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Combining Asian and European genome-
wide association studies of colorectal cancer
improves risk prediction across racial and
ethnic populations

A list of authors and their affiliations appears at the end of the paper

Polygenic risk scores (PRS) have great potential to guide precision colorectal
cancer (CRC) prevention by identifying those at higher risk to undertake tar-
geted screening. However, current PRS using European ancestry data have
sub-optimal performance in non-European ancestry populations, limiting their
utility among these populations. Towards addressing this deficiency, we
expand PRS development for CRCby incorporating Asian ancestry data (21,731
cases; 47,444 controls) into European ancestry training datasets (78,473 cases;
107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64),
0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets
including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African
American, Latinx/Hispanic, and non-Hispanic White, respectively. They are
significantly better than the European-centric PRS in all four major US racial
and ethnic groups (p-values < 0.05). Further inclusion of non-European
ancestry populations, especially Black/African American and Latinx/Hispanic,
is needed to improve the risk prediction and enhance equity in applying PRS in
clinical practice.

Colorectal cancer (CRC) is a leading cause of cancer death, yet it is
among themost preventable cancers via screening1. Together with the
detection of CRC at early stages, which dramatically improves prog-
nosis, optimal screening has the potential for a major impact on CRC
mortality. However, current screening programs are primarily age and
family-history based and more refinement through risk-based screen-
ing recommendations could be instrumental in improving their
effectiveness.

Genetics plays a key role in the CRC development and, as formost
cancers and other common diseases, the risk is polygenic2. As such, we
can utilize the polygenic risk structure to develop a polygenic risk
score (PRS) to quantify an individual’s inherited risk of developing
CRC. As the predictive performance improves, a PRS can become
clinically useful as a risk stratification tool for targeted screening and
chemoprevention. However, PRS built based on European ancestry

data have sub-optimal performance in other ancestral populations3

because of differential linkage disequilibrium (LD) patterns and allele
frequencies across racial and ethnic groups for disease risk variants of
CRC4–9. The poor transferability of PRS across racial and ethnic groups
has raised concern regarding whether its application in clinical prac-
tice may exacerbate existing health disparities7. As a result, there is a
need to improve the accuracy of polygenic prediction across different
racial and ethnic groups to maximize the clinical and public-health
translational potential of PRS and enhance equity in precision
medicine.

Developing ancestry-specific PRS requires sufficient sample sizes
for each ancestral group; however, the sample sizes for non-European
ancestry groups, while increasing, remain only a fraction of the sample
size for European ancestry. Existing studies suggest that leveraging
information from other ancestries can improve ancestry-specific
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PRS10,11. As an alternative to developing ancestry-specific PRS, onemay
develop a single cross-ancestryPRSbasedonmeta-analysis of genome-
wide association studies (GWAS) across all available ancestral
groups12–14. To our knowledge, there is no study of PRS for non-
European ancestral populations for CRC. Here we consider two dif-
ferent approaches to PRS development, (1) ancestry-specific PRS using
PRS-CSx15 based on ancestry-specific GWAS while leveraging cross-
ancestry information and (2) single cross-ancestry Asian-European PRS
using LDPred216 based on combined meta-analysis summary statistics
and LD matrices across Asian and European ancestries. Using inde-
pendent racially and ethnically diverse datasets, we evaluated the
performance of these two PRS and compared them with a genome-
wide PRS built using European-only GWAS data3 and a PRS based on
204 known CRC loci17–20. To facilitate understanding of its clinical
utility, weuseddecision-curve analyses21 to assess the standardizednet
benefit for the model based on family-history and PRS and compared
to the family-history-only model, as the latter is currently used to
decide at what age screening starts.

Results
For developing PRSs, we used GWAS summary statistics of 1,020,293
SNPs based on 21,731 cases and 47,444 controls of Asian and 78,473
cases and 107,143 controls of European ancestries. We evaluated the
performance of the PRS in independent validation individual-level data
sets including 12,025 Asian (2420 cases; 9605 controls), 13,823 Black/
African-American (1954 cases; 11,869 controls), 10,378 Latinx/Hispanic
(1682 cases; 8696 controls) and 118,756 non-Hispanic White (3651
cases; 115,105 controls) participants. More details about study parti-
cipant characteristics for training and validation data sets are included
in Table 1, Supplementary Data 1, and Supplemental Material and
Methods.

Discriminatory accuracy of Asian-European PRS
The single cross-ancestry Asian-European PRS derived using the
combinedAsian-EuropeanGWASmeta-analysis summary statistics and
LDmatriceswith LDpred2 improved the discriminatory accuracy in the
Asian population compared to the European-centric PRS (AUC=0.63
vs. 0.59, p-value < 4.5e−09, Table 2). It also improved the AUC sig-
nificantly in the non-Hispanic White population (AUC =0.65 vs. 0.63,
p-value = 6.0e−03). Despite lack of Black/African American and His-
panic individuals in deriving the PRS, the Asian-European PRS
improved the AUC for Black/African American (AUC =0.59 vs. 0.58, p-
value = 0.05) and Hispanic individuals (AUC=0.62 vs. 0.59, p-value =
5.0e−03). The Asian-European PRS improved the AUC in all racial and
ethnic groups compared to the known-loci PRS (all p-values < 0.05).

The ancestry-specific PRS derived using PRS-CSx improved the
discriminatory accuracy in the Asian population compared to the

European-centric PRS (AUC =0.64 vs. 0.59), though not statistically
significant with p-value 0.06 (Table 2). The AUC for the ancestry-
specific non-Hispanic White-specific PRS was also not statistically dif-
ferent from the European-centric PRS (p-value = 0.15) in the non-
Hispanic White population; however, it was significantly higher than
the known-loci PRS (p-value = 1.8e−05). The ancestry-specific PRS-CSx
is not relevant for Black/African American and Hispanic groups,
because there were no GWAS for these groups included in the training
datasets.

There was little variation in AUC estimates across studies (Sup-
plemental Table 1). Among these two approaches, the Asian-European
PRS using the combined Asian-European summary statistics in
LDpred2 had greater discriminatory accuracy than the ancestry-
specific non-Hispanic White-specific PRS from PRS-CSx with p-value =
3.0e−03. However, we did not observe statistically significant differ-
ences in Asian individuals (p-value = 0.75). Taken together, the single
cross-ancestry Asian-European PRS using LDpred2 performs among
the best in terms of AUC but withmuch narrower confidence intervals;
hereafter we focus only on the single cross-ancestry Asian-European
PRS. The ROC curves for the cross ancestry Asian-European PRS
showed a similar pattern to the AUC forAsian, Black/African American,
Hispanic, and non-Hispanic White participants (Supplemental Fig. 1).

PRS distribution across racial and ethnic groups
As expected, the PRS distributions varied across the racial and ethnic
groups (Fig. 1A and Supplemental Fig. 2). After trans-ancestry correc-
tion, the PRS distributions largely overlapped except for the MG-JPN
study (Fig. 1B and Supplemental Fig. 3). This may be due to the use of
the imputation referencepanel of only Asian individuals from the 1000
Genomes Projects forMG-JPN; this differs from all other studies, which
used all 1000 Genome Project samples in the reference panel. We thus
performed an additional mean adjustment to the PRS for the MG-JPN
study. After this adjustment, all PRS distributions overlapped (Fig. 1C).

Cases had higher mean PRS than controls across all racial and
ethnic groups (Supplemental Fig. 4). The OR estimates per SD of PRS
(95% CI) were 1.64 (1.55–1.74), 1.39 (1.31–1.47), 1.62 (1.51–1.73) and 1.67
(1.60–1.75) for Asian, Black/African American, Latinx/Hispanic, and
non-Hispanic White participants, respectively, with p-value < 2.0e−18
for all four groups (Fig. 1D and Table 3).

Compared to the mean risk, the relative risks of PRS at any given
percentilewere similar for all racial and ethnic groups except for Black/
African American participants for whom it was attenuated (Fig. 2). The
relative risk at the 90th percentile of the PRS distribution compared to
mean was 1.67, 1.44, 1.65, and 1.69 for Asian, Black/African American,
Latinx/African American, and non-Hispanic participants, respectively.

The model-based relative risk was calibrated well across the PRS
range in all racial and ethnic groups (Fig. 3).

Table 1 | Characteristics of the validation studies

Study Racial and Ethnic Group Total N CRC No. (%) Mean age (range) Female No. (%) Family-history

Yes No. (%) No No. (%) Missing No. (%)

GERA Asian 7370 96 (1.0%) 64 (19–95) 4152 (56.3%) 643 (8.7%) 6727 (91.3%) 0 (0%)

Black or African American 3159 56 (2.0%) 66 (20–95) 1811 (57.3%) 313 (9.9%) 2846 (90.0%) 0 (0%)

Latinx or Hispanic 6660 70 (1.0%) 63 (19-95) 4081 (61.3%) 543 (8.2%) 6117 (91.8%) 0 (0%)

non-Hispanic White 77,012 1401 (1.8%) 70 (19–95) 44,125 (57.2%) 7423 (9.6%) 69,589 (90.4%) 0 (0%)

MG Japanese 4655 2324 (50.0%) 65 (20–90) 2007 (43.1%) 407 (8.7%) 1410 (30.0%) 2838 (61.0%)

Black or African American 6597 1856 (28.1%) 66 (20–91) 2581 (39.1%) 721 (11.0%) 934 (14.0%) 4942 (74.9%)

Hispanic GWAS Latinx or Hispanic 3717 1611 (43.3%) 65 (21–90) 1790 (48.1%) 260 (7.0%) 2949 (79.3%) 508 (13.7%)

CPSII non-Hispanic White 1712 804 (46.9%) 71 (54–90) 769 (44.9%) 204 (11.9%) 1417 (82.8%) 91 (5.3%)

BCC non-Hispanic White 1818 873 (48.0%) 57 (8-99) 627 (34.4%) 0 0 1818 (100.0%)

eMERGE Black or African American 4067 42 (1.0%) 52 (18–90) 2946 (72.0%) 105 (2.6%) 3705 (91.0%) 257 (6.3%)

non-Hispanic White 38,214 573 (1.5%) 65 (18–90) 20,543 (54.0%) 965 (2.5%) 30,157 (78.90%) 103 (0.3%)
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Odds ratios (ORs) for PRS stratified by family-history and age
Across all racial and ethnic groups, the ORs for the PRS were higher
in those without a family-history than those with a family-history with
p-values 0.21, 0.01, 3.0e−3, and 0.11 for Asian, Black/African American,
Latinx/Hispanic, and non-Hispanic White participants respectively
(Table 3). The estimates were consistent across studies (Supplemental
Table 2).

The strength of association estimates for PRS in relation to CRC
decreased over strata of increased age in each racial and ethnic group
with trend test p-values of 0.07, 0.11, 2.8e−4, and 1.2e−03 for Asian,
Black/African American, Latinx/Hispanic, and non-Hispanic White,
participants, respectively. The ORs, 95% CI and trend p-value for each
racial and ethnic group are given in Table 3. The estimates were con-
sistent across studies (Supplemental Table 2).

Clinical utility for model based on PRS and family-history
We calculated the standardized net benefit (sNB) to assess the
clinical utility of using a model based on PRS and family-history to
recommend an intervention (such as screening) for participants
<50 years of age. We used the average 10-year risk of developing
CRC at age 45 as the risk threshold, because the current CRC-
screening guidelines recommend that an average-risk individual
start screening at age 45 years old. Using the GERA cohort, we
estimated the 10-year risk to be 0.29% across all racial and ethnic
groups. At this risk threshold, the risk model based on PRS, and
family-history achieved 37.3% (95% CI: 23.8%–50.8%) of the max-
imum possible achievable utility. This was greater than the model
based on family-history alone (sNB = 21.7%, 95% CI: 12.4%–33%,
p-value 0.02) and hypothetically intervening on all or no people

Table 2 | AUC estimates (95% confidence interval) for European-centric PRS, known loci PRS, PRS-CSx and LDPred2

Race and Ethnicity Cases/ controls European-centric PRS Known Loci PRS PRS-CSx LDPred2

Asian 2420/9605 0.59 (0.57–0.60) 0.60 (0.59-0.62)
p-val*: 0.24

0.64(0.58–0.69)
p-val*: 0.06
p-val+: 0.32

0.63 (0.62–0.64)
p-val*: 4.5e−9
p-val+: 1.6e−6
p-val**: 0.75

Black or African American 1954/11,869 0.58 (0.56–0.59) 0.58 (0.56–0.59)
p-val*: 0.92

0.59 (0.57–0.61)
p-val*: 0.05
p-val+: 0.01

Latinx or Hispanic 1681/8696 0.59 (0.57–0.61) 0.59 (0.57–0.60)
p-val*: 0.76

0.62 (0.60–0.63)
p-val*: 5.0e−3
p-val+: 1.0e−3

Non-Hispanic White 3651/115,105 0.63 (0.62–0.65) 0.61 (0.60–0.62)
p-val*: 9.0e−4

0.64 (0.62-0.65)
p-val*: 0.15
p-val+: 1.8e−5

0.65 (0.64–0.66)
p-val*: 6.0e−3
p-val+: 1.1e–14
p-val**: 3.0e−3

The p-values are two-sided and calculated based on 500 bootstrapping samples.
*p-value comparison of PRS with the European-centric PRS.
+p-value comparison of PRS with the known-loci PRS.
**p-value comparison of PRS with the PRS-CSx.
**All AUC estimates were adjusted for age, sex, and top 4 principal components.

(A) (B) (C)

(D)

Race and Ethnicity           # cases             # controls          OR (95% CI)          p-value                  

Asian

Black or African 
American

La�nx or Hispanic

non-Hispanic White

Race and Ethnicity

Fig. 1 | Distribution of PRS. A PRS distributions varied across racial/ethnic groups,
B PRS distribution after ancestry adjustment,CAdditionalmean adjustment for the
Asian MG (Minor GWAS Japanese Study) study that has a different imputation
panel, and D forest plot by racial and ethnic group for OR estimates +/−1.96

standard error of PRS per SD usingN = 120,25; 9756; 10,377 and 80,542of unrelated
samplesofAsian, Black or AfricanAmerican (AA),Hispanic andnon-HispanicWhite,
respectively. The p-values in the table are two-sided. PRS is based on single cross-
ancestry Asian-European PRS.
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(Fig. 4a), a pattern that generally holds for each racial and ethnic
group (Supplemental Fig. 5).

Weobserved a similar pattern for participants between the ages of
50 and 60 years (Supplemental Fig. 6). We also used the 10-year risk
0.39% at age 50 and 0.49% at 55 years as the risk thresholds. The risk
model based on PRS, and family history achieved greater sNB (sNB =
24.8% and 21.6%, respectively) than themodel based on family history-
alone (sNB= 19.3% and 15.9%, respectively).

At the risk threshold 0.29%, in GERA cohort, for the model based
on family history and PRS, the true-positive and false-positive rates
were 70% and 37%, respectively, whereas, for the model based on
family history only, the true-positive and false-positive rates were 31%
and 10%, respectively (Fig. 4b). About 8472 of 22,628 individuals with
age 40–49 were deemed to be at high risk based on our model of
family history and PRS. Among these, 99 developed CRC in the next 10
years. For this age group, a total of 149 individuals developed CRC.
Whereas, for the model based on family history only, at the same risk
threshold, about 2357would be deemed at high risk, and 37 developed
CRC. (Fig. 4c, d).

Table 4 provides more detailed results of the net benefit (NB)
analysis for our proposed family history and PRS-basedmodel and the
family history-based model compared to treat all for risk thresholds
(%) from0 to0.32%,whereNB for treat all becomes negative. Using the
same risk threshold 0.29% as in the previous example, the NB of our
model is 0.11%. This can be interpreted as that compared with
assuming that all individuals do not have intervention, our model with
0.11% NB leads to the equivalent of a net 11 true-positives per 10,000
individuals without an increase in the number of false-positives.
Moreover, the net benefit for the model was 0.08% greater than
assuming all individuals had intervention and 0.04% greater than
family history-based model. We also calculated the reduction in the
number of false positives per 100 patients as22. There were 30 fewer
false-positives per 100 individuals for our models whereas there were
only 15 fewer false-positives for the family history-based model.

In addition, we estimated the number of unnecessary interven-
tions avoided for individuals with age 40–49 years old, as shown in
Supplemental Fig. 7 and Table 5. Continuing using the 0.29% threshold
as an example, risk stratification based on the family history and PRS

Table 3 | Odds ratios (OR), 95% confidence interval (95% CI) and two-sided p-values for PRS per SD for all and stratified by
family-history and age

Asian Black or African American Latinx or Hispanic Non- Hispanic White
OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

PRS per SD 1.64 (1.55–1.74)
<2.00e−18

1.39 (1.31–1.47)
<2.00e−18

1.62 (1.51–1.73)
<2.00e−18

1.67 (1.60–1.75)
<2.00e−18

Family-history

No 1.62 (1.46–1.80)
<2.0e−18

1.53 (1.26–1.85)
1.21e−5

1.64 (1.52–1.72)
<2.0e−18

1.67 (1.59–1.76)
<2.0e−18

Yes 1.45 (1.19–1.76)
1.9e−4

1.22 (1.03–1.44)
1.2e−2

1.15 (0.91–1.46)
0.245

1.51 (1.36–1.67)
9.10e−15

Age

<50 1.88 (1.50–2.35)
4.35e−8

1.51 (1.17–1.94)
1.33e−3

1.17 (0.68–2.00)
5.7e−1

1.85 (1.48–2.31)
5.31e−8

50–60 1.85 (1.62–2.12)
<2.0e−18

1.53 (1.36–1.72)
8.56e−13

2.15 (1.77–2.562)
1.29e−14

1.75 (1567–1.96)
<2.0e−18

60–70 1.58 (1.43–1.74)
<2.0e−18

1.41 (1.28–1.55)
1.49e−12

1.58 (1.42–1.76)
<2.0e−18

1.88 (1.73–2.04)
<2.0e−18

70–80 1.57 (1.41–1.75)
1.33e−15

1.31 (1.17– 1.45)
1.39e−6

1.47 (1.30–1.67)
1.48e−9

1.61 (1.49–1.74)
<2.0e−18

>80 1.65 (1.28–2.13)
1.21e−4

1.32 (1.03– 1.69)
3.07e−2

1.58 (1.211–2.05)
6.903−4

1.43 (1.30– 1.58)
2.12e−13

Trend p-value (Age) 7.0e−2 0.11 2.8e−4 1.2e−3

Race and Ethnicity

Asian

Black/African American

La�nx/Hispanic

non-Hispanic White

Fig. 2 | Relative Risk Estimation. The relative risk of individuals at different percentiles of the single cross-ancestral Asian-European PRS compared to a population
average odds ratio, stratified by race and ethnicity.
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would avoid 17more interventions per 100 individuals, comparedwith
themodel based on family history, whichwould avoid 13 interventions
per 100 individuals compared to intervening all.

Assessing CRC probabilities for PRS
We estimated age-specific probabilities for developing CRC by age 80,
stratified by family history status, and by quantiles of PRS top 5%, top
25%, 25%–75%, bottom 25% and bottom 5%, for different racial/ethnic
groups of GERA participants. There was clear separation between
those who were in bottom and top PRS quantiles across ancestral
groups, except for the African American groupwhere the separation is
less obvious due to the lower performance and very limited number of
CRC cases in this group. Theprobabilities of developingCRCby age 70
for top 5% of PRS ranged from 2.2 to 4.7%, across the four different
racial and ethnic groups. In comparison, the probabilities of develop-
ing CRC for those who had the positive family history were 1.9–5%
(Supplemental Figs. 8 and 9).

Discussion
Using large-scale Asian and EuropeanGWASdata,we demonstrate that
combining Asian and European summary statistics in deriving PRS led
to statistically significant improvement in discriminatory accuracy
across Asian, Black/African American, Latinx/Hispanic and non-
Hispanic White groups, although the improvement was less marked
in Latinx/Hispanic andBlack/AfricanAmericanparticipants.We further
show that across all groups, the PRS has stronger associations with
CRC-risk in younger individuals and in thosewithout a family-historyof
CRC, which will likely increase the possible clinical utility of the PRS
given the rising young-onset CRC incidence rates in recent decades,
mostly in individualswithout a known family-history. This is supported
by our decision-curve analysis demonstrating that adding PRS
improves the maximum achievable clinical utility over the model
based on family-history only for ages 40–60 years.

A challenging factor of moving PRS to clinical implementation is
ensuring that the PRS is equally applicable to individuals across all

racial and ethnic groups to prevent an increase in health disparities.
Relevant to this objective, we evaluated two broad categories of
approaches (ancestry-specific PRS while leveraging cross ancestry
information and single cross-ancestry PRS based on the combined
cross-ancestry GWAS) for improving the prediction in under-
represented groups, and our observation of the performance of
these approaches could be generalized to other traits besides CRC.We
found that both approaches performed similarly in Asian and non-
Hispanic European individuals. Further, the cross-ancestry Asian-Eur-
opean PRS also improved risk prediction performance in Hispanic
individuals and, to a smaller extent, in Black/African American indivi-
duals. We also show that we can correct this raw PRS for genetic
ancestry and create a common distribution that can be used across
racial and ethnic groups, avoiding the potential difficulty of using
ancestry-specific PRS in admixed populations. Accordingly, our cross-
ancestry Asian-European PRS has the potential to reduce health dis-
parities between non-European ancestry populations and the Eur-
opean ancestry population.

As there is growing interest in clinical use of PRS, it is important to
point out that the purpose of PRS is not to identify CRC, but rather
stratify individuals into different risk strata forwhichdifferent levels of
cancer preventive interventions may be devised.23,24 Their perfor-
mance should thus be compared with risk factors currently used for
risk stratification such as family-history in terms of cost effectiveness.
In this paper, we performed a decision-curve analysis that has been
used in cancer research for assessing the potential population impact
of incorporating a riskpredictionmodel into clinical practice22,25,26. The
risk model that incorporates both the PRS and family-history achieves
37.3% of the maximum possible achievable utility for those 40–49
years old, significantly greater than 21.7% under the family-history-only
model. Recently the US Preventive Services Task Force recommended
lowering the age at screening initiation to 45 years for individuals at
average risk27. However, given the substantial burden of additional
approximately 22 million people becoming eligible for screening and
the fact that CRC remains a rare event in younger individuals, there has

Fig. 3 | Relative Risk Calibration of PRS. The relative risk calibration of PRS,
stratified by race and ethnicity, using N = 120,25; 9756; 10,377 and 80,542 of
unrelated samples of Asian, Black or AA, Hispanic and non-Hispanic White,

respectively. The x-axis is the log-transformed predicted RR values and the y-axis is
the log-transformed observed RR +/− 1.96 standard error with the middle bin
(40–60) as the reference group.
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been critique of the universal change to the initial screening age that,
instead, emphasizes the importance of targeted screening based on an
individual’s risk factors28–30. The results from the decision-curve ana-
lysis suggest that there is clinical utility to adding a PRS to the family-
history-onlymodel in risk stratification forCRCprevention. In decision
curve analysis, we assumed the decision in question was whether
an individual in the general population should undergo intervention
(e.g., colonoscopy procedure), based on their risk. Overall, the model
with the highest (standardized) net benefit is considered the “best”
strategy in decision curve analysis. However, as argued in Kerr et al.21,
decision curves cannot be used to choose a risk threshold, but it
summarizes the costs and benefits of intervention of the riskmodel at
different risk threshold. To fully evaluate the effectiveness of including
PRS as part of risk stratification, a full decision analytic modeling that
incorporates other aspects such as different screening methods,
implementation factors, behavioral factors, and corresponding costs
are warranted31.

Recent efforts32,33 in clinical implementation of PRS shows the
potential of PRS to effectively stratify the risk of diseases development
and guide screening. BOADICEA v5 (as implemented in the CanRisk
tool)32 already implements a 313-variant PRS of breast cancer and
currently supports hundreds of thousands of women, doctors, and
genetic counselors annually in >90 countries making treatment deci-
sions. PRS-guidedmammographic screening is also being tested in the
WISDOM and PERSPECTIVE I&I studies33. GenoVA Study34 is a clinical

trial in which patients and their primary care physicians receive a
clinical PRS laboratory report on five diseases including CRC. MyOme
implements a cross-ancestry risk score for breast cancer risk
stratification35. AsCRChas an effective screening intervention, itwould
be of great interest to explore implementation of PRS for guiding
personal screening recommendations.

This study has several strengths.We brought togethermost of the
globally available GWAS of CRC for Asian and European ancestry
populations as our training data, which is an important factor for the
improved performance of the proposed PRS. Further, we used multi-
ple independent evaluation data sets that were not part of our training
data nor GWAS discovery, providing an unbiased evaluation of the
developedmodels.Moreover, the single cross-ancestral PRS derived in
this study makes it easy to implement in any admixed population.

The results of this investigation should be interpreted in the
context of its limitations. Thediscriminatoryaccuracy remains lower in
Latinx/Hispanic and particularly in Black/African American individuals
due to their limited sample sizes in training data. Future studies more
inclusive of these individuals are warranted for deriving PRS to
enhance the discriminatory accuracy. Furthermore, we have not been
able to evaluate the performance of these models in other racial and
ethnic groups, including Alaskan Native, Native American and Pacific
Islander individuals. Lastly, we expect to further improve risk predic-
tion by combining the PRS with non-genetic risk factors such as obe-
sity, diet, and aspirin use, as previously shown24,36.
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Fig. 4 | Standardized net benefit analysis. a Standardized net benefit for none,
all, family history (FamHx) model, and FamHx+PRS model. For the FamHx and
Famhx+PRS models b true- and false-positive rates, c number of high-risk, and

d number of high risk participants developed CRC at different risk thresholds, in
22,628 participants aged 40–49 from the GERA cohort.
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Advances in PRS development have promoted the use of PRS-
enhanced models to determine and stratify disease risk, which could
improve disease prevention and management through screening and
early detection. Our cross-ancestry Asian-European PRS, built upon
data on both Asian and European ancestry individuals, improves the
PRS performance in Asian, Black/African, and Latinx/Hispanic indivi-
duals considerably. Combining PRS and other CRC-associated risk
factors such as lifestyle/environmental risk factors and high pene-
trance genes will likely further improve the prediction performance36.
We anticipate that the continuous expansion of PRS development and
validation to include more diverse populations and prospective eva-
luation of PRS-enhanced risk prediction model in clinical trials along
withdecreasing genotyping cost and adaptationof health care systems
to accommodate genetic data and prediction algorithm will bring
closer the implementation of PRS in clinical practice.

Methods
Training data sets
To develop polygenic risk scores (PRS) across population, we used the
genome-wide association study (GWAS) summary statistics of
1,020,293 SNPs based on 78,473 cases and 107,143 controls of Eur-
opean (EUR) and 21,731 cases and 47,444 controls of Asian ancestries
from GWAS catalog under accession code GCST90129505 (Supple-
mentary Data 1)17–19. For this we group participants into analytical units
by study or genotyping platform as consistent with the original
reports17–20,37,38. Ancestry was determined by the genetic principal
component analysis. Studies that contributed to more than one prior
genome-wide association analyses were analyzed only once. In total,
there were 31 analytical units (17 from EUR descent populations and 14
from Asian descent populations), totaling 100,204 CRC cases and
154,587 controls. Comprehensive details on the participants, geno-
typing and standard quality control (QC) procedures are summarized
in Supplementary Data 1. All study protocols were approved by the
relevant Institutional Review Boards, and informed consent was
obtained from all study participants in accordance with the Helsinki
accord.

Independent validation data sets
We evaluated the performance of each of the developed PRS in the
Genetic Epidemiology Research on Adult Health and Aging Cohort
(GERA) cohort; Minority GWAS Japanese study (MG-JPN)39; Minority
GWAS African American study (MG-AA)40; Hispanic Colorectal Cancer
Study (HCCS)41; Multiethnic Cohort study (MEC); Cancer Prevention
Study II (CPSII)42; Basque-colon cohort (BCC); and Electronic Medical
Records and Genomics (eMERGE) study. Racial and ethnic identifica-
tion in these studies were self-reported. In total, there were 12,025
Asian (2,420 cases; 9605 controls), 13,823 Black/African-American
(1954 cases; 11,869 controls), 10,378 Latinx/Hispanic (1682 cases; 8696
controls) and 118,756 non-HispanicWhite (3651 cases; 115,105 controls)
participants. None of these samples was included in the training data
sets for model building. More details about study participant char-
acteristics are included in Table 1.

CRC status (Yes/No) was determined from cancer-registry data.
Family-history of CRC (>=1 first-degree relatives with CRC), was
ascertained through baseline study questionnaire or electronic medi-
cal records at study entry.

Approaches for deriving PRS
We compared twodifferent approaches for PRS development using (1)
ancestry-specific PRS using PRS-CSx that integrates genome-wide
Asian and European summary statistics and LD matrices; (2) single
cross-ancestry PRS using LDpred2 that combine genome-wide Asian
and European summary statistics and a weighted LD matrix with
weight defined as the proportion of participants from each ancestry in
the summary statistics. Figure 5 depicts the summary of these PRS
derivations.

PRS-CSx15 derives ancestry-specific PRS while leveraging GWAS
summary statistics from other ancestral groups. We first obtained
ancestry-specific PRS using ancestry-specific GWAS summary statistics
and LDmatrix for Asian and non-HispanicWhite participants based on
~1M genome-wide SNPs, respectively, while leveraging GWAS from the
other ancestral group. We denoted these PRS by PRSAsian and
PRSEuropean, respectively. We then improved ancestry-specific PRS by

Table 4 | Net benefit (NB) of intervention (e.g., screening) for 22,628participants aged40–49 from theGERAcohort, according
to the proposed family history (FamHx) + PRS model and the FamHx only model for a given risk threshold

Risk thresh-
old (%)

NB Advantage of model compared to treat all

Treat All FamHx Model FamHx +PRS Model FamHx Model FamHx +PRS Model

Net benefit Reduction of false positive
per 100

Net benefit Reduction of false positive
per 100

0.04 0.002763 0.002763 0.002766 0 0 3.05E−06 1

0.08 0.002364 0.002364 0.002378 0 0 1.40E−05 2

0.09 0.002264 0.002264 0.002307 0 0 4.33E−05 5

0.11 0.002064 0.002064 0.002151 0 0 8.66E−05 8

0.13 0.001864 0.001864 0.001976 0 0 0.000112 9

0.14 0.001764 0.001764 0.001945 0 0 0.00018 13

0.16 0.001564 0.001564 0.001809 0 0 0.000245 15

0.17 0.001464 0.001464 0.001751 0 0 0.000286 17

0.19 0.001264 0.001264 0.001683 0 0 0.000419 22

0.20 0.001164 0.001164 0.001678 0 0 0.000513 26

0.22 0.000964 0.000964 0.001545 0 0 0.000581 26

0.23 0.000864 0.000864 0.00141 0 0 0.000547 24

0.25 0.000663 0.000663 0.00142 0 0 0.000757 30

0.26 0.000563 0.000563 0.001285 0 0 0.000722 28

0.28 0.000363 0.000707 0.001222 0.000344 12 0.000859 31

0.29 0.000263 0.000696 0.001142 0.000434 15 0.00088 30

0.31 6.20E−05 0.000676 0.001084 0.000613 20 0.001022 33

0.32 −3.83E−05 0.000665 0.001006 0.000703 22 0.001045 33
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taking a weighted sum of these PRSs to predict CRC of respective
ancestral group. To derive PRS for the Asian population, we calculated
aweighted sumof PRSAsian and PRSEuropean (α1 PRSEuropean + β1 PRSAsian)
and obtained α1 and β1 from a logistic regressionmodel using the MG-
JPN study. Similarly, to derive PRS for the European population,
we calculated a weighted sum of PRSAsian and PRSEuropean (α2
PRSEuropean + β2 PRSAsian), where α2 and β2 were obtained based on the
pooled BCC and CPSII studies.

To derive the single cross-ancestry PRS using LDpred216, we
combined the summary statistics from the Asian and European
GWAS using the inverse variance weighted estimator43 and com-
bined the LD matrices, as the weighted sum of the Asian and
European-specific LD matrices with the weights proportional to
the sample sizes of the Asian and European individuals in the
combined summary statistics.

We compared ancestry-specific and single cross-ancestry PRS
from PRS-CSx and LDpred2 with a previously published European-
centric genome-wide PRS3 and a known-loci PRS consisting of 204
independently CRC-associated variants based on GWAS of European
and Asian ancestries17–20 (Supplementary Data 2). Our model was
focused on only PRSdevelopment and didnot include any lifestyle and
environmental risk factors.

Evaluation of model performance
We evaluated the model performance using a wide range metrics, the
Area Under the Receive Operating Characteristics curve, ancestry
adjustment of PRS distribution, odds ratio estimates, and relative risk
calibration based on all of the validation datasets listed in Table 1. The
decision curve analysis is based on the GERA study, which was the only
cohort study among our independent validation datasets.

The area under the receiver operating characteristics
curve (AUC)
We evaluated the predictive performance of the PRS by the area under
the receiver operating characteristics curve (AUC) in each of the racial
and ethnic groups44. We calculated the adjusted AUC of PRS for each
study using the ROCt R package45, adjusting for covariates age, sex and
four PCs. We emphasize that the AUC estimate was for PRS only and
the covariates were not part of prediction along PRS. These covariates
were included as potential confounders. We then combined the AUC
estimates of PRS across studies for each ancestry using the inverse
variance weighted estimator.

We obtained the bootstrapped-based standard error (se), 95%
confidence intervals (CI) (1.96* se) and two-sided p-values for com-
parisons across various subgroups using 500 bootstrap samples.

Ancestry adjustment of PRS distribution
As the PRS distributions were different across racial and ethnic groups
due to different allele frequencies, we used a modified trans-ancestry
adjustment of PRS to align the PRS distributions46. We used the 1000
Genome dataset to estimate the ancestry adjustment following the
approach in Khera et al.46. Specifically, we derived principal compo-
nents (PCs) based on 343,662 ancestry informative SNPs with little
overlapped (0.3%) with SNPs used in PRS development. To correct for
themeanand variancedifferences between ancestry groups, we fit two
linear regression models to predict the mean and variance of PRS
based on the first four PCs. To correct for the raw PRS distribution in
our data set, wefirst calculated the PCs using the same loadings for the
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Fig. 5 | Approaches for deriving polygenic risk scores (PRS) for colorectal cancer. Known Loci PRS and the details of the two different approaches for deriving PRS (1)
PRS-CSx PRS and (2) LDpred PRS.

Table 5 | Unnecessary interventions avoided per 100 indivi-
duals with age 40–49 for different risk thresholds, 0.29%,
0.39% and 0.49% corresponding the average 10-year risk of
developingCRCat ages45, 50and55years, for theproposed
family history (FamHx) + PRS model and the FamHx
only model

Risk threshold (%) Famhx Famhx + PRS

0.29 13 30

0.39 34 38

0.49 45 49
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top 4 PCs from the 1000 Genome data set. We then obtained
the ancestry-adjusted PRS for each individual by subtracting the pre-
dicted mean based on the 4 PCs from the individual’s raw PRS and
then divided it by the predicted standard deviation based on the
4 PCs. Additional adjustments are needed for data sets with different
imputation panels. The ancestry adjusted PRS is computed as given
below:

PRSadjusted =
PRSsample � ðαo +

P4
i = 1 αiPCiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βo +

P4
i= 1 βiPCi

q ð1Þ

Odds ratio (OR) estimates
We estimated the OR and 95%CI of CRC-risk associated per SD change
in PRS by logistic regression model, overall and stratified by family
history and age. For each racial and ethnic group, we estimated the
AUC and OR by study and combined the estimates using the inverse
varianceweighted estimator. In addition,we estimatedOR stratifiedby
family history of 1st degree relative with CRC (yes, no) and age (<50,
50–59, 60–69, 70–79, and >80). All analyseswereadjusted for age, sex,
and top 4 principal components of ancestry.

Relative risk calibration of PRS
WebinnedPRS into 5%strata anddefined the referencegroup asPRS in
the 40–60% stratum. The expected OR for a PRS stratum is the ratio of
the within-stratum geometric average of individuals’model-based OR,
defined as exponent of individuals’ PRS times log (OR), between that
stratum and the reference stratum. We estimated the observed OR
estimates and its 95%CI by fitting a logistic regressionmodel with CRC
disease status as outcome and a binary variable with 1 indicating a
specific stratum and 0 indicating the reference stratum, adjusting for
age, sex, and first four principal components.

Decision curve analysis
The decision-curve analysis was performed by calculating the stan-
dardized net benefit (sNB), defined as the net benefit divided by the
maximum possible net benefit21, to assess the potential clinical impact
of the risk prediction models on recommended interventions (i.e.,
screening). For a given risk threshold, the NB was defined as

NB= sensitivity×p� ð1� specif icityÞ× ð1� pÞ×w, ð2Þ

wherew was the odds at the threshold, sensitivity was the proportion
of cases above the risk threshold based on the model, specificity was
the proportion of controls below the risk threshold based on the
model, and p was the disease probability at the landmark time. As it
was difficult to interpretNB itself, we followed the approach proposed
by Kerr et al.21 to calculate sNB, i.e., dividing NB by the maximum NB,
which is achievedwhen sensitivity = 1 and specificity = 1. Hence, the sNB
was equal to

sNB= sensitivity� ð1� specif icityÞ× ð1� pÞ
p

× w, ð3Þ

It provided some sense of magnitude of sNB on a percent scale
and was interpreted as the relative utility that hasmaximum value of 1.
For example, if sNB =0.4, it means that the riskmodel achieves 40% of
the maximum possible achievable utility.

To calculate the NB in the presence of competing risks47, we
denote rt be the risk threshold and I(t) the cumulative incidence of
developing CRC for an individual by time t in the presence of com-
peting risks, here, death. Further, we define z = 1 to indicate that an

individual is at high risk if their predicted t-year risk from the model is
greater than or equal to rt and z =0 otherwise. We chose the landmark
time t = 10 years. At each rt, we calculated the number of true and false
positives, TPrt and FPrt, by

TPrt = Iðtjz = 1Þ×Pðz = 1Þ×N ð4Þ

FPrt = f1� Iðtjz = 1Þg×Pðz = 1Þ×N ð5Þ

where N is the total number of participants. The true-positive rate was
then calculated as TPrt /TPrt=0 and the false-positive rate was calculated
as FPrt /FPrt=0. We also calculated the reduction in the number of false
positives per 100 patients as22: (net benefit of the model – net benefit of
treat all)/{rt/(1− rt)) × 100. We compared the model based on PRS and
family history with the model based on family history alone, as well as
two hypothetical extreme scenarios: intervention (e.g., screening) for
all and intervention for none. We calculated the sNB under the
competing risks framework48, where the observational time is the
minimum of time to CRC, time to death, and time at last observation,
and the disease status is 1 if the study participant had CRC, 2 if the
participant died (competing event), and 0 otherwise. We plotted
decision-curves of sNB at the 10-year landmark time vs. risk threshold
for age at study entry 40–49 and 50–59 years old, because average-risk
individuals in these age groups are recommended to start CRC
screening.

We performed the analyses using R version 4.0.022,45,49–51. A two-
sided p-value < 0.05 is considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Summary-level data for the full set of Asian and European GWASs
used in this study are available in the GWAS catalog under accession
code GCST90129505. Genotype data of GERA participants who con-
sented to having their data shared with dbGaP are available from
dbGaP under accession phs000674.v2.p2. The complete GERA data
are available upon successful application to the KP Research Bank.
Genotypedata of eMERGEparticipants are available fromdbGaPunder
the accession number phs001616.v1.p1. For individual-level data,MEC,
CCFR, TheMDAnderson Colorectal Cancer Case Control Study, HCCS
are deposited in dbGaP (phs000220.v2.p2, phs002733.v1.p1,
phs002691.v1.p1, phs001193.v1.p1) and PLCO (phs001286.v3.p2).
SCCS and CanCORS data can be accessed via websites http://ors.
southerncommunitystudy.org and http://outcomes.cancer.gov/
cancors/. For the remaining studies please contact the correspond-
ing PIs: CR2&3 (Loic Le Marchand at loic@cc.hawaii.edu), Fukuoka,
(Loic Le Marchand at loic@cc.hawaii.edu), Nagano, JPHC(Motoki Iwa-
saki at moiwasak@ncc.go.jp), UNC-Rectal (Temitope Keku at temito-
pe_keku@med.unc.edu) and Basque Study(Prof Luis Bujanda at
LUIS.BUJANDAFERNANDEZDEPIEROLA@osakidetza.eus). The 1000
Genomes phase 3 dataset (GRCh37) is available in PLINK2 binary for-
mat at PLINK 2.0 Resources(https://www.cog-genomics.org/plink/2.0/
resources#1kg_phase3). The PRS weight files generated by this study
are available in PGS catalog (https://www.pgscatalog.org/) with
accession number: PGS003852.

Code availability
All data and statistical analysis tools used in the present study are open
source, details of which are available in Methods and Nature Portfolio
Reporting Summary. No customized code was used to process or
analyze data.
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