method, deep learning (DL), 
involved utilizing the pre‑trained VGG16 model and adjusting the fine‑tuning degree to analyze image 
data obtained from periapical radiographs. The second method, clustering analysis, was accomplished 
by analyzing the implant‑specific feature vector derived from three key points coordinates of the 
dental implant using the k‑means++ algorithm and adjusting the weight of the feature vector. DL 
and clustering model classified dental implant size into nine groups. The performance metrics of AI 
models were accuracy, sensitivity, specificity, F1‑score, positive predictive value, negative predictive 
value, and area under the receiver operating characteristic curve (AUC‑ROC). The final DL model 
yielded performances above 0.994, 0.950, 0.994, 0.974, 0.952, 0.994, and 0.975, respectively, and 
the final clustering model yielded performances above 0.983, 0.900, 0.988, 0.923, 0.909, 0.988, and 
0.947, respectively. When comparing the AI model before tuning and the final AI model, statistically 
significant performance improvements were observed in six out of nine groups for DL models and 
four out of nine groups for clustering models based on AUC‑ROC. Two AI models showed reliable 
classification performances. For clinical applications, AI models require validation on various 
multicenter data.

The dental implant is a valuable treatment option for edentulous  patients1. The long-term success rate and sur-
vival rate of dental implants are guaranteed, but mechanical and biological complications occur in patients with 
dental implants as time  passes2–4. To manage various complications, detailed information on dental implants 
is essential.

In the case of mechanical complications, such as a fracture of dental prostheses, it is necessary to identify the 
dental implant systems. Afterward, the diameter of the implant should also be identified because the diameter 
of the dental implant determines the dimension of the connection between a superstructure and the dental 
implant. In the case of biological complications, especially peri-implantitis, radiographic measurement of bone 
level is a crucial  factor5–7. In cases where previous radiographic examinations are unavailable, the diagnosis of 
peri-implantitis can be established when bone levels ≥ 3 mm apical to the most coronal aspect of the intra-osseous 
part of the implant are observed, accompanied by bleeding on  probing5. Clinicians often measure bone loss using 
a relative ratio to the total implant length from the periapical radiograph. However, measuring exact bone loss or 
objectively comparing the rate of bone loss among patients with different implants is challenging using a relative 
bone loss ratio. A dental implant’s length can serve as a reference metric in dental radiograph interpretation for 
radiographic measurement of bone level.

Numerous types of implants have emerged, so without medical records, getting specific and detailed infor-
mation on dental implants is  difficult8. In addition, after dental implant surgery, it is hard to observe or measure 
it directly, so periapical or panoramic radiographs are used to examine dental implants. However, identifying 
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dental implants solely based on clinicians’ experience can be time-consuming and costly without sufficient 
medical records.

The application of artificial intelligence (AI) in medical imaging analysis has expanded  rapidly9–14. Also, 
in dentistry, AI models were used for the diagnosis of dental diseases such as dental caries or periodontal 
 disease15–17. As a result, they improved the accuracy and reliability of diagnoses and aided dental profes-
sionals’  performances17. Active AI research was conducted to identify dental implant systems from dental 
 radiography18–24. There were studies to obtain high performance in identifying dental implant types using small 
datasets, various deep convolutional neural networks (CNNs), and transfer learning. Recently a study showed 
that the deep learning (DL) model yielded accurate and valid results in identifying and classifying different dental 
implant systems with large-scale multicenter  data24.

However, few studies have investigated implant size, which plays an essential role in the production of implant 
prostheses and serves as a reference metric when interpreting dental radiographs. While recent research has 
focused on identifying dental implant systems, more investigations about automatically classifying implant size 
are needed. To address this research gap, this study aimed to develop and evaluate two automatic classification 
systems classifying the size of dental implants from periapical radiographs with DL and clustering (Fig. 1). It 
was hypothesized that the performance of the two AI models could be improved through the tuning process.

Results
The label with a four-digit number represents the dental implant size, with the first two digits corresponding 
to the diameter and the last two digits corresponding to the length (3308, diameter 3.3 mm and length 8 mm; 
3310, diameter 3.3 mm and length 10 mm; 3312, diameter 3.3 mm and length 12 mm; 4108, diameter 4.1 mm 
and length 8 mm; 4110, diameter 4.1 mm and length 10 mm; 4112, diameter 4.1 mm and length 12 mm; 4808, 
diameter 4.8 mm and length 8 mm; 4810, diameter 4.8 mm and length 10 mm; 4812, diameter 4.8 mm and 
length 12 mm).

Figure 1.  A schematic description of deep learning and clustering approaches: (a) data acquisition and data 
splitting for deep learning and clustering; (b) comparing of deep learning and clustering process.
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Classification of the implant size with DL
The final DL model with the best accuracy was chosen when the fine-tuning degree was four (Fig. 2a). Through 
adjusting the fine-tuning degree, the final DL model exhibited, in six out of nine groups, higher AUC-ROC 
values and statistically significant differences (p < 0.05) in terms of AUC-ROC compared to the model with the 
fine-tuning degree of zero.

Figure 2c shows a confusion matrix constructed by the final DL model with test data. Across the result of 
nine groups, the accuracy, sensitivity, specificity, F1-score, positive predictive value, negative predictive value, 
and AUC-ROC are above 0.994, 0.950, 0.994, 0.974, 0.952, 0.994, and 0.975 (95% CI, 0.926–1.00) respectively 
(Table 1). In the confusion matrix of the final DL model, there are two false predictions. One represents an 
inaccurate inference of the length and diameter, and the other shows an accurate inference of the length and an 
inaccurate inference of diameter. A confusion matrix and the performance evaluation results of the DL model 
with the fine-tuning degree of zero are shown (Supplementary Fig. S3 and Supplementary Table S4). Receiver 
operating characteristic (ROC) curve and area under the ROC curve (AUC-ROC) of the DL models with the 
best accuracy and the fine-tuning degree of zero in nine groups, and the results of the chi-square test are shown 
(Supplementary Fig. S5).

The input images of bone level implants and heat maps generated by gradient-weighted class activation 
mapping (Grad-CAM) were superimposed on the corresponding images, and they are presented in Fig. 3. In 
each heat map, red regions indicate higher activation values or importance, while blue regions represent lower 
activation values or importance in the prediction  process25.

Classification of the implant size with clustering
Using a test data set, external validation was conducted on the final clustering model with the best accuracy 
when the weight of the feature vector was two (Fig. 2b). Through adjusting the weight of the feature vector, the 
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Figure 2.  Results for implant size classification using deep learning and clustering approaches: (a) relationship 
between the fine-tuning degree and deep learning model accuracy; (b) relationship between the weight of the 
feature vector and clustering model accuracy; (c) confusion matrix of the final DL model result; (d) confusion 
matrix of the final clustering model result.
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final clustering model exhibited, in four out of nine groups, higher AUC-ROC values and statistically significant 
differences (p < 0.05) in terms of AUC-ROC compared to the model with a weight of the feature vector set to one.

Figure 2d shows a confusion matrix constructed by the final clustering model with test data. Across the 
result of nine groups, the accuracy, sensitivity, specificity, F1-score, positive predictive value,  negative predic-
tive value, and AUC-ROC were above 0.983, 0.900, 0.988, 0.923, 0.909, 0.988, and 0.947 (95% CI, 0.879–1.00) 
respectively (Table 1). In the clustering model, each data point is assigned in each cluster based on Euclidean 
similarity, so the false predictions always appear on the cluster near the true predictions on the scatter plot of 

Table 1.  Performance evaluation results of the final DL and clustering models. DL deep learning, CL 
clustering, TP true positive, TN true negative, FP false positive, FN false negative, ACC  accuracy, SE sensitivity, 
SP specificity, PPV positive predictive value, NPV negative predictive value, AUC-ROC area under the receiver 
operating characteristic curve, CI confidence interval. The asterisk (*) indicates a statistically significant 
difference between the model performance before and after tuning, with a significance level of p < 0.05.

Model Label TP TN FP FN ACC SE SP F1-score PPV NPV AUC-ROC (95% CI)

DL

3308 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 *1.000 (1.000–1.000)

3310 19 160 0 1 0.994 0.950 1.000 0.974 1.000 0.994 *0.975 (0.926–1.000)

3312 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (1.000–1.000)

4108 20 159 1 0 0.994 1.000 0.994 0.976 0.952 1.000 *0.997 (0.991–1.000)

4110 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 *1.000 (1.000–1.000)

4112 20 159 1 0 0.994 1.000 0.994 0.976 0.952 1.000 *0.997 (0.991–1.000)

4808 19 160 0 1 0.994 0.950 1.000 0.974 1.000 0.994 0.975 (0.926–1.000)

4810 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.00 (1.000–1.000)

4812 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 *1.00 (1.000–1.000)

CL

3308 19 160 0 1 0.994 0.950 1.000 0.974 1.000 0.994 0.975 (0.926–1.00)

3310 18 159 1 2 0.983 0.900 0.994 0.923 0.947 0.988 *0.947 (0.879–1.00)

3312 20 158 2 0 0.989 1.000 0.988 0.952 0.909 1.000 0.994 (0.985–1.00)

4108 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (1.000–1.000)

4110 20 158 2 0 0.989 1.000 0.988 0.952 0.909 1.000 *0.994 (0.985–1.000)

4112 18 160 0 2 0.989 0.900 1.000 0.947 1.000 0.988 *0.950 (0.883–1.000)

4808 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (1.000–1.000)

4810 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000(1.000–1.000)

4812 20 160 0 0 1.000 1.000 1.000 1.000 1.000 1.000 *1.000 (1.000–1.000)
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Figure 3.  Bone level implant images and their Grad-CAM of the final deep learning model, described with true 
label, predicted label, and softmax value.
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the feature vectors. In the confusion matrix of the final clustering model, the false prediction results represent 
accurate inferences on diameter and inaccurate inferences on length. The radiographic diameter and length are 
indicated on the x- and y-axes, respectively, on the scatter plot, and the cluster of each data is represented with 
color coding (Fig. 4). A confusion matrix and the performance evaluation results of the clustering model with 
the weight of the feature vector set to one are shown (Supplementary Fig. S6 and Supplementary Table S7). ROC 
curves and AUC-ROC values of the clustering models with the best accuracy and the weight of the feature vector 
set to one in nine groups and the results of the chi-square test are shown (Supplementary Fig. S8).

Discussion
AI models in implant dentistry have the potential to recognize implant types, predict implant success, and 
optimize implant  designs26. Many studies have attempted to develop methods for identifying the manufacturers 
and models of implants based on AI  models20–24. Nevertheless, few studies have focused on the detailed diam-
eter and length of dental implants in radiographic images. To the best of our knowledge, using deep learning or 
clustering to classify the size of dental implants has not yet been studied. The diameter of a dental implant plays 
an important role when selecting components for prosthetic restorations, while its length can serve as a refer-
ence for radiographic interpretations. Therefore, accurate information on the exact dimensions of the implant is 
essential for its long-term maintenance, including the management of mechanical and biological complications.

A study used a DL model to find six key points on periapical radiographs of dental implants and calculated 
the ratio of bone loss for the entire  implant27. An automated key points detection system was proposed for 
calculating the percentage of bone loss to assess the severity of peri-implantitis. However, for the same ratio of 
the radiographic bone loss over the total implant length, the actual amount of bone loss varies proportionally 
with the implant length. Measuring bone loss amount rather than bone loss ratio is necessary for accurately 
interpreting radiographs for peri-implantitis diagnosis. Therefore, the present study aimed to develop automatic 
systems to identify the diameter and length of dental implants and to make it possible to measure the objective 
amount of bone loss.

In the clustering methods of this study, we employed not only three key points but also clustering analysis 
to infer the diameter and length of dental implants. In various prior studies of automatic lateral cephalogram 
analysis, deep learning was used for size measurements of various structures through landmark detection. In 
contrast, in this study, after extracting three key points, we utilized clustering analysis to infer the diameter 
and length of dental implants. This approach stems from differences in imaging conditions between lateral 
cephalograms and intraoral radiographs. In the case of lateral cephalograms, where the patient’s sagittal plane is 
positioned parallel to the radiographic plate during imaging, the derived values can contribute to cephalogram 
analysis. However, from periapical radiographs of implants captured within the oral cavity, direct calculation of 
the implant’s diameter and length is complicated by factors such as magnification resulting from radiographic 
imaging and reduction caused by the angle between the implant and the digital sensor. Particularly, the angular 
issue between the object and the digital sensor introduces limitations based on the anatomical structures within 
the oral cavity, varying according to the inclination of implants not visible within  the bone and different dental 
regions such as incisors, premolars, and molars. This study explored the feasibility of transforming radiographic 
diameter and length, obtained through landmark usage, into actual implant diameter and length through clas-
sification, employing machine learning techniques, specifically clustering.

In medical image analysis, AI models should be explainable to ensure the clinical relevance and reliability of 
the model’s results for medical practitioners. Unfortunately, DL models often operate like black boxes, so various 
techniques, including Grad-CAM, were  developed25. The range of layers to be fine-tuned is an important factor 
in achieving optimal performance on a new task in transfer learning. Figure 5 shows the Grad-CAM images 
with various freezing ranges and training epochs. When the fine-tuning degree of a DL model is zero or one, 
there is a tendency for the heatmap to appear in the background or outside the implant area. As the fine-tuning 
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degree increases, there is a tendency for the heat map to concentrate and appear on the implant area. However, 
training a CNN architecture with only a small amount of data can result in overfitting and limited generaliza-
tion. Therefore, when applying a DL model to limited data, it is crucial to perform appropriate fine-tuning28.

In applying a clustering analysis, a feature vector composed of the radiographic diameter and length of the 
dental implant was used in this study. All images were visualized in the scatter plot of the feature vectors, so it 
was possible to interpret how closely the feature vector of the dental implant image was positioned to the centroid 
or if it was positioned between two different clusters. This scatter plot serves as a map-like guide for dividing 
implant groups, assisting in the explainability of the clustering model.

In the case of using deep learning methods for bone level implants, there were two false predictions. In these 
cases, either the length and diameter were incorrectly predicted to be larger, or the length was predicted correctly, 
but the diameter was incorrectly predicted. In the case of using clustering methods for bone level implants, there 
were five false predictions. The diameter was predicted correctly in these cases, but the length was predicted 
incorrectly. The clustering model exhibited reliable results in inferring the diameter. If this trend is similarly 
observed across a wider range of implant systems and more datasets on external validation, there is a possibility 
that using both the DL model and clustering model in tandem for analyzing a single implant image could serve 
complementary roles. In cases where the predicted diameter and length of an implant differ between the two 
models, it is conceivable to give precedence to the predictions of the clustering model, which is speculated to be 
more reliable for diameter prediction. Subsequently, confirming the vector corresponding to the radiographic 
diameter and length of that image at the position of the feature map, and then comparing the predicted lengths 
from both the DL model and clustering model, while simultaneously considering distortions caused by the 
image’s radiographic angulation, would facilitate a more rational decision-making process.

In the study, the performances of two AI models were improved through the tuning process. The fine-tuning 
degree was chosen as four through external validation with test data in the DL approach. When comparing the 
results of the tuning process before and after, based on the AUC-ROC values for the test dataset, a statistically 
significant performance improvement was observed in six out of the nine groups after tuning, when the tuning 
degree was set to four. In the clustering approach, comparing the results of the weight of the feature vector set to 
one and two, based on the AUC-ROC values for the test dataset, four of the nine groups demonstrated a statisti-
cally significant improvement in performance after tuning. As far as we know, no research has been conducted 
on utilizing deep learning or clustering approaches to classify the sizes of dental implants. Therefore, we could 
not compare the performance of our study’s results with those of other studies.

This study had limitations. First, we utilized a limited set of images from periapical radiographs with Strau-
mann bone level implants. Due to the limitations in data availability, our study utilized only periapical radio-
graphs of a limited dataset of Straumann bone level implants to classify dental implant sizes using deep learning 
and clustering methods. Subsequent research should encompass more diverse dental implant systems and account 
for complex clinical scenarios to evaluate the performance of these AI models. For generalizability, the model 
should be trained on a large and diverse dataset that adequately represents the variations and complexities of 
the target  problem29. Recently, a study identified 25 different systems of dental implants using 37,442 periapical 
and 113,291 panoramic  images24. Also, for enhancing the reliability and reproducibility of AI models detecting 
and classifying the diameter and length of various dental implants, further investigation is crucial to establish a 
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comprehensive, large-scale dataset including various dental implant systems and diameters and lengths of dental 
implants. Second, the dataset included only a periapical modality. In clinical practice, the limited information 
may include radiographs from different modalities, such as panoramic radiographs. Therefore, when construct-
ing a dataset and conducting further studies, it is necessary to expand the scope by including radiographs 
from other modalities. Third, to evaluate the improvement in model performance, we compared the results 
before and after the tuning process for each AI  approach30,31. For clinical validity assessment, it is necessary 
to compare the performance of dental professionals across multiple groups based on their experience, or it 
would be necessary to investigate how much these automated systems can enhance the decision performance 
of dental professionals. In previous studies focusing on classifying dental implant systems, they presented the 
results comparing the performance of AI models and dental professionals. In many of these studies, experts 
often conducted performance evaluations on human experts assuming prior knowledge in distinguishing dental 
implant systems. Dental professionals are skilled at distinguishing dental implant systems. However, progressing 
beyond implant system differentiation, distinguishing the diameter and length of these implants requires even 
more prior knowledge. Therefore, presenting human experts with a comparable quantity of training images 
annotated with dental implant sizes, akin to AI models, and accurately and efficiently evaluating the extent to 
which their performance improves, is imperative. Fourth, training models with imbalanced data can cause bias 
and performance deterioration in minority  groups32. The model tends to prioritize the majority class due to 
its higher prevalence, reducing performance for the underrepresented classes. To overcome these limitations, 
future studies should aim to collect additional data from minority groups. Additionally, utilizing synthesized 
data from suitable generative models could effectively address these  limitations33,34. Fifth, it will be essential to 
conduct tests to determine which scenarios deal with various dental implant systems and sizes with various AI 
approaches to find more effective methods. The results of this paper discussed the model performance of the 
fine-tuned VGG16. While our initial testing of ResNet50 and InceptionV3 in the study yielded performance 
lower than that of VGG16, they still exhibited reliable performance. ResNet50 and InceptionV3 demonstrated 
consistent performance not only in our study but also across various other research studies. Future research is 
needed to focus on a wider range of architectures, highlighting deep learning using various CNN architectures, 
such as DenseNet, MobileNet, EfficientNet, Xception, ResNeXt, SENet, and RegNet.

The AI models developed in this study have limitations in detecting various dental implant systems and 
different diameters and lengths. However, this research went beyond previous studies that focused on classify-
ing implant systems and aimed to provide more detailed information about dental implants from periapical 
radiographs. By further advancing this approach, it has the potential to efficiently manage patients with dental 
implants in a clinical setting and offer an objective metric reference for dental radiograph interpretation.

Conclusion
Automatic classification of the size of bone level implants can be achieved through DL and clustering. The 
performances of two AI models were improved through the tuning process. DL involves obtaining features 
through a training process with transfer learning and fine-tuning. On the other hand, the clustering model was 
developed by selecting an appropriate feature using three key points and tuning the weight of the feature vector. 
As a result, they can improve the efficiency and accuracy of implant assessment, assist dental professionals in 
making informed decisions, and enhance patient outcomes in dental implant treatments.

Materials and methods
Ethics
The Institutional Review Board (IRB) of Yonsei University Dental Hospital approved this study (Approval num-
ber: 2-2022-0067). The IRB of Yonsei University Dental Hospital waived the requirement to obtain individual 
informed consent, so no participants were provided written or verbal informed consent since this study had a 
noninterventional retrospective design, and all data were evaluated anonymously. All methods in this study were 
performed in accordance with the relevant guidelines and regulations.

Data acquisition and data splitting
This study focused on the Straumann bone level implant (Institut Straumann, Basel, Switzerland). Periapical 
radiographs of Straumann bone level implants were included based on the inclusion criteria, which allowed for 
verification of diameter and length from the electronic medical records of dental implant first surgery. To replicate 
diverse clinical scenarios, the included periapical radiographs contained loaded implants, implants with healing 
abutments, and implants with cover screws. Cases, where dental implant images exhibited significant blurring or 
distortion due to movement during imaging or unusual imaging angles, were excluded from the study. We col-
lected 927 periapical radiographs obtained from 874 patients aged 19–85 who underwent periapical radiography 
using the paralleling technique with 60 kVp, 7 mA, and 0.08–0.1 s between 2005 and 2022.

All periapical radiographs were cropped to display one dental implant per image. After cropping 927 peri-
apical radiographs, 1320 images containing bone level implants were obtained (Fig. 1a). Each image was anno-
tated with a four-digit number representing the dental implant’s diameter and length, with the first two digits 
corresponding to the diameter and the last two corresponding to the length. A board-certified prosthodontist 
performed the process. Subsequently, cropped images underwent a thorough verification process. This involved 
cross-referencing each image with the corresponding electronic medical record entry. Initially, the process 
encompassed labeling to ascertain the number of threads, the characteristic appearance of the implant apex, as 
well as the proportional representation of diameter and length on the image itself. This comprehensive approach 
ensured the refinement of erroneously annotated data. The resulting process yielded a meticulously curated 
ground truth dataset. For the DL process, to prevent class imbalance, the validation dataset and testing dataset 
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were structured with an equal distribution of 20 data points per class, while the remaining data was designated as 
the training dataset. The entire 1320 images were divided into 960 images for training, 180 images for validation, 
and 180 images for testing (Supplementary Table S1). For the clustering process, the entire 1320 images were 
divided into 1140 images for training and 180 images for testing (Supplementary Table S2). The testing dataset 
used for the performance evaluation of both AI models consisted of the same set of 180 images. The study was 
conducted according to the checklist regarding AI in dental  research31.

DL approach for bone level implant size classification
The cropped images were preprocessed with global contrast normalization and zero-phase whitening. The diver-
sity of the training data was increased by applying various transformations to the images. The training data was 
randomly augmented using horizontal flipping, vertical flipping, rotation (range of ± 10°), width shifting (range 
of ± 0.1), height shifting (range of ± 0.04), zooming (range of ± 0.02), and shear (range of ± 0.01). As a result, the 
training data has been augmented by 16 times. The input image size was 224 by 224.

VGG16, ResNet50, and InceptionV3 were tested as potential CNN architectures. The results showed accuracy 
values of 0.989, 0.961, and 0.967, respectively, with the test dataset, and VGG16 was  chosen35. VGG16 model, 
pre-trained with ImageNet, was used for transfer  learning36. VGG16 architecture comprises five convolutional 
blocks. In this study, the fine-tuning degree, in the range of zero to five, was defined as the number of blocks, 
which was trained with our training data, and the other convolutional blocks were frozen as the weight of 
ImageNet (Fig. 6). External validation was performed on six fine-tuned VGG16 models using the test data. The 
model achieving the best accuracy was chosen for the final DL  model37.

Early stopping was used with the patience set to five to prevent overfitting. The learning rate was 0.00002 
using the Adam optimizer. The batch size was set to 16. Dropout regularization with a rate of 0.5 was applied to 
prevent overfitting. The DL models were trained for 15 epochs with a possibility of early stopping and developed 
in Python 3.8.16 and TensorFlow 2.9.2 under a single NVIDIA RTX 3090.

Clustering approach for bone level implant size classification
Three key points (points A, B, and C) were labeled on cropped bone level implant images and used to calculate 
the radiographic diameter and length (Fig. 7). In this study, the diameter of the dental implant is the implant 
body, except for thread depth. AB corresponds to the diameter of the dental implant on a periapical radiograph, 
and point C corresponds to the dental implant apex. Key point annotation was performed using the annotation 
tool LabelMe (MIT Computer Science and Artificial Intelligence Laboratory, retrieved from https:// github. com/ 
wkent aro/ label me). The type of annotation was a polygon. The x- and y-coordinates of the three key points were 
extracted from a JSON format file. D means radiographic diameter, L means radiographic length, and S means 
the area of triangle ABC yields (Eqs. (1)–(5)).

Figure 6.  Six cases of the pre-trained VGG16 model by adjusting the fine-tuning degree.

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16856  | https://doi.org/10.1038/s41598-023-42385-7

www.nature.com/scientificreports/

Through the above equations, D and L were calculated in pixel units, so they were changed to the values in 
millimeters by multiplying themselves by the imager pixel spacing value, a DICOM metadata element, corre-
sponding to the physical distance measured at the front plane of the image receptor housing between the centers 
of adjacent pixels. D and L were extracted from each image as a feature vector to be used for clustering.

The radiographic diameter and length indicated on the x- and y-axes, respectively, and the ground truth 
cluster of each data was represented with color coding. The three key points in each of the 1320 images of bone 
level implants were used to calculate the radiographic diameter and length for making a feature vector to train 
and test the clustering model.

This study used a type of k-means clustering called k-means++, which can improve the clustering process 
produced by the k-means algorithm by selecting centroids that are well-distributed throughout the data  set38,39. 
The centroid represents the central point of a cluster. The centroid serves as a representative value or can be used 
to measure distances between clusters. As the number of clusters, k was set to nine because the study aimed to 
classify nine groups of the different diameters and lengths of the dental implants. A two-dimensional coordinate 
space was used with the radiographic diameter and length set as the x- and y-axes, respectively (Fig. 7). The study 
aimed to find the centroid for assigning clusters well to the ground-truth group from nine clusters by tuning the 
weight of the feature vector.

Function f denotes a linear transformation that modifies the diameter component of a vector by scaling with a 
factor w while keeping the vertical component unchanged (Eq. (6)). This transformation stretched or compressed 
the vector along the horizontal axis while keeping its length constant along the vertical axis.

The changes in the vector space according to the value of w and the resulting k-means clustering outcomes 
were evaluated. This research set w within the range of one to 10, and we adjusted it to improve the performance 
of the clustering model. The same computing resources used to develop the DL model were also employed to 
develop the clustering model.

Statistical analysis and model performance evaluation
Statistical analysis was performed with the Python sklearn library and Stata software (StataCorp, College Station, 
TX) version 18. With the results of the two final models with DL and clustering approaches, the accuracy, sensitiv-
ity, specificity, F1-score, positive predictive value (PPV), negative predictive value (NPV), and AUC-ROC were 
calculated based on the confusion matrix (Eqs. (7)–(12), TP: true positive, TN: true negative, FP: false positive, 
FN: false negative, PPV: positive predictive value, NPV: negative predictive value. The recall is also known as 
sensitivity, and the precision is also known as PPV).
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2
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Figure 7.  Key point selection and feature extraction for clustering.
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Comparisons of performances were conducted in each two AI approaches between the model with the best 
accuracy and the model before tuning process. The chi-square test was used as a statistical test, and the statistical 
significance level was set to p = 0.05.

Data availability
The data sets generated or analyzed during the current study are not publicly available in order to preserve patient 
confidentiality but are available from the corresponding authors on reasonable request.
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